The alignment challenge in complex high resolution trackers

KIT Colloquium

Rainer Mankel (DESY)

Karlsruhe, 12 May 2022

Outline

- Motivation
- Alignment challenges in complex tracking systems
- Methodology & solutions
- Practical experience with alignment in a huge tracking system
 - inputs & workflows
 - evolution with time
 - systematic effects & their impact on physics performance

Includes already results from our upcoming new paper:

Strategies and performance of the CMS silicon tracker alignment during LHC Run 2, arxiv:2111.08757 (will appear soon in Nucl. Instr. Meth. A)

Motivation: tracking in the LHC era

- How about discovering a new beauty-strange baryon...
 - possibly an excitation of Ξ_b^- , quark content (bsd)
 - produced at the interaction point \rightarrow expect complex decay cascade

- Reminiscent of bubble chamber physics in the 60's
- But can we do this in presence of a pileup of 60 and more inelastic interactions in the detector for each event...?

Observation of a new excited beauty strange baryon

Phys. Rev. Lett. 126, 252003 (June 2021)

- First observation of $\Xi_b(6100)^-$
 - orbital excitation of Ξ_b^- , $J^P = \frac{3}{2}^-$

- Very low background due to lifetime signature. Excellent mass resolution
 - precision tracking at the LHC

Why precision tracking matters

Tracking is more important than ever

• Precision tracking and alignment are key drivers of physics performance

Why is alignment important?

- Intrinsic coordinate resolution:
 - $\sigma_{hit} \sim 9 \ \mu m$ (pixel), $\sigma_{hit} \sim 20{\text -}60 \ \mu m$ (strip)
- The effective coordinate resolution emerges from combination of intrinsic resolution and alignment

$$\sigma_{meas} \sim \sqrt{\sigma_{hit}^2 + \sigma_{alignment}^2}$$

➔ In a simplified model, the relative momentum resolution is the combined effect of coordinate resolution and multiple scattering

$$\frac{\delta p_T}{p_T} = C_1 \cdot p_T \oplus C_2 \qquad \text{where } C_1 \propto \sigma_{meas}$$

→ Need to keep $\sigma_{\text{alignment}} << \sigma_{\text{hit}}$

JINST 9 (2014) P10009

Complexity evolution of silicon trackers

A very arbitrary selection

The CMS all-silicon tracker

The largest silicon tracker ever built

- Si-Pixel Detector ("Phase 1 upgrade" in 2017)
 - 66 M (124 M) pixels
 - 100 x 150 µm²
 - 3 (4) barrel layers
 - 2x 2 (2x 3) endcap wheels
 - 4.7 < r < 10.2 cm (2.9 < r < 16 cm)
- Si-Strip Detector
 - 10 M strips in 10 layers
 - > 200 m² of silicon
 - 20 < r < 116 cm
 - 80—184 µm pitch

An "X-ray view" of the tracker in operation (2015 data) Hadrography

- Based on reconstructed vertices from nuclear interactions in the material
- Detailed map of both sensitive and "dead" material

The LHC: a new level of challenge for detector alignment

• In the beginning, we were entering new territory in terms of tracker complexity. Even in 2008, it was not entirely clear if/how the problem could be managed

• Very clearly, major methodological developments were necessary

➔ A series of three LHC alignment workshops, with experts also from previous experiments, were organized to address these problems

LHC Detector Alignment Workshop 2009

https://indico.cern.ch/event/50502/

Alignment basics

- For track-based alignment, we use many millions of tracks and study how they match to the hits in the detector modules
 - distance between track and hit: "residual"

- We introduce **corrections** to the module geometry (alignment parameters) such that they match well with the tracks
- Typically, there are three translational and three rotational alignment parameters per module (assuming planar shape)
 - corrections assumed to be relatively small
- But in practice, things are less simple...

