

TBL experimental program, evolution to RF power testing in TBL

- > Current status of TBL
- > Experimental program and first results
- > Plan for completion
- > TBL as a power source for structures

TBL status

- Beam line including PETS prototype installed all Quads on movers, BPM's with new read out electronics, diagnostic section with emittance meter and time resolved spectrometer
- First commissioning and measurements performed PETS qualified and found consistent up to 50 MW beam matching and transport performed end of line spectrometer tested BPM resolution measured Magnet movers tested

TBL in CLEX

Experimental program

- TBL: a high-power test facility power production, energy balance, power stability, rf pulse shaping
- TBL: demonstration of stable beam transport for heavily decelerated beam CLIC feasibility no losses, alignment studies, emittance growth
- TBL: first prototype for the CLIC decelerator testbench and benchmarking
 - detailed energy spectrum and beam parameters engineering test bed

TBL commissioning

Panel to measure beam parameters and perform the matching

PETS testing

Objective: to understand the limiting factors for the PETS ultimate performce

What matters is the

output section!

Two beam test stand (CERN + Collaborations)

Objective: to demonstrate design rf parameters at the output of the PETS

Test beam line (CERN + Collaborations)

Objective: to demonstrate the beam transportation without looses and ~ 50% deceleration

I. Syratchev

Test Beam Line commissioning results

TBL installation in CTF3 and example of 12 GHz power production

Successful commissioning of the TBL beam line, > 50 MW of 12 GHz power generated with a 17 A drive beam in agreement with theoretical predictions. Turned out to be a nice diagnostics to optimize the drive beam

Energy and Energy spread

Simulation for 16 PETS

Time resolved energy spread with 50 MW in one PETS

PETS, power production stability

Current stability $\sim 1.3\%$; P $\sim I^2$ Measured current stability in the CTF3 linac 9×10^{-4}

PETS, power production position correlation

Correlation of beam position and output power

Status of series production

- > In the process to produce next 8 tanks 3 by CIEMAT, 5 by CERN
- > Pacing item is the PETS itself
- > At CERN we prepared for clean room assembly
- > Aim to have 4 tanks installed in February, 8 tanks in summer 2011, 12 in 2012
- > Recently decided to order 4 more tanks now
- > India and BINP both made PETS prototypes as well (option for second series)

Status of series production

First conform PETS bar for series production, We will have made 96 of this high precisions objects at the end of this year

		Mesuré	Nominal	Iso	Tol -	Tol+	Ec.	Tendance	Hors tol.
V	MAX	0.014	0.000		-0.020	0.020	0.014		
V	MIN	-0.016	0.000		-0.020	0.020	-0.016		
F	MoyS	-0.000					-0.000		
F	MoyA	0.005					0.005		
V	E.F.	0.029					0.029		

Status of series production

PETS bar with damping ceramic

Finished tank out of the clean room

TBL decelerator production

TBL PETS assembly in the SM18 clean room (first out of 5 tanks)

Plans for completion and feasibility demonstration

- > Demonstration with 8 in summer 2011,
 - >30% deceleration
- > TBL with 12 PETS in 2012
- > Perform full experimental program afterwards
- > Develop modified tanks optimized for structure conditioning

- > Upgrade TBL to a test facility relevant for CLIC TDR work
- > 12 GHz power production for structure conditioning
- > Working experience with a real decelerator
- > Beam dynamics studies, pulse shaping, feedbacks, etc.

CTF3 dilemma:

Can produce high current > 14 A with 140 ns pulse length Need > 20 A to power one structure with a TBL PETS

Or combination factor 4 only, < 14 A but 280 ns Need to chain two TBL-PETS to power a structure

Many constraints due to building, space and radiation (rep. rate limit 10Hz?)

How could it look like

What can be done with TBL+

- > Develop conditioning scenario for CLIC
 - conditioning with beam / use of ON/OFF mechanism of PETS precondition with klystron and then with beam conditioning of PETS
- > Test bed for PETS development, ON/OFF, new designs, etc
- > Power production as a function of beam parameters alignment, stability, pulse shape, phase stability, beam loses, failure modes
- > Continue decelerator beam dynamics studies

Conclusion

- > TBL commissioning ongoing, feasibility demonstration can be started in 2011 with 8 PETS and finished with 12-16 in 2012
- > TBL+ upgrade useful as a facility dedicated to conditioning experiments, essential for CLIC TDR phase Plan to create a limited number (4 ?) of testing slots

Working horse conditioning facility based on klystrons is needed in addition to support the structure development

TBL vs CLIC

Parameter	Symbol	TBL	CLIC
Number of PETS [-]	$N_{ m PETS}$	16	1492
Length of PETS [m]	L_{PETS}	0.80	0.21
Initial average current [A]	I_0	28	101
Power per PETS [MW]	P	~ 138	135
Initial energy [MeV]	E_0	150	2400
Mean energy extracted [%]	$\eta_{ m extr}$	\sim 54	84
PETS sync. freq. [GHz]	$f_{ m rf}$	12	12
Number of FODO cells [-]	$N_{\rm FODO}$	8	524
Length of FODO cells [m]	$L_{\rm FODO}$	2.82	2.01
Pulse length [ns]	$t_{ m pulse}$	140	240
Transient length [ns]	$t_{ m fill}$	3	1
Bunch rms length [mm]	$\sigma_{ m z}$	1.0	1.0
Init. norm. emittance [μ m]	$\epsilon_{ m N_{X,y}}$	150	150
Beam pipe radius [mm]	a_0	11.5	11.5

PETS are designed to produce nominal CLIC power of 135 MW for nominal 28 A CTF3 current

TBL versus klystrons, additional value of TBL

	Klystron	Klystron	TBL+	TBL+
Rep rate (Hz)	50	100	10	5
slots	2	2	1	1
Number of units	2	2	16	8
hours/day	24	24	24	12
days/year	300	300	300	180
Rf-pulses/year	5E+09	1E+10	4E+09	3E+08

TBL: Test of PETS and structure possible

Closer to CLIC situation

Less flexible for frequent changes in the set up

28 A needed for 135 MW/PETS 20 A for 70 MW/PETS 15 A for 70 MW/ for two PETS

PETS, power production

- > 50 MW produced in agreement with theoretical prediction
- > nice diagnostics to optimize the drive beam

