Tbilisi State University

B e - i e A e _—— e ——“"‘*-—:-—

: TblllSl Georgla | 5- 9 Septemberlﬁgz%“"

Update on the LIGO-Virgo-
KAGRA O3 results

Ornella Juliana Piccinni on behalf of the LVK

) EXCELENCIA
¢ SEVERO
, OCHOA

o

11.%=
1T =

Institut de Fisica
d’Altes Energies

Barcelona Institute of
Science and Technology

09/09/2022 - PIC2022, Thilisi - Georgia



Gravitational waves
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The network of GW detectors

* increases detection
confidence

* improves sky localization

. N A * allows for polarization
Operational v, 3 | . .
Planried ; T determination

* IMproves source
parameters inference

* O3: April 2019 - March
2020 [03a,03b]




Ground-based GW detectors

* From O2 to O3a the main improvements were:

* adjustment of in-vacuum squeezing for LIGO

Hanford and Livingston

* increase of laser power for Virgo

* After October commissioning break:

* LIGO: Adjustments to the squeezing subsystem Laser input

and reduction of scattered light noise;
mplementation of reaction-chain tracking

* Virgo: Increased laser power; improved

electronics, alignment, squeezing and software
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Glitches per minute

glitches (time)
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Angle-averaged range [Mpc]

()5 l‘llﬂ GWOSC https:/www.gw-openscience.org
O3a O3b

Binary neutron star inspiral range Binary neutron star inspiral range
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Network duty factor

[1238166018-1253977218]

Network duty factor
[1256655618-1269363618]

Triple interferometer [51.0%)
Double interferometer [34.3%]
Single interferometer [11.2%]
No interferometer [3.4%)]

Triple interferometer [44.5%]
Double interferometer [37.4%]
Single interferometer [15.0%]
No interferometer [3.2%]




Observing runs timeline

. Updated = Of1 02 mmO3 mm 04 05
O3 is concluded 16 June 2022 ;
80 100 100-140 160-190 240-325
O4 preparation is LIGO Mi"’ e ﬁ ‘ Mpc
ongoing
30 40-50 150-260
New run expected Virao Mpc Mpo Mpe
for April 2023 9
0.7 25-128
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Observing plans updates here: https:/observing.docs.ligo.org/plan/



GW observations and catalogues

01 =3, 02 = 8, O3a =44, O3b = 35, Total = 90

S

GWTC-1 (O1 & O2):
11 GW events including the first GW
discovery and first BNS

GWTC-2 & GWTC-2.1 (0O3a):
44 new GW events

GWTC-3 (O3b) :
35 new GW events
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O3 detection rate ~ 1 event every 5 days
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Compact binaries coalescences
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Short-lived signals produced by a pair of compact objects
(BH, NS)

Electromagnetic emission might be present e.g if one NS

Typical search methods include matched-filter and/or
minimally modeled searches

Parameter estimation like:

* Masses: chirp mass, total mass, mass ratio

* Spins M = (mymy)¥/3 /(my + ma) 5.
* Distance

Xoff = (mix1 +moxz2) - L
* Energy dissipated ‘ my + Mo

* Geometry and polarization
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Secondary mass (MO)

GW events masses

catalog.cardiffgravity.org
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GW events masses

Masses In the Stellar Graveyard

LIGO-Virgo-KAGRA Black Holes

/( l) \ /(](

-KAGRA Neutron Sita

EM Neutron Stars

p-astro>o0.5§

Black holes exist
in pair instability
mass gap

Compact objects
exist with masses
between 2-5 Mo




BBH population

LVK, arXiv:2111.03634 (2021)
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O5a masses, spins

Abbott et al, arXiv:2010.14527(2020)
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negative effective inspiral spin,
2nd most massive in O3b

least massive BBH in O3b
positive effective inspiral spin
NSBH, most extreme mass ratio
NSBH

misaligned spin

NSBH?

most massive in O3b

negative effective inspiral spin

O3b, masses, spins,...

GW191109.010717
GW191129_134029
GW191204_171526
GW191219_163120
GW200115.042309
GW200129_065458
GW200210-092254
GW200220_061928
GW200225 060421
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NS-BH(?) masses
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Events hits: GW190412

a merger of unequal-mass BHs

BBH Wlth (ml, m2) — (30, 8) M@
D1, =740 Mpc, z = 0.1§

not necessarily the most unequal mass
merger in O3 with m, > 3Me (because of
broad g mass ratio posteriors on other
events.)