Sensor shape parameters

- In real life, sensors are not planar
 - → without correction, coordinate measurement of non-perpendicular tracks is biased
- → Introduce three additional curvature parameters per sensor
- → In addition, "kink angles" and offsets are introduced between daisy-chained sensors in TOB modules
- → Increases the number of alignment parameters $80,000 \rightarrow 200,000$

(strongly exaggerated)

Sensor shape parameters (cont'd)

 Curvature in TIB and TOB modules (in direction transverse to strips)

 Kink between sensors in TOB modules (in direction parallel to strips)

Alignment with residuals

- Straight-forward approach:
 - for each alignable object, evaluate track-hit residuals for all tracks, and compute alignment corrections by means of a least-squares fit
 - this leads to an updated geometry
- The problem:
 - also tracks will change when updating geometry
 - need to iterate (this procedure is actually applied in various experiments. in CMS: "HipPy" algorithm)
 - but convergence not guaranteed!
 - in a fit, correlations are important, and no good to ignore them
- The rigorous solution:
 - simultaneous fit of all tracks and all alignment parameters

The Millepede idea

A rigorous solution that is computationally manageable

The Millepede idea (cont'd)

- Blobel's example: 1,596,489 tracks (@ 5 parameters); 47,655 alignment parameters
 - >8 M free parameters to be determined \rightarrow equation system characterized by 8M x 8M matrix (several 100 TB!)

- With a smart transformation, using Schur complements, this problem can be reduced to one with a much smaller matrix for the alignment parameters only
 - 47,655 x 47,655
 - no approximation involved
 - this is a sparse (!) matrix

https://indico.cern.ch/event/50502/contributions/1183071/attachments/964111/1368903/cernali.pdf

The Millepede program

- Millepede (I):
 - since 1998 used in H1 for vertex detector and central jet chamber
 - since 2000 downloadable from the web... adopted by many experiments, still used today
 - used for up to 4,800 alignment parameters
- With LHC on the horizon it became clear that this program could not meet the highest demands
 - for example, CMS:
 - 17,000 modules \rightarrow ~100,000 alignment parameters in straight-forward implementation
 - number of matrix elements \rightarrow exceeds largest possible 4 byte integer
 - numerical methods for solving in Millepede I not adequate
 - today's CMS alignment campaigns even exceed 200,000 parameters
- **Development of Millepede-II** → cutting-edge solving of massive linear problems

Millepede-II: computational/numerical technology

• Simply speaking, track-based alignment can be described as solving a huge linear equation system:

In CMS, C' is typically a matrix with 50,000 - 200,000 rows and columns

• Straight-forward solution (= inversion of the matrix C') only possible for "small" number of parameters

Method	Computing time	Solution type	Error calculation
Inversion (Gauss-Jordan)	$\sim n^3$	Exact	Yes
Cholesky decomposition	$\sim n^3$	Exact	Skipped (for speed)
MINRES [24, 25]	$\sim n^2 \times n_{\rm it}$	Approximate	No

 Very good turnaround thanks to exploitation of matrix sparsity, multithreading, and dedicated large-memory machines

DESY. | Alignment challenge in complex high resolution trackers | Rainer Mankel | 12-May-2022

Millepede-II: further information

- Millepede-II is maintained & further developed by Claus Kleinwort (DESY)
 - under the umbrella of the Helmholtz alliance "Physics at the Terascale"
- https://gitlab.desy.de/claus.kleinwort/millepede-ii

Contact

For information exchange the **Millepede** mailing list anacentre-millepede2@desy.de should be used.

