Light Hidden Sector Search

Sebastian Trojanowski
(AstroCeNT, Nicolaus Copernicus Astronomical Center & National Centre for Nuclear Research, Poland)

PIC 2022 Tbilisi, September 6, 2022

ASTROCENT

MULTIPLE SIGNATURES

Snowmass 2021: hep-ex/2206.04220

EXPERIMENTAL LANDSCAPE (ACCELERATOR)

Experiment	Facility	Beam Config	Beam Energy	Det Signature	Timeline					
IIC-based										
HPS	CEBAF @ JLab	electron FT	1-6 GeV	LLP	running					
COHERENT	SNS @ ORNL	proton FT	1 GeV	rescattering	running					
CCM	LANSE @ LANL	proton FT	0.8 GeV	rescattering	running					
SpinQuest/DarkQuest	MI @ FNAL	proton FT	120 GeV	LLP	construction, proposed upgrade					
LDMX	LESA @ SLAC	electron FT	4-8 GeV	Missing X	R&D funding, 2024					
BDX	CEBAF @ JLab	electron BD	11 GeV	rescattering, Millicharged	proposed					
JPOS	CEBAF @ JLab	positron FT	11 GeV	Missing X	proposed					
PIP-II BD	PIP-II @ FNAL	proton FT	1 GeV	rescattering, LLP	proposed (2029)					
SBN-BD	Booster @ FNAL	proton BD	8 GeV	rescattering	proposed (2029)					
REDTOP	TBD	proton FT	1-5 GeV	Missing X, LLP, Prompt	proposed					
M^3	MI @ FNAL	muon FT	15 GeV muons	Missing X	proposed					
FNAL-μ	muon campus @ FNAL	muon FT	3 GeV	LLP	proposed					
	International									
Belle-II	SuperKEKB @ KEK	e+e- collider	150 MeV	Missing X, LLP, Prompt	running					
CODEX-p	LHC @ CEKN	pp comder	6.5-/ 1e v	LLP	construction (z023)					
CODEX-b	LHC @ CERN	pp collider	6.5-7 TeV	LLP	proposed (2026)					
LHCb	LHC @ CERN	pp collider	6.5-7 TeV	LLP, Prompt	running, future upgrade planned					
NA62	SPS-H4 @ CERN	proton BD	400 GeV	LLP	dedicated running planned					
FASERnu	LHC @ CERN	pp collider	6.5-7 TeV	rescattering	running					
milliQAN	LHC @ CERN	pp collider	6.5-7 TeV	Millicharged	running					
DarkWESA	MESA @ Mainz	Electron F I	150 MeV	rescattering, LLP	construction (z023)					
NA64-e	SPS-H4 @ CERN	electron FT	100-150 GeV	Missing X, Prompt	running					
NA04-mu	SPS-M2 @ CERN	muon FT	100-160 GeV	Missing X	commissioning					
NA64/POKER	SPS-H4 @ CERN	positron FT	100 GeV	Missing X	planned (2024)					
PIONEER	πE5 @ PSI	proton FT	10-20 MeV pions	Prompt	planned (2028)					
FASER2	FPF @ CERN	pp collider	6.5-7 TeV	LLP	proposed (2029)					
FORMOSA	FPF @ CERN	pp collider	6.5-7 TeV	Millicharged	proposed (2029)					
FASERnu2	FPF @ CERN	pp collider	6.5-7 TeV	rescattering	proposed (2029)					
FLArE	FPF @ CERN	pp collider	6.5-7 TeV	rescattering	proposed (2029)					
SND@LHC	LHC @ CERN	pp collider	6.5-7 TeV	rescattering	running					
Advanced SND@LHC	EDE	pp collider	6 5 7 T-M	rescattering	proposed (2029)					

PROTOTYPE SCENARIO - DARK PHOTON

- New light (~sub-GeV) vector secluded from the SM, coupled via kinetic mixing
 (can be induced by heavy new fields at the loop level charged under both U(1) and U(1)_D)
- Suppressed couplings to SM fermions

- Dark photons can decay into SM fermions
- Lifetime depends on ε
 Decays can be PROMPT and DISPLACED
- Various final states are possible
 Below 500 MeV mass di-lepton
 final states e⁺e⁻ & μ⁺μ⁻