Mild evidence for spin precession

First evidence of higher order multipoles as
predicted by GR

16
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Events hits: GW190425

a merger involving a massive NS

Both components of mass < 3Me
ol = x <089
Consistent with binary neutron star 2 | — x <005
merger (but might be BBH or NSBH) = 8y - Galactic BNS
e,
Total mass of 3.4 Me Z 6
Masses significantly larger than any RS -
O
other known BNS £ 4 TN
sky localization poor, no EM ; AN M‘\,- | | .
2.00 2.2 2.90 2.75 3.00 3.20 3.00 3.7¢
only LIGO L and Virgo Miot (Mo)

Negligible spins favored by data LVK, ApJ Letters 892, L3 (2020)
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Events hits: GW190814

Maybe the first observed NSBH merger, 23Mos and 2.6 Mo

m, < 3Moe , spin of the most massive object
constrained to near zero.

3 detector (L,H,V) observation with
network SNR of 25.

Well localized event but no EM counterpart
Asymmetric masses (9:1 ratio)
No clear evidence of tides on inspiral

Nature of compact object in the mass gap:
NS or BH?

18
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Events hits: GW190521

a merger of remarkably massive BH (LVC, PRL, 125, 101102 (2020))
LVK interpretation:
e A BBH Wlth a total mass Of 150 Mo quasi-circular BBH merger, precession, primary mass in PISN gap
Livingston Virgo

* First observation of an
intermediate mass BH (Ms >100)

* Mild evidence for spin precession

* Farthest source observed so far -,
(z~0.8)

* Can be interpreted as a BBH (e.g. Romero-Shaw+ 2020: weakly eccentric BBH merger) or
something else, including DM origin (Calderon-Bustillo+ 2021: collisions of boson stars; De
Luca+ 2021: PBH origin)

19



LVK, 2112.06861 (2021)

Testing GR

The model waveform is constructed using the predictions of GR.

Gravitational-wave sources can be used to probe strong-field, dynamical and
nonlinear aspects of gravity

Tests predictions of GR are performed by:

introducing small modifications to our waveform models and compare the data
with these waveforms

Three theory-agnostic tests (parameterized tests, inspiral-merger-ringdown
consistency tests, and gravitational-wave propagation tests) have been done

20



Residual Test

Parametrized test

/4

(pPN(f) - 2”.[’(: = (pc el

4

Testing GR

Question to answer

Are the residual consistent
with detector noise?

Description

Subtracts the best-fit GR
waveform from the data

and asks whether there is
any statistically significant
residual power.

LVK, 2112.06861 (2021)

Results
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No evidence for violation of GR

Is the inspiral phase
consistent with GR ?

geesteessesecsasansese

Inspiral can be treated
perturbatively within the
post-Newtonian
framework. PN coefficients
: measurable parameters of
the waveform —> sensible

- —5/3 - . = il3e ) 0 1 2 3

1287 %) Z |2+ wilog()] (2f) 2 | consistency test of GR ’ ’ ’ ’
s o & 0 0 ...'O-Qo....ooo.oo.o. NOevidenceforviolationofGR
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Modified dispersion

Test for GW echoes

Testing GR

Question to answer

Modified theory predict
dispersion of GW

Description

Affect the morphology of the
signal —> effective dephasing of
the GW signal can be measured.

E2 — pzcz +Aapaca
Different choices of a —> leads

to a deviation in the GR phasing

formula.
Mass of the graviton :

my = \JAy/c?

LVK, 2112.06861 (2021)

Results
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Improved bounds on graviton
mass with respect to GWTC-2

m, < 1.27x107%*3eV /c?

If the merger remnant is not a
classical BH but an exotic
compact object without an
event horizon but a reflective
surface

Search for post-merger
echoes in a morphology
independent way.
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No evidence for echoes
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Testing GR

* Many more tests of General Relativity have been done :
* Spin-induced quadrupole moment test
* GW polarizations test
* BH remnant test
* Ringdown test
* Found no statistically significant evidences for any deviation from GR
* Update limits on deformation parameters in the case of parametrized tests
* Testing GR is very hard, even if a deformation is found:
* is the deformation due to non-GR?
* Are we considering all possible models ?

* Are (GR-)waveform built in the most precise way?

23



Cosmology with GW-GWTC-5

_ +12 —1 —1
* A previous measure of the Hubble Hy = 63Z3" km s™"Mpc

0.05
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Q "l
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: o Planc
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0.01 —
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yields Improvement of 42% w.r.t. e A - —. |
GWTC-1 and 20% w.r.t. GWTC-2 2> 50 75 100 des 150 17s 200
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24 LVK, arXiv:2111.03604 (2021)



Other searches

Other searches conducted during O3;:

* Continuous wave searches: mountains or r-mode oscillations in isolated spinning neutron stars (including SNR) or
accreting systems (LLVI, arXiv:2107.00600, PRD 106, 042003, Apj 921 30 (2021))

