Cosmic rays: Highlights from the Pierre Auger Observatory

Ioana C. Mariș for the Pierre Auger collaboration

Université Libre de Bruxelles

Pierre Auger Observatory

1

Auger detectors

From measured photons to energy: air showers emissions

- Fluorescence yield ∝ dE/dX

- isotropic fluorescence emission
- forward beamed direct Cherenkov light
- Rayleigh- and Mie- scattered light: dependent on the aerosols and atmospheric conditions (VAOD)
- Invisible energy correction

- Cherenkov yield \propto N_e, universality of the energy deposit dE/dX= $\alpha_{\rm eff}(s)$ · N_e

 $E_{FD} = \int dE/dX + \text{invisible energy correction}, E_{SD} = f(\theta, S1000)$

1

From air-showers to primary particle

 $E_{FD}=\int dE/dX+$ invisible energy correction, $E_{SD}=f(\theta,S1000)$

ļ

The second knee and the instep

- spectrum obtained from the combination of 5 energy spectra
- common energy scale (14% systematic uncertainty)

The second knee and the instep

Presence of the second knee and a new feature: the instep

Comparison with Telescope Array measurement

Comparison with Telescope Array measurement: declination dependency?

Sensitivity to mass composition with FD and SD

FD: heavier particles develop higher in the atmosphere, with less fluctuations

 $\ensuremath{\mathsf{SD}}\xspace$ heavier particles produce more muons on the ground, thus smaller risetime

Sensitivity to mass composition with FD and SD

FD: heavier particles develop higher in the atmosphere, with less fluctuations SD: heavier particles produce more muons on the ground, thus smaller risetime

 X_{max} : depth of the maximum of the air-shower development

 Δ_S : evolution of the signal with time, related to the risetime

Using the surface and fluorescence detectors for mass composition

Combining the energy spectrum and the mass composition measurements

The flux suppression seems to be dominated by an acceleration cut-off at the sources

Ultra high energy neutrinos: cosmogenic fluxes

Future: lower the detection threshold with AugerPrime

Search for neutrinos from TXS 0506+56

IceCube observed a 290 TeV nu from the direction of TXS 0506+59 during a flaring state
talk by Julia Tjus, Science 361, 146 (2018)

Unfortunate none seen by Auger during the flare

Number of particles Photon primary Photon primary Maximum of the shower development Maximum of the shower development Ground level

Limits on ultra high energy photons

Limits start to probe proton-dominated scenarios Increase in the photon/hadron separation needed Exploit lower energies with the underground muon detectors

Mass composition distribution over the sky

- Scan over data recorder before 2013
- 5° steps in latitude and 0.1 in lg(E/eV)
- Highest test statistics for $(Ig(E_{\min}/eV), b) = (18.7, 30^{\circ})$

Confirmation from other variables pending: more data and better sensitivity needed

Large scale anisotropy

Harmonic analysis in right ascension $\boldsymbol{\alpha}$

Significant dipolar modulation (6.6
$$\sigma$$
) above 8 \times 10¹⁸ eV: (7.3^{+1.1}_{-0.9})% at (α , δ) = (95°, -36°)

- Expected if cosmic rays diffuse in Galaxy from sources distributed similar to near-by galaxies (dipole structure in near-IR)
- Anti-dipole in the direction of the local void

Large scale anisotropy

Large scale anisotropy

Energy-independent amplitude disfavored at the level of 3.7σ Emergence of a new classes of sources?

Combined analysis with Telescope Array coll.: better constrain on the dipole reconstruction (due to full sky coverage)

Anisotropies at smaller scales: angular correlations with sources

Catalog	$E_{\rm th}$ [EeV]	Fisher Search Radius, Θ [deg]	Signal Fraction, α [%]	TS_{max}	Post-trial p-value
All galaxies (IR)	40	16^{+11}_{-6}	16^{+10}_{-7}	18.0	7.9×10^{-4}
Starbursts (radio)	38	15^{+8}_{-4}	9^{+6}_{-4}	25.0	3.2×10^{-5}
All AGNs (X-rays)	39	16^{+8}_{-5}	7^{+5}_{-3}	19.4	4.2×10^{-4}
Jetted AGNs (γ-rays)	39	14^{+6}_{-4}	6^{+4}_{-3}	17.9	8.3×10^{-4}

Model: signal fraction (α) above an isotropic background within a angular range (Φ) about a certain energy ($E_{\rm thr}$)

Probing hadronic interactions at ultra high energies

By matching the longitudinal profiles and/or footprints on the ground

 $R_{
m had}$ and R_{μ} related to the muonic component on the ground $R_{
m E}$ and $X_{
m max}$ related to the electromagnetic component

The number of muons is underestimated in simulations: at 10^{19} eV 30% to $80^{+17}_{-20}\%$ more needed

Modification of hadronic interaction models

Combined fit of (S1000, $X_{\rm max}$) (hybrid events, 3 EeV - 10 EeV)

Combined fit of (S1000, $X_{\rm max}$) allowing for an angular dependent rescaling of N_{μ}

Combined fit of (S1000, $X_{\rm max}$) allowing for an angular dependent rescaling of N_{μ} and shifting $X_{\rm max}$ of all primaries

A shift in $X_{\rm max}$ and muon number required

Assumptions: relative fluctuations no changed

Main effect from re-scalling muon component in a zenith angle dependent way Scalling X_{max} leads to further improvements

Auger Prime upgrade

deployment status

SSD modules 1518 (without the borders) 1473 SSD installed in the field 405 electronics and small PMT installed

Summary

Pierre Auger Observatory: Phase I

- Large accumulated exposure of 120 000 km² sr year
- The instep, a new unexpected spetral feature that could naturally be explained by the change in mass composition
- UHECR composition and energy spectrum decisive for next generation EeV neutrino observatories
- Clear missmatch between the hadronic interaction models and data regarding the number of muons (and probably $X_{
 m max}$)
- Large scale anisotropies have been measured in the form of a dipole, indications for small scale anisotropies are present

Phase II

- At least 40 000 km² sr year additional exposure expected
- Increased sensitivity towards mass composition
- Usage of modern techniques (deep learning) to data analysis

10% of Auger data are public: opendata.auger.org