LHCb

PROMPT DECAYS + RESONANCES & DISPLACED DECAYS

- Inclusive A' production + decay into di-muon pairs $A' \rightarrow \mu^{+}\mu^{-}$
- Search for A' resonance excess over expected SM $\mu^+\mu^-$ backgrounds
- Both PROMPT and DISPLACED decays are studied

 (Run 2 results: hep-ex/1710.02867 & 1910.06926)

• Substantial improvements possible in Run 3 and beyond: 10⁻²

- electron identification in the high-level trigger allows to study A' → e⁺e⁻
- further improvement of the first level trigger (Allen)
 physics.ins-det/1912.09161

PROMPT DECAYS + RESONANCES

OTHER BOUNDS

NA48/2, NA62 (past: hep-ex/1504.00607, future Run 3)

Large sample of tagged π^0 from kaon decays Search for dark photon via

$$\pi^0 \to \gamma A', A' \to e^+e^-$$

BaBar (hep-ex/1406.2980)

Search for narrow resonances in $e^+e^- \rightarrow \gamma(e/\mu)^+(e/\mu)^-$

Dark photon: $e^+e^- \rightarrow \gamma A', A' \rightarrow e^+e^-, \mu^+\mu^-$

Expected bounds (selected):

- Belle-II

SuperKEKB e⁺e⁻ collider

Data taking from 2019, upgrade (2022-23)

Expected 2-3 ab-1 in 2026

Full dataset 50ab⁻¹ (100 x BaBar)

- Heavy Photon Search (HPS)

Few GeV electron fixed target Thin target ($<1\% X_0$)

Dark bremsstrahlung $e^{-} N \rightarrow e^{-} A' N$ followed by $A' \rightarrow e^{+} e^{-}$

Data taken in 2019 & 2021 + more to come

(HIGHLY) DISPLACED DECAYS

RACE FOR LOWER COUPLINGS

• Many past bounds (CHARM, E141, LSND, NuCal, Orsay, ...)

• Multiple future experimental proposals (beam-dumps, collider, neutrino...)

• Interesting theory targets

physics.ins-det/1812.09139 hep-ph/1811.12522 physics.ins-det/1811.10243 hep-ph/1708.09389

FASER

• Far-forward region of the LHC (~480m away from the ATLAS IP)

- Exploits large forward p-p scat. cross section
- High-intensity of pions π^0 etc. e.g. rare A' production ($\pi^0 \to A'\gamma$)
- Detection: A' → e⁺e⁻

Data taking started with LHC Run 3

Preliminary study from Run 2 — first neutrino candidate events at the LHC

hep-ex/2105.06197

Snowmass: hep-ex/2203.05090

hep-ph/2109.10905

FORWARD PHYSICS FACILITY

- Proposed for the HL-LHC era
- New underground facility to host several experiments

- Rich physics program for both SM and BSM
- FASER 2: search for dark photons and other light unstable species
- Light dark matter
- Neutrino physics & QCD
- Connections to astrophysics

(HIGHLY) DISPLACED DECAYS

LIGHT DARK SCALARS

- Coupling to SM fermions due to the mixing with the SM Higgs
- Mixing angle θ
- Recent progress:

recast of past boounds from LSND (hep-ph/2004.14515, added bremsstrahlung) and PS191 (hep-ph/2105.11102) MicroBooNE search for $K^+ \rightarrow \pi^+ S \rightarrow e^+ e^-$ (hep-ex/2106.00568)

Numerous future proposals

LIGHT DARK MATTER VIA DARK PHOTON

- ullet Dark photon can also mediate interactions between the SM and a ``thermal" DM relic x
- ullet Suppressed SM couplings of A' yield correct DM relic density for \sim MeV-GeV \times LDM

• If kinematically available A' can dominantly decay into two DM particles

$$A' \rightarrow \chi \chi$$

- This can be detected:
- as missing mass/energy/momentum
- via DM re-scatterings in a distant detector

BaBar, NA64

BaBar (hep-ex/1702.03327)

Single photon signature in $e^+e^- \rightarrow \gamma A'$, $A' \rightarrow \chi \chi$ (inv.)

