Cosmic rays: Highlights from the Pierre Auger Observatory Ioana C. Mariș for the Pierre Auger collaboration Université Libre de Bruxelles ## Pierre Auger Observatory 1 ## Auger detectors # From measured photons to energy: air showers emissions - Fluorescence yield ∝ dE/dX - isotropic fluorescence emission - forward beamed direct Cherenkov light - Rayleigh- and Mie- scattered light: dependent on the aerosols and atmospheric conditions (VAOD) - Invisible energy correction - Cherenkov yield \propto N_e, universality of the energy deposit dE/dX= $\alpha_{\rm eff}(s)$ · N_e $E_{FD} = \int dE/dX + \text{invisible energy correction}, E_{SD} = f(\theta, S1000)$ 1 ## From air-showers to primary particle $E_{FD}=\int dE/dX+$ invisible energy correction, $E_{SD}=f(\theta,S1000)$ ļ ## The second knee and the instep - spectrum obtained from the combination of 5 energy spectra - common energy scale (14% systematic uncertainty) ## The second knee and the instep Presence of the second knee and a new feature: the instep ## Comparison with Telescope Array measurement ## Comparison with Telescope Array measurement: declination dependency? ## Sensitivity to mass composition with FD and SD FD: heavier particles develop higher in the atmosphere, with less fluctuations $\ensuremath{\mathsf{SD}}\xspace$ heavier particles produce more muons on the ground, thus smaller risetime ## Sensitivity to mass composition with FD and SD FD: heavier particles develop higher in the atmosphere, with less fluctuations SD: heavier particles produce more muons on the ground, thus smaller risetime X_{max} : depth of the maximum of the air-shower development Δ_S : evolution of the signal with time, related to the risetime ## Using the surface and fluorescence detectors for mass composition ## Combining the energy spectrum and the mass composition measurements The flux suppression seems to be dominated by an acceleration cut-off at the sources ## Ultra high energy neutrinos: cosmogenic fluxes Future: lower the detection threshold with AugerPrime ## Search for neutrinos from TXS 0506+56 IceCube observed a 290 TeV nu from the direction of TXS 0506+59 during a flaring state talk by Julia Tjus, Science 361, 146 (2018) Unfortunate none seen by Auger during the flare ## Number of particles Photon primary Photon primary Maximum of the shower development Maximum of the shower development Ground level ## Limits on ultra high energy photons Limits start to probe proton-dominated scenarios Increase in the photon/hadron separation needed Exploit lower energies with the underground muon detectors ## Mass composition distribution over the sky - Scan over data recorder before 2013 - 5° steps in latitude and 0.1 in lg(E/eV) - Highest test statistics for $(Ig(E_{\min}/eV), b) = (18.7, 30^{\circ})$ Confirmation from other variables pending: more data and better sensitivity needed ## Large scale anisotropy Harmonic analysis in right ascension $\boldsymbol{\alpha}$ Significant dipolar modulation (6.6 $$\sigma$$) above 8 \times 10¹⁸ eV: (7.3^{+1.1}_{-0.9})% at (α , δ) = (95°, -36°) - Expected if cosmic rays diffuse in Galaxy from sources distributed similar to near-by galaxies (dipole structure in near-IR) - Anti-dipole in the direction of the local void ## Large scale anisotropy Large scale anisotropy Energy-independent amplitude disfavored at the level of 3.7σ Emergence of a new classes of sources? Combined analysis with Telescope Array coll.: better constrain on the dipole reconstruction (due to full sky coverage) ## Anisotropies at smaller scales: angular correlations with sources | Catalog | $E_{\rm th}$ [EeV] | Fisher Search Radius, Θ [deg] | Signal Fraction, α [%] | TS_{max} | Post-trial p-value | |----------------------|--------------------|--------------------------------------|-------------------------------|------------|----------------------| | All galaxies (IR) | 40 | 16^{+11}_{-6} | 16^{+10}_{-7} | 18.0 | 7.9×10^{-4} | | Starbursts (radio) | 38 | 15^{+8}_{-4} | 9^{+6}_{-4} | 25.0 | 3.2×10^{-5} | | All AGNs (X-rays) | 39 | 16^{+8}_{-5} | 7^{+5}_{-3} | 19.4 | 4.2×10^{-4} | | Jetted AGNs (γ-rays) | 39 | 14^{+6}_{-4} | 6^{+4}_{-3} | 17.9 | 8.3×10^{-4} | Model: signal fraction (α) above an isotropic background within a angular range (Φ) about a certain energy ($E_{\rm thr}$) ## Probing hadronic interactions at ultra high energies By matching the longitudinal profiles and/or footprints on the ground $R_{ m had}$ and R_{μ} related to the muonic component on the ground $R_{ m E}$ and $X_{ m max}$ related to the electromagnetic component The number of muons is underestimated in simulations: at 10^{19} eV 30% to $80^{+17}_{-20}\%$ more needed ## Modification of hadronic interaction models Combined fit of (S1000, $X_{\rm max}$) (hybrid events, 3 EeV - 10 EeV) Combined fit of (S1000, $X_{\rm max}$) allowing for an angular dependent rescaling of N_{μ} Combined fit of (S1000, $X_{\rm max}$) allowing for an angular dependent rescaling of N_{μ} and shifting $X_{\rm max}$ of all primaries ## A shift in $X_{\rm max}$ and muon number required Assumptions: relative fluctuations no changed Main effect from re-scalling muon component in a zenith angle dependent way Scalling X_{max} leads to further improvements ## Auger Prime upgrade ## deployment status SSD modules 1518 (without the borders) 1473 SSD installed in the field 405 electronics and small PMT installed ## Summary ## Pierre Auger Observatory: Phase I - Large accumulated exposure of 120 000 km² sr year - The instep, a new unexpected spetral feature that could naturally be explained by the change in mass composition - UHECR composition and energy spectrum decisive for next generation EeV neutrino observatories - Clear missmatch between the hadronic interaction models and data regarding the number of muons (and probably $X_{ m max}$) - Large scale anisotropies have been measured in the form of a dipole, indications for small scale anisotropies are present ### Phase II - At least 40 000 km² sr year additional exposure expected - Increased sensitivity towards mass composition - Usage of modern techniques (deep learning) to data analysis 10% of Auger data are public: opendata.auger.org