References

- A New Method for the High-Precision Alignment of Track Detectors, Volker Blobel and Claus Kleinwort, Proceedings of the Conference on Adcanced Statistical Techniques in Particle Physics, Durham, 18 - 22 March 2002, Report DESY 02-077 (June 2002) and hep-ex/0208021
- 2. Alignment Algorithms, V. Blobel, Proceedings of the LHC Detector Alignment Workshop, September 4 6 2006, CERN
- 3. Software alignment for Tracking Detectors, V. Blobel, NIM A, 566 (2006), pp. 5-13, doi:10.1016/j.nima.2006.05.157
- 4. A new fast track-fit algorithm based on broken lines, V. Blobel, NIM A, 566 (2006), pp. 14-17, doi:10.1016/j.nima.2006.05.156
- 5. Millepede 2009, V. Blobel, Contribution to the 3rd LHC Detector Alignment Workshop, June 15 16 2009, CERN
- 6. General Broken Lines as advanced track fitting method, C. Kleinwort, NIM A, 673 (2012), pp. 107-110, doi:10.1016/j.nima.2012.01.024

Track inputs used for CMS alignment

Generation cycles of CMS alignment

Automated alignment

Prompt calibration loop (PCL)

- Restricted to parameters of very high level structures
- Focuses on offsets and angles of pixel tracker:
 - two half-barrels
 - two half cylinders in each endcap
 - 36 parameters in total
- Part of **prompt calibration**, which operates on stream from express reconstruction at the CAF
- Fast updates of alignment constants can be provided within 48 hours
 - in time for prompt reconstruction

General quality of the alignment

DMR = distributions of the medians of the residual distributions

- Misalignment shows by de-centered distributions of hit residuals → visible in median
 - put medians of all residual distributions into one plot \rightarrow representative of alignment precision
 - expect narrow peak for perfect alignment

➔ After legacy alignment, close to ideal. Also very decent description in MC

outer barrel

strip detector

Lorentz angle effects

- Inside the silicon volume, the drift of the charge carriers is deflected by the Lorentz angle
 - shifts the apparent cluster position
- While this is addressed in first order by a dedicated Lorentz angle calibration, variations of the Lorentz angle as a function of location and time may result in effects that "look" like a misalignment of the sensor

- Radiation damage may have impact after accumulation of 1 fb⁻¹, while pixel local reconstruction calibration can only be performed after 10 fb⁻¹
- **De-facto corrected** by the alignment procedure

Lorentz angle effects (cont'd)

- Large alignment corrections in innermost barrel pixel layer, alternating between adjacent ladders
 - explained by alternating orientations of pixel modules

Lorentz angle effects (cont'd)

Effect of radiation damage

 Can we see this effect building up? Compare mean values of DMR for modules with electric field pointing inwards and outwards: Δμ = μ_{inwards} - μ_{outwards}

Impact parameter monitoring

- Measured by refitting a primary vertex with one track excluded, and evaluating the latter's impact parameter
- Initially, in early
 2017 suboptimal
 tracking
 performance due
 to commissioning
 of new pixel
 tracker
- → Generally very good performance after legacy alignment

Primary vertex reconstruction performance

- Measured by splitting a primary vertex into two sub-vertices and studying the residuals
- → After proper alignment, visible improvement due to the new pixel tracker
- Outliers in prompt alignment: short IOV \rightarrow suboptimal local pixel reconstruction configuration

Systematics of misalignment: weak modes

What is going on here?

- Track-based alignment of trackers with a large number of individual modules (~17,000 in case of CMS) has potential for large systematic effects
- For example, in reconstructed $Z \rightarrow \mu\mu$ decays, position of the mass peak should not (!) depend on azimuth angle of a muon
 - "weak modes"
- Control of weak modes is one of the greatest challenges in alignment

What are weak modes?

• As mentioned, track-based alignment can be described as solving a huge linear equation system:

In CMS, C' is typically a matrix with 50,000 - 200,000 rows and columns

- The matrix C' reflects also the (inverse) covariance matrix of the alignment parameters
- In practice, we may find that some of the **eigenvalues** of this matrix are close to zero \rightarrow infinite uncertainty
- The eigenvalues are associated to **eigenvectors** ("modes"), i.e. linear combinations of alignment parameters, that are only weakly constrained by our computation
 - → "weak modes"
 - \rightarrow total χ^2 remains (almost) unchanged when this parameter combination is varied

But why does this happen...?