<u>Missing mass</u>: initial 4-momenta known, final-state photon momentum reconstructed

to be improved by Belle-II

NA64 (1906.00176)

Electron beam-dump (SPS, primary p beam)

Dark photon bremsstrahlung $e^{-}Z \rightarrow e^{-}A'Z$ & A' $\rightarrow x x$

Missing energy:

final-state Z momentum unknown... but it carries away a very small fraction of E so it has negligible impact on E budget

First runs: 2016-18, **Current run 2021-22**

RE-SCATTERING

DM RE-SCATTERING

• Idea: sufficiently intense flux of LDM particles can lead to secondary scatterings

 $\nu_e, \nu_\mu, \nu_\tau, \chi$ in distant detectors

- Various scattering signatures:
- coherent scatterings
- DM-electron scatterings
- DM-nucleon scatterings (quasi-)elastic
- Deep Inelastic Scattering (DIS)
- Important to reject v-induced backgrounds

CCM120 (hep-ex/2105.14020) COHERENT CsI (hep-ex/1911.06422) LSND (hep-ph/1107.4580, recast) MiniBooNE (hep-ex/1807.06137)

OTHER PROSPECTS (selected)

MISSING X

Missing momentum

additional final-state e⁻ transverse momentum meas. helps significantly reducing backgrounds

e.g. LDMX, M³

hep-ph/1411.1404

Positron missing energy

Positron beam annihilations on electrons in the target $^{10^{-8}}$ e⁺e⁻ \rightarrow A' \rightarrow inv.; peak in missing E \rightarrow DM mass e.g. POKER (NA64_{e+}) hep-ex/1807.05884

RE-SCATTERING

- Forward Liquid Argon Experiment

(FLArE)

in the Forward Physics Facility (LHC)

IONIZATION

MILLICHARGED PARTICLES

- Test of charge quantization, new particles with Q<0.1 e
 GUT and string theory motivations
 Also induced by massless dark photons
- milliQan detector
 Sensitive to small energy depositions dE/dx
 Plastic scintillator for detection
 Segmented into 4 longitudinal ``layers"
- signature (E_{den}~eV) 4 time-coincident hits

Data taking started with LHC Run 3

- Future similar proposals:
- milliQan-like in proton beam-dump FerMINI (FermiLAB), SUBMET (J-PARC) (hep-ph/1812.03998, hep-ex/2102.11493)
- Forward Physics Facility at the LHC FORMOSA (hep-ph/2010.07941)

FLArE (LArTPC, re-scattering signature a-la-DM)

CONCLUSIONS

- Light Hidden Sectors exciting target for the ongoing & future proposed searches
- Motivations: dark matter, top-down (GUT, string theory,...), anomalies, ...
- Multiple signatures are possible & past bounds can be recast See also: Physics Beyond Colliders, LHC@LLP working group, ...
- Accelerator-based search for MeV-GeV new particles:
- search for decays (prompt & displaced)
- search for missing mass/energy/momentum
- search for re-scattering or ionization
- Selected facilities:
- CERN: SPS (NA62, NA64,...), LHC (FASER, LHCb, milliQan,...)
- FermiLAB, e.g. neutrino beams and experiments, KEK (Belle-II), ...and many other

Snowmass 2021: hep-ph/2207.06898

EXP. LANDSCAPE (2) (NEUTRINO BEAMS)

- Current and future neutrino experiments are also great lab to study light new physics
- High statistics, large volumes and detector capabilities
- Specific BSM runs might also be used (e.g. MiniBooNE beam-dump mode hep-ex/1807.06137)

Experiment		μ BooNE	SBN (ICARUS/SBND)	NOVA	DUNE	Hyper-K	JSNS2	CCM	
$L_{\rm base}~({\rm km})/$		0.47	0.6/	810/0.9	1300/	295/	0.024/	0.023/	
$L_{\mathrm{T2ND}} \; (\mathrm{km})$			0.11	′	0.574	$0.28/\sim 1$	0.048	NA	
u Beam	Ep (GeV)		8	8	120	80 - 120	30	3	0.8
	$\begin{array}{c} {\rm Intensity} \\ {\rm (MW)} \end{array}$		0.03	0.03	0.75	1.2 - 2.4	1.3	1	0.1
	$\langle E_{\nu} \rangle$ (GeV)		0.6	0.6	2	3	0.6	0.04	0.03
Detector Parameters	ND	Tech	LArTPC	LArTPC	Liquid Scint.	LArTPC	Scint./H2O Cerenkov	Gd-Liquid Scint.	LArScint
		$V_A(t)$	96	112	300	147	4/100	17	5
	FD	Tech	NA	LArTPC	Liquid Scint.	LArTPC	H2O Cerenkov	Gd-Liquid Scint. Cerenkov	NA
		$V_A(t)$	NA	470	14k	$40\mathrm{k}$	188k	35	NA

(2015-20)