The Standard Model as a Discovery Tool

Monica Dunford

Outline and disclaimer

- * Focus of this talk will be possible SM analysis methods for future measurements
- Highly biased to my personal tastes
- Equally interesting are precision tests of the SM (mW, polarization, EFTs, etc) which I have left away completely here

A short walk down memory lane

- In the pre-LHC era this was precision
 - Limited predictions
 - Inclusive phase-spaces

Today

- * VBF Z+jets production
 - High data statistics
 - Multiple NLO predictions

As a discovery tool...

- Future SM measurements are
 - Not inclusive
 - Not categorized
 - Not binned
 - Not always standard running

We have the big data samples and the powerful tools to break past these restrictions

Not inclusive

Large data samples mean that we have both the kinematic reach and the precision to probe the extreme phase spaces

The 'standard' back-to-back

Z'radiated' from a quark line

Not inclusive

- * Low region means Z-radiation, high means back-to-back
- * Have sufficient statistics to selection on these regions

Not inclusive

* Collinear events have much softer Z's. Get remarkable agreement with

theory

 $r_{Z,j} \equiv \frac{p_{\mathrm{T},\ell\ell}}{p_{\mathrm{T}}(\mathrm{closest\ jet})}.$

Back-to-back

Collinear

Not categorized

- * An awesome analysis in which we need many more of!
- * Single Z, Higgs boson production and on-shell ZZ in one
- Massively re-interpretable

Not categorized

- Multi-dimensional
 measurements second
 observable for different
 mass regions
- Improves BSM and EFT potential

Not categorized

Much better limits on cHWB compared to Higgs 41 paper alone

- * Machine learning is a pathway to high dimensionality
- * But in contrast to all the great results before, we don't trust the model

Note: I have selected here a ML model that is known to look bad

- * One of the powers of our unfolding methods is the iteration
- * Can we take this experience and go high dimensional and no binning?

- * Omnifold is an iterative approach to ML unfolding
- Utilizes that there is a oneto-one mapping between a generated and simulated event

- * The results on HERA data
- Fully unfolded objects

 $(\bar{p}_{\mathrm{T}}^{e},\,p_{z}^{e},\,p_{\mathrm{T}}^{\mathrm{jet}},\,\eta^{\mathrm{jet}},\,\phi^{\mathrm{jet}},\,q_{\mathrm{T}}^{\mathrm{jet}}/Q,\,\mathrm{and}\,\,\Delta\phi^{\mathrm{jet}})$

Not standard running

- * The LHC is more than just protons
 - Heavy ion, proton-oxygen, low mu,
 CMS energy
- And our detector is configurable
 - Lower trigger thresholds, smaller magnetic fields, trigger-level readout
- An example of lead collisions to do lightby-light scattering

Not standard running

- Statistics are limited but not exploiting all channels yet
- * Even so, we are still sensitivity to anomalous tau magnetic moment

Not standard running

- Still dominated by statistics
- Competitive to LEP

Conclusions

- We are in a lucky position with powerful data samples, powerful tools, powerful simulations, powerful predictions
- * For SM and BSM, we need to think big and outside the traditional SM analyses
- I personally feel that the potential is huge