- A weak mode corresponds to a certain **geometry transformation** (= coherent set of alignment corrections)
- In track-based alignment, we detect misalignment by incompatibility of the reconstructed hit positions with the track model
- The geometry transformation of a weak mode is such that it transforms all valid tracks into other valid tracks
 - → track sample is invariant under this transformation
 - \rightarrow no change of total χ^2
- The helix trajectory in cylindrical coordinates (track from origin, assuming $d_0 = z_0 = \phi_0 = 0$): $r = -2 \ QR \ \sin \phi \approx -2 \ QR \ \phi$ $z = -2 \ QR \ \phi \cot \theta$

Helix track parameters:QR: signed curvature radius $cot \theta$: dip angle d_0 : transverse impact parameter z_0 : longitudinal

→ Within validity of $\sin \phi \approx \phi$ approximation, any linear transformation in (r, ϕ, z) space results in a weak mode

Classification and diagnosis of weak modes

For collision tracks

	Δz	Δr	$\Delta \phi$
	z expansion	bowing	twist
vs. <i>z</i>	$\Delta z = \epsilon z$	$\Delta r = \epsilon r (z_0^2 - z^2)$	$\Delta \phi = \epsilon z$
	overlap	overlap	$Z ightarrow \mu \mu$
	telescope	radial	layer rotation
VS. ľ	$\Delta z = \epsilon r$	$\Delta r = \epsilon r$	$\Delta \phi = \epsilon r$
	cosmics	overlap	cosmics
	skew	elliptical	sagitta
vs. ϕ	$\Delta z = \epsilon \cos(\phi + \phi_0)$	$\Delta r = \epsilon r \cos(2\phi + 2\phi_0)$	$\Delta \phi = \epsilon \cos(\phi + \phi_0)$
	cosmics	cosmics	cosmics

- Overlap validation: check relative hit positions in sensor overlaps (not shown)
- Cosmics validation: split cosmic muon track by hemispheres, compare parameters of sub-tracks
- $Z \rightarrow \mu\mu$ validation: check for dependence of Z mass peak on muon parameters

Classification and diagnosis of weak modes (cont'd)

Test with simulation: a few examples

→ Demonstrates the power of $Z \rightarrow \mu\mu$ and cosmic ray events to identify & control weak modes

How to control weak modes: a strategy

- Include tracks in the alignment which do not pass through the detector center
 - → cosmic muons, recorded both with magnetic field on and off

- Include track combinations having mass and vertex constraints
 - $Z \rightarrow \mu \mu$
 - $\Upsilon(1S) \rightarrow \mu\mu$
- If all else fails: apply counter-transformation in form of a constraint

Practical example: correction of a twist weak mode

• Sizable twist in alignment during data-taking \rightarrow resolved in legacy alignment

Dimuon mass validation: evolution with time

→ Large initial amplitudes in data-taking alignment are resolved in the end-of-year and legacy alignment

Barycenter of barrel pixel detector

- → Very good stability (at level of few microns)
- → Changes in winter shutdowns due to (re-)insertions of pixel tracker
- → Reprocessing cures an artificial drop due to radiation damage effects

How precise are the alignment parameters?

APU = Alignment parameter uncertainty

- Direct error estimation by matrix inversion usually not feasible, since matrix too large
- Obtained by studying distributions of normalized residuals: $\frac{x'_{hit} x'_{track}}{\sigma}$, where $\sigma = \sqrt{\sigma_{hit}^2 + \sigma_{track}^2 + \sigma_{align}^2}$
 - adjust σ_{align} such that distributions become unit normal \rightarrow iterative procedure

➔ Very good control of alignment precision

DESY. | Alignment challenge in complex high resolution trackers | Rainer Mankel | 12-May-2022

A direct look at normalized residuals

- Important test: check RMS width of the normalized residuals
- After the legacy alignment, it is centered close to 1, and agrees well with MC
 - → shows both correct alignment and correct assignment of alignment parameter uncertainties

DESY. | Alignment challenge in complex high resolution trackers | Rainer Mankel | 12-May-2022

- Alignment is a key driver for physics performance
- Methodology has evolved enormously to a new level, to meet LHC challenges
- Powerful alignment workflows are in place
 - still a huge effort year by year; always new challenges surfacing
- For Run 3, first alignments have already been produced from cosmic runs, and even first collisions
 - start thinking about alignment Phase 2 tracker

⇒ Alignment is not static...

it continues to be challenging... and interesting!