* Short and long burst searches: f-mode oscillations in pulsar glitches and CCSN (LVI, arXiv:2107.03701); non-

axisymmetric deformations in magnetars and eccentric binary mergers (L.VI(, arXiv:2107.13700); GRB searchers (with
Fermi and Swift) (ApJ, 015, 86 (2021))

* Stochastic GW searches (LVI, PRD, 104, 022004 (2021); PRD, 104, 022005 (2021))

* Cosmic strings (LVI, PRL, 1206, 241102 (2021))

* Lensed GW signals (LVK, arXiv:2105.06384)

* Dark matter searches:
* Direct search for sub-solar mass BHs (LVI, arXiv:2100.12197)
* Direct search for ultralight scalar boson clouds around Kerr BHs (LVI, PRD, 105, 102001 (2022))
* Constraints on the existence of dark photons (LLVIK, arXiv:2105.13085)

No new detections reported, but present updated and stringent upper limits of different physical quantities

25



Beyond O3: detector upgrades

LIGO upgrades include

* Doubling arm power (~200 kW in
0O3)

* New filter cavity for frequency
dependent squeezing (and more
efficient)

b
il

Strain Spectral Density [h/VHZz]

* Low frequency technical noise

redUCtiOn <100 Hz (Scattered —— 03 LLO (high SQZ) [130MPc]
. . . —~ == 04 quantum 400kW arms + 4.5db SQZ
light, control noise, electronics) | o8 wen mproves tecica 192 wee
10! 102 | T

Frequency [Hz]
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Virgo upgrades:

New Input Mode Cleaner Payload
(Improve controllability and stability)
Instrumented Baffle

(Direct measurement of scattered

light)
Input
Mode
Cleaner
High-power Laser
(Increase the circulating
power)
F
100W araday

PRM POP
Signal Recycling Mirror
(Change the sensitivity curve)

Seismometer Array

Newtonian Noise)

CP NI

¢-{F-==-]

Filtering cavity

Auxiliary Laser System SRM

(To control the Slgnal Recycling Cavity)

High-finesse Output Mode Cleaner
(Reduce losses)

Low-noise photodiodes

(Reduce the electronic noise)

Output
Mode Cleaner

Photodiode

NE

= H—|

Beyond O3: detector upgrades

(Measurement and cancellation of

AdV+ sensitivities and BNS ranges

102 |-

Strain [1/V/Hz)

Technical No_zisse Reduction
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(Radiation Pressure Noise)

Signal Recycling Mirror
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04: 90-115 Mpc

Signal Recycling Mirror

Input Power increase
Frequency Dependent Squeezing

(Shot Noise)

10' 10% 10°
Frequency [Hz]

= Squeezed Credits: V. Fafone

Kl light source

Frequency Dependent Squeezing
(Improve high frequencies without
spoiling low frequencies)

27

10*



What to expectin O4

Observing scenarios LVK, DCC-P1200087 (Observing Scenarios)
BNS:
LIGO Virgo Estimated O4 detection rate for LHVK
= O1: 80 Mpe | = 02 30 Mpe network: 0-62 (90%)
~ 107% w 02: 100 Mpc 10729 m 03: 50 Mpc Estimated median localisation: 33 deg?
@ m 0O3: L-130 Mpc : - O4: 90-120 Mpc
~ 102! = (03: H- 110 Mpc 10-21 m 05: 150-260 Mpc NSBH:
— : m= 0O4: 160-190 Mpc Estimated O4 detection rate for LHVK
3 = 05: 330 Mpe network: 0-92 (90%)
= 107 “'”' 107 Estimated median localisation: 50 deg?
= L :;. »
£ 1072 " 10, BBH:
2 5 Estimated O4 detection rate for LHVK
ol o | network: 35168 (90%)
10 100 1000 10 100 1000 Estimated median localisation: 41 deg?

Frequency [Hz] Frequency [Hz|
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The future of GW astronomy

* 3G Earth-based detectors

BH and NS
—Binaries
e

* Einstein Telescope

* Cosmic Explorer

........l ] a;
Supermassive BH
Binaries

* improvements of current
the detectors

* improvement of DA

109 Hz 104 Hz techniques
Inflation Probe Pulsar timing Space detectors

* widen the possibility to
do more physics (sources,
interpretations, limits)
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Summary

* Public full O3 data released: www.gw-openscience.org

* 90 GW events reported as confirmed

* Some are "exceptional events" and other are missing:
* Probing the extremes of the NS/BH mass distribution
* Spins? Orbital precession?
* No other multi-messenger discoveries since GW170817
* No evidence of violations of general relativity
* Cosmology

* LVK science is wide, not only compact binary searches

We are sure O4 will be a very satisfying run!


http://www.gw-openscience.org
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