Precision Monte Carlos
 for multi-boson processes

Jonas M. Lindert

Science \& Technology Facilities Council

UK Research and Innovation

Workshop on.... measurements and reinterpretations... at the LHC
U Sussex
15th June 2022

Multibosons

VV

VVV

VBS-VV

Multibosons

VBF-V $\xrightarrow{\text { background }}$ VBS-VV

Multibosons

forward-jet dynamics

Multibosons

forward-jet dynamics

Multibosons

Multibosons: theory state-of-the art fixed-order

$V+$ jets
NLO QCD+NLO EW
NLO QCD+NLO EW

VV NNLO QCD+NLO EW VBF-V NLO QCD*+LO EW

VBS-VV
NLO QCD+NLO EW / NLO QCD*+LO EW

Multibosons: theory state-of-the art fixed-order

V+jets
NLO QCD+NLO EW

VV
NNLO QCD+NLO EW
VBF-V
NLO QCD+NLO EW
[JML, Pozzorini, Schönherr, 2204.07652]

VVV
NLO QCD+NLO EW

VBS-VV
NLO QCD+NLO EW / NLO QCD*+LO EW

*: VBF approximation

Multibosons: theory state-of-the art Monte Carlo

V+jets	VV	VVV
NLOPS QCD $(0,1,2 \mathrm{j}) \times$	NLOPS QCD $(0,1) \times$	NLOPS QCD
NLO EWvirt	NLO EWvirt	
	NNLOPS QCD	
	NLOPS EW	
VBF-V	NBS-VV	
		NLOPS* QCD

*: VBF approximation

Multibosons: theory state-of-the art Monte Carlo

V+jets
NLOPS QCD ($0,1,2 \mathrm{j}) \times$ NLO EWvirt

VV	VVV
NLOPS QCD $(0,1) x$	
NLO EWvirt	

*: VBF approximation

Perturbative expansion:VV,VVV

(single perturbative order at LO)

$$
\begin{aligned}
\mathrm{d} \sigma=\mathrm{d} \sigma_{\mathrm{LO}}+ & \alpha_{S} \mathrm{~d} \sigma_{\mathrm{NLO}}+\alpha_{\mathrm{EW}} \mathrm{~d} \sigma_{\mathrm{NLO} \text { EW }} \\
& \mathrm{NLO} \mathrm{QCD} \quad \mathrm{NLO} \mathrm{EW} \\
& +\alpha_{S}^{2} \mathrm{~d} \sigma_{\mathrm{NNLO}}+\alpha_{\mathrm{EW}}^{2} \mathrm{~d} \sigma_{\mathrm{NNLO} \mathrm{EW}}+\alpha_{S} \alpha_{\mathrm{EW}} \mathrm{~d} \sigma_{\mathrm{NNLO} \text { QCDxEW }} \\
& \mathrm{NNLOQCD} \quad \mathrm{NNLOEW} \quad \mathrm{NNLO} \text { QCD-EW } \\
& +\alpha_{S}^{3} \mathrm{~d} \sigma_{\mathrm{NNLO}}+\ldots \\
& \mathrm{N} 3 \mathrm{LO} \mathrm{QCD}
\end{aligned}
$$

NNLO QCD

Perturbative expansion:VV,VVV

(single perturbative order at LO)

NLO QCD NLO EW
$+\alpha_{S}^{2} \mathrm{~d} \sigma_{\mathrm{NNLO}}+\alpha_{\mathrm{EW}}^{2} \mathrm{~d} \sigma_{\text {NNLO EW }}+\alpha_{S} \alpha_{\mathrm{EW}} \mathrm{d} \sigma_{\mathrm{NNLO}} \mathrm{QCDxEW}$