Further reading

- V. Blobel and C. Kleinwort, "A New method for the high precision alignment of track detectors", https://inspirehep.net/conferences/973991, https://arxiv.org/abs/hep-ex/0208021
- CMS Collaboration, "Description and performance of track and primary-vertex reconstruction with the CMS tracker", 2014 JINST 9 P10009
- CMS Collaboration, "Alignment of the CMS tracker with LHC and cosmic ray data", 2014 JINST 9 P06009
- CMS Collaboration, "Strategies and performance of the CMS silicon tracker alignment during LHC Run 2", arxiv:2111.08757 (2021), accepted for publication in NIM A
- R. Mankel, "Pattern recognition and event reconstruction in particle physics experiments", Rept.Prog.Phys. 67 (2004) 553

Backup

Alignment challenge in complex high resolution trackers | Rainer Mankel | 12-May-2022

The MILLEPEDE principle

The sparse matrix C of a simultaneous fit of alignment parameters (global) and track parameters (local) is a large matrix, that can be reduced to a smaller matrix for the alignment parameters only using Schur complements (no approximation!).

The matrix C^{total} , a 8 030 100 × 8 030 100 matrix (several 100 Tera Bytes) ...

... is reduced to a (sparse) 47655×47655 matrix C^{global} for the global parameters.

3rd LHC Detector Alignment Workshop

DESY. | Alignment challenge in complex high resolution trackers | Rainer Mankel | 12-May-2022

NIM A 461 (2001) 162–167

Fig. 1. SVT layout: rz cross-sectional view. The modules of layers 4 and 5 are "bent" towards the beam axis to increase angular coverage and to reduce the crossing angle of low-angle tracks. Note the asymmetry of the detector with respect to z = 0.

Table 1 Layer structure of the BaBar SVT

Layer	Radius (mm)	Modules/layer	Si Wafers/module	ϕ pitch (µm)	z pitch (µm)
1	32	6	4	50 or 100	100
2	40	6	4	55 or 110	100
3	54	6	6	55 or 110	100
4a	124	8	7	100	210
4b	127	8	7	100	210
5a	140	9	8	100	210
5b	144	9	8	100	210

Classification of weak modes

For collision tracks

Adapted from: Alessio Bonato, https://indico.cern.ch/getFile.py/acc ess?contribId=11&sessionId=2&resI d=0&materiaIId=slides&confId=137 973

Weak modes and track parameter transformations

z expansion:

•
$$z \rightarrow z + k z$$

• $\cot \theta \rightarrow (1 + k) \cot \theta$
• $QR \rightarrow QR$

 In general, weak modes cause track parameters (momentum, direction) to change

➔ affect physics

Overlap validation

Predicted: A XX B B A X - predicted hit
<math>X - actual hit A X - actual hit

Overlap validation (radial and z expansion, bowing)

• Millepede-II timing

Table 3: Examples of PEDE wall time (time taken from start of the program to end) for some larger alignment campaigns on a dedicated test machine (Intel Xeon E5-2667 @ 3.2 GHz, 256 GB memory @ 51 GB/s).

Number of	Number of	Number of	Matrix size [GB]	Wall time [s]
global parameters	constraints	records	(sparse)	(10 threads)
217500	138	4.46×10^{7}	44	$8.4 imes 10^{3}$
213900	1782	2.90×10^{7}	85	$6.8 imes 10^{3}$
576000	942	5.20×10^{7}	218	$4.4 imes10^4$