

CLIC DB injector facility, photo-injector option studies

S. Bettoni, A. Vivoli, O. Mete, R. Corsini, A. Andersson, M. Csatari

- > CLIC DB injector
- > Thermionic gun baseline
- Photo-injector option
- > Conclusions

Objectives

- Get started with some CLIC equipment for the drive beam
- Develop 1 GHz rf system, klystron, rf structure challenging, long lead time, cost driver
- Construct high average current particle source
- Demonstrate long pulse operation within the stability specification
- First part of CLIC 0

CLIC DB injector specifications

Parameter	Nominal value	Unit
Beam Energy	50	MeV
Pulse Length	140.3 / 243.7	μs / ns
Beam current	4.2	Α
Bunch charge	8.4	nC
Number of bunches	70128	
Total charge per pulse	590	μС
Bunch spacing	1.992	ns
Emittance at 50 MeV	100	mm mrad
Repetition rate	100	Hz
Energy spread at 50 Mev	1	% FWHM
Bunch length at 50 MeV	3	mm rms
Charge variation shot to shot	0.1	%
Charge flatness on flat top	0.1	%
Allowed satellite charge	< 7	%
Allowed switching time	5	ns

CTF3 example Phase coding by sub-harmonic bunching

Phase coding Sub-harmonic bunching $v_0/2$ 180° phase _switch Acceleration v_0 Deflection $v_0/2$

Satellites

High bandwidth buncher and rf source needed

Phase switch:

Phase switch within eight 1.5 GHz periods (<6 ns).

Satellites bunch population estimated to ~8 %.

CLIC DB injector schematics

SOLENOIDS

Basically a scaled version of CTF3

Longitudinal phase space after sub-harmonic bunching Same total gap-voltage but fewer cells (2 instead of 6) 35-39 KV needed

Accelerating cavities parameter	Unit	Value
Phase velocity	c	1
Number of cells		10
Phase advance per cell	π	2/3
Total length	m	0.9998
Voltage	MV	4.8
Beam aperture radius	cm	4.7

Exit of the solenoids at around 26 MeV, Satellites and tails visible

BEFORE THE CHICANE

AFTER THE CHICANE

Longitudinal phase space after the cleaning chicane, 24 % intensity loss at the chicane

Transverse dynamics

Transverse optics after the solenoids at 26 MeV

Parameter	Unit	Simulations	CLIC
Energy	MeV	53.2	
Bunch charge	nC	8.16	8.4
Bunch length (rms)	mm	2.83	3 (@ 50 MeV)
Energy spread (rms)	MeV	0.45 (@53 MeV)	< 0.50 (@ 50 MeV)
Horizontal normalized emittance (rms)	μm rad	32.9	≤ 100
Vertical normalized emittance (rms)	μm rad	28.7	≤ 100
Satellites population	%	4.9	As less as possible

- Specifications can be fulfilled
- Some ideas to improve the satellites and total losses
- Beam loading and wake field effects to be studied
- Real rf-design of buncher needed

Thermionic gun

Some simple considerations

→ Most likely new gun design needed

CTF3: 1.6 μs, 9.6μC per pulse1 % droop specs→7 nF, ~70 J stored energy

CLIC: 140 μ s, 700 μ C per pulse 0.1 % droop specs \rightarrow 5 μ F, ~50 kJ stored energy

CTF3 gun concept might be not scalable for CLIC

Have to investigate a high voltage modulator concept, stability? (Max Lab example)

Does a gridded cathode survives this pulse?

Photo injector option

Advantages

- No satellites or tails, phase coding on the laser side
- No or less bunching needed, possibly better emittance
- Flexible time structure

Concerns

- Cathode lifetime
- Challenging laser, peak and average power
- Intensity stability
- Maintenance and operation

and PBS

Phase coding

Charge production

Showed in CTF2 already the bunch charge needed (> 10 nC)
Total charge test performed in the cathode lab (> 1 mC)
460 h with 1.5% QE have been shown in excellent vacuum
Combination of those together has not yet been demonstrated
Cathode lifetime under this rough conditions is a big concern

Stability

In laser room

MacropIRGreenUVRMS
stability0.23%0.8%1.3%

Nonlinear conversion increases noise and causes amplitude variations along the train

In PHIN

Laser RMS	Current RMS	Train length(ns)	
1.3% RMS	0.8% RMS	1250	best
2.6%	2.4%	1300	worst

Beam stability seems almost entirely determined by laser stability

Beam dynamics simulations

Using scaled version of PHIN gun, 1 GHz Concerns: Power, cooling and vacuum

Comparison simulation results

Parameter	RF Gun	Thermionic Gun	CLIC Drive Beam
RF Frequency (GHz)	1	1	1
Gradient (MV/m)	35	-	-
Charge / Bunch (nC)	8.4	8.16	8.4
Beam Size (1σ) , σ_x (mm)	4.3	-	-
Laser Spot Size (1σ) , σ_L (mm)	2	-	-
Normalized Emittance, $\epsilon_{x,n}$ $(mm mrad)$	27.1	32.9	< 100
Beam Energy (MeV)	8.8	53.2	2730
Bunch Length, σ_z (ps)	18	9.43	10 - 3.33
RMS Energy Spread, $\Delta E (KeV) / (\%)$	297 / 3.37 $(8.8 MeV)$	450 / 0.84 $(50 MeV)$	$\leq 1\%$ $(50 MeV)$
Satellite Bunches (%)	0	4.9	as less as possible

Research program

- •Continue working with PHIN set up, study increased bunch charge and cathode lifetime issues
- Laser Intensity feedback
- Try to generate CLIC-like laser pulses to study average power and train stability issues
- Eventually design and realize 1 GHz rf-gun
- Full system test (1 GHz rf system needed)
- Some work on alternative (green) cathodes

Conclusions

- Conceptual designs for