scheme variation, e.g. Gmu vs. $a(m Z)$
scale variation at NNLO

NLO QCD + EW VS.
NLO QCD x EW

Perturbative expansion for VV

$$
\begin{aligned}
\mathrm{d} \sigma=\mathrm{d} \sigma_{\mathrm{LO}}+ & \alpha_{S} \mathrm{~d} \sigma_{\mathrm{NLO}}+\alpha_{\mathrm{EW}} \mathrm{~d} \sigma_{\mathrm{NLOEW}} \\
& \mathrm{NLO} \mathrm{QCD} \quad \mathrm{NLO} \mathrm{EW} \\
& +\alpha_{S}^{2} \mathrm{~d} \sigma_{\mathrm{NNLO}}+\alpha_{\mathrm{EW}}^{2} \mathrm{~d} \sigma_{\mathrm{NNLOEW}}+\alpha_{S} \alpha_{\mathrm{EW}} \mathrm{~d} \sigma_{\mathrm{NNLO} \text { QCDxEW }} \\
& \mathrm{NNLO} \mathrm{QCD} \text { ? NNLO EW } \quad \text { NNLO QCD-EW } \\
& +\alpha_{S}^{3} \mathrm{~d} \sigma_{\mathrm{NNLO}}+\ldots \\
& \text { N3LO QCD }
\end{aligned}
$$

NNLO QCD + NLO EW

41-SF-ZZ	$p p \rightarrow \ell^{+} \ell^{-} \ell^{+} \ell^{-}$	ZZ
41-DF-ZZ	$p p \rightarrow \ell^{+} \ell^{-} \ell^{\prime+} \ell^{\prime-}$	ZZ
31-SF-WZ	$p p \rightarrow \ell^{+} \ell^{-} \nu_{\nu_{\ell}}$	WZ
3l-DF-WZ	$p p \rightarrow \ell^{+} \ell^{-} \ell^{\prime} \nu_{\ell^{\prime}}$	WZ
21-SF-ZZ	$p p \rightarrow \ell^{+} \ell^{-} \nu_{\ell^{\prime} \bar{\nu}_{\ell^{\prime}}}$	ZZ
2l-SF-ZZWW	$p p \rightarrow \ell^{+} \ell^{-} \bar{\nu}_{\ell} \bar{\nu}_{\ell}$	ZZ, WW
2l-DF-WW	$p p \rightarrow \ell^{+} \ell^{-} \nu_{\ell} \bar{\nu}_{\ell^{\prime}}$	WW

In Matrix+OpenLoops all (massive) diboson processes are now available at NNLO QCD + NLO EW
[M. Grazzini, S. Kallweit, JML, S. Pozzorini, M.Wiesemann; I 9 | 2.00068]

NNLO QCD + NLO EW for dibosons: pTV2

 pTV2

- moderate QCD corrections
- NNLO/NLO QCD very small at large pTV2
\rightarrow NNLO QCD uncertainty: few percent
- NLO EW/LO=-(50-60)\% @ I TeV
- difference very conservative upper bound on $\mathcal{O}\left(\alpha_{S} \alpha\right)$
- multiplicative/factorised combination clearly superior (EW Sudakov logs \times soft QCD)
- dominant uncertainty at large pTV2: $\mathcal{O}\left(\alpha^{2}\right) \sim \alpha_{\mathrm{w}}^{2} \log ^{4}\left(Q^{2} / M_{W}^{2}\right)$

Estimate: $\frac{1}{2} \delta_{\mathrm{EW}}^{2}$

NNLO QCD + NLO EW for dibosons: pTV2

Giant QCD K-factors and EW corrections: pTVI

MEPS @ NLO QCD + EW:WW(+jet)

[Bräuer, Denner, Pellen, Schönherr, Schumann; '20]
-More rigorous solution: merge VV incl. approx. EW corrections with VV with Sherpa's MEPS@NLO QCD + EWvirt

- However, not NNLO QCD accurate

FO

FO

MEPS @ NLO QCD + EW:WW(+jet)

[Bräuer, Denner, Pellen, Schönherr, Schumann; '20]
-More rigorous solution: merge $\mathrm{V} \mathrm{Vj}_{j}$ incl. approx. EW corrections with VV with Sherpa's MEPS@NLO QCD + EWvirt - However, not NNLO QCD accurate

FO

MEPS@NLO QCD + EWvirt

$\mathrm{pp} \rightarrow \mu^{+} v_{\mu} \mathrm{e}^{-} \bar{v}_{\mathrm{e}}+$ jets @ 13 TeV

MEPS @ NLO QCD + EW: ZZ (+jet)

[Bothmann, Napoletano, Schönherr, Schumann, Villani; '21]

- scheme variation: Gmu vs. a(mZ)
- EWsud based on [Bothmann, Napoletano, '20]:
process-independent implementation of Sudakov logs, see also [Pagani, Zaro '21]

MEPS @ NLO QCD + EW: ZZ(+jet)

[Bothmann, Napoletano, Schönherr, Schumann, Villani; '2 I]

PS MC: NNLO QCD + PS for WW via MiNNLOps

[Lombardi, Wiesemann; Zanderighi '2।]

- MiNNLOps physical down to pTVV=0
- Latest implementation does not require computationally expensive reweighting required earlier

PS MC: NNLO QCD + PS for WW via MiNNLOps

[Lombardi, Wiesemann; Zanderighi '2।]

PS MC: NNLO QCD + PS for ZZ via MiNNLOps

Geneva: NNLO+PS

[Alioli, Broggio, Gavardi, Kallweit, Lim, Nagar, Napoletano, '2 I]

MiNNLOps: nNNLO+PS

[Buonocore, Koole, Lombardi, Rottoli, Wiesemann, Zanderighi, '2 I]

PS MC: NNLO QCD + PS for ZZ via MiNNLOps

[Buonocore, Koole, Lombardi, Rottoli, Wiesemann, Zanderighi, '2 I]

- nNNLO+PS predictions in good agreement with CMS results [arXiv:2009.0 I | 86]
- inclusion of EW corrections (through fixed-order NLO K-factor) required to describe tails of distributions

PS MC: NLO QCD + NLO EW PS

[Chiesa, Re, Oleari '20]

NLO (QCD + EW) PS (QCD + QED)/ NLO QCD PS (QCD + QED)

NLO (QCD + EW) PS (QCD + QED)/ NLO QCD PS QCD

- Note: resonance-aware NLO EW matching required (POWHEG-BOX-RES [Ježo, Nason, ' I 5])
- Missing: photon-induced channels
-Question: NLO (QCD + EW) PS (QCD + QED) / (NLO QCD PS QCD) × NLO EW

PS MC: NNLO QCD \times NLO EW PS forWZ

[MML, Lombardi, Wiesemann,, Zanderighi, Zanoli, to appear]

- NNLOPS QCD x NLOPS EW combination via reweighing (NLOPS EW resonance-aware)
- Next: combination at generator level

gg-induced WW and ZZ production

- Formally same order as NNLO QCD
- Enhanced due to gg flux
- Interference with H->VV

- Sizeable QCD corrections (formally N3LO QCD)
- For m4I < 340 GeV 1/Mt expansion reliable

NLO + PS for gg $\rightarrow \mathrm{VV} / \mathrm{H} \rightarrow 4 \mathrm{I}$

[Alioli, Ferrario Ravasio, JML, Röntsch, '2 1]

-ggWW/ggZZ @ NLO QCD + PS available!
-crucial for off-shell Higgs measurements

Conclusions

- There is no clear scale/signature for new physics effects: Let's explore the unknown leaving no stone unturned!
- Precision is key for SM (QCD/EW/Higgs) measurements, SM parameter determination, as well as for BSM searches.

Incredible progress in theory predictions for multibosons V:

AND

- NNLO QCD + NLO EW available in MATRIX+OpenLoops
- MEPS @ NLO (QCD + EWapprox) available in Sherpa
- NLO (QCD + EW) + PS (QCD + QED) available in POWHEG
- NLO QCDgg PS available in POWHEG
- NNLO QCD PS via MiNNLO available (combined with NLOPS EW)

Remaining theory uncertainties: mixed QCD-EW, NNLO EW

Backup

Giant K-factors and effect of jet veto

- at r2l \rightarrow |: hard-VV topologies
- at $\mathrm{r} 2 \mathrm{I} \rightarrow 0$: hard-Vj topologies

- for pTVI > \mid TeV: hard-Vj topologies dominate over hard-VV
- Jet veto $H_{\mathrm{T}}^{\mathrm{jet}}<\xi_{\text {veto }} H_{\mathrm{T}}^{\text {lep }}$ corresponds to

$$
p_{\mathrm{T}, V_{2}} \geq \frac{1-\xi_{\text {veto }}}{1+\xi_{\text {veto }}} p_{\mathrm{T}, V_{1}}=\frac{2}{3} p_{\mathrm{T}, V_{1}} \quad \text { for } \quad \xi_{\text {veto }}=0.2
$$

(violated by off-shell topologies)

- Jet veto results in phase-space dominated by hard-VV

Theory status for Tribosons

[Slide thanks to M. Schönherr]
NLO QCD corrections trivial, known for on-shell and o -shell processes.
NLO EW on-shell corrections calculated by Hefei group '14-'17, WWW also by Dittmaier, Huss, Knippen '17.

NLO EW off-shell corrections more involved, up to $2 \rightarrow 6$ complexity (like VBS, just with more and competing resonances)

$$
\begin{aligned}
& \text { - } p p \rightarrow \gamma \gamma \gamma / \gamma \gamma \ell \nu / \gamma \gamma \ell \ell \quad \text { Greiner, Schönherr '17 } \\
& \text { - } p p \rightarrow 3 \ell 3 \nu\left(\ell=e^{ \pm}, \mu^{ \pm}, 0 / 1 / 2\right. \text { SFOS channels, Schönherr '18 } \\
& \text { incl. WWW and WZZ topologies) } \\
& p p \rightarrow e^{\mp} \nu_{e} \mu^{ \pm} \nu_{\mu} \tau^{ \pm} \nu_{\tau}(W W W \text { only } \quad \text { Dittmaier, Knippen, Schwan '19 } \\
& \text { - } p p \rightarrow \gamma 2 \ell 2 \nu\left(\ell=e^{ \pm}, \mu^{ \pm}, 0,1\right. \text { SFOS channels, Ju, Lindert, Schönherr tbp } \\
& \text { incl. } \gamma W W \text { and } \gamma Z Z \text { topologies) }
\end{aligned}
$$

Generically, large contribution from photon-induced processes.

Triboson production @ NLO QCD

- QCD correction driven by additional jet activity:VV+jet topologies with soft V
\rightarrow 'giant K-factors'
\rightarrow strong observable dependence
\rightarrow NLO mandatory
- jet veto ($\mathrm{p} \mathrm{T}_{\text {cut }}=50 \mathrm{GeV}$) reduces size and phase space dependence
\rightarrow better: multi-jet merging

Triboson production: on-shell vs. off-shell

- at large mill and $p T_{\text {II }}$ large interference with other resonance structures

VS.

Off-shell VVV production @ NLO EW

- Very large cancellations of EW corr. in qq and qY channels / highly observable dependent

Interplay of WWW and Wh[\rightarrow WW* $]$

[Slide thanks to M. Schönherr]

- due to interference, Wh cannot be treated as independent background, but is part of the signal
\rightarrow should not be subtracted

\Rightarrow measure signature (e.g. $3 \ell+\mathrm{MET}$) in fiducial volume
\rightarrow for limits on, e.g., AGCs: define fiducial region that has large WWW component, still measure signature, interferences can be as important as sought-after signal

Perturbative expansion:VBF-V,VBS-VV

Example:WW+2jets

VS.

$$
\begin{equation*}
\mathrm{d} \sigma=\mathrm{d} \sigma\left(\alpha_{S}^{2} \alpha^{4}\right)+\mathrm{d} \sigma\left(\alpha_{S} \alpha^{5}\right)+\mathrm{d} \sigma\left(\alpha^{6}\right)+\ldots \tag{LO}
\end{equation*}
$$

QCD-background
interference
VBS-signal

Perturbative expansion:VBF-V,VBS-VV

Example:WW+2jets

VS.

$$
\begin{equation*}
\mathrm{d} \sigma=\mathrm{d} \sigma\left(\alpha_{S}^{2} \alpha^{4}\right)+\mathrm{d} \sigma\left(\alpha_{S} \alpha^{5}\right)+\mathrm{d} \sigma\left(\alpha^{6}\right)+\ldots \tag{LO}
\end{equation*}
$$

QCD-background

$\cdots+\mathrm{d} \sigma\left(\alpha_{S}^{3} \alpha^{4}\right)+\mathrm{d} \sigma\left(\alpha_{S}^{2} \alpha^{5}\right)+\mathrm{d} \sigma\left(\alpha_{S} \alpha^{6}\right)+\sigma\left(\alpha^{7}\right)$
\Rightarrow separation formally meaningless at NLO
\Rightarrow strictly well defined measurements: fiducial cross sections

QCD \& EW ZZ+2jets @ NLO QCD + EW

long-term program for VBS@NLO

- QCD and EW ss-WWjj at NLO QCD+EW: [Biedermann, Denner, Pellen '|6+'|7]
- EW WZjj at NLO QCD+EW: [Denner, Dittmaier, Maierhöfer, Pellen, Schwan, '|9]
- QCD and EW ZZZj at NLO QCD+EW: [Denner, Franken, Pellen, Schmidt, '20+'21]

EW ZZ+2jets @ NLO QCD + EW

$\cdot 2 \rightarrow 6$ particles at NLO EW!

Order	$\mathcal{O}\left(\alpha^{6}\right)+\mathcal{O}\left(\alpha^{7}\right)$	$\mathcal{O}\left(\alpha^{6}\right)+\mathcal{O}\left(\alpha_{\mathrm{s}} \alpha^{6}\right)$	$\mathcal{O}\left(\alpha^{6}\right)+\mathcal{O}\left(\alpha^{7}\right)+\mathcal{O}\left(\alpha_{\mathrm{s}} \alpha^{6}\right)$
$M_{\mathrm{j}_{1} \mathrm{j}_{2}}>100 \mathrm{GeV}$			
$\sigma_{\mathrm{NLO}}[\mathrm{fb}]$	$0.08211(4)$	$0.12078(11)$	$0.10521(11)$
$\delta[\%]$	-15.9	23.6	7.7
$M_{\mathrm{j}_{1} \mathrm{j}_{2}}>500 \mathrm{GeV}$		$0.06077(25)$	
$\sigma_{\mathrm{NLO}}[\mathrm{fb}]$	$0.06069(4)$	$0.07375(25)$	-17.5
$\delta[\%]$	-17.6	0.1	

- In the VBS phase-space EW mode receives:
-very small QCD corrections (percent level)
\rightarrow O(20\%) EW corrections

QCD \& EW ZZ+2jets @ NLO QCD + EW

[Denner, Franken, Pellen, Schmidt; '21]

QCD and EW V+2jets @ NLO QCD + EW

[JML, S. Pozzorini, M. Schönherr; to appear]

QCD-mode

-QCD: negative K-factor (increasing for large mjj), uncertainty ~20-25\%

- EW: up to -10% in multi TeV

EW-mode

- QCD: very small K-factor at large mjj,
uncertainty $\sim 10 \%$ (no VBF approximation)
- EW: up to -20% in multi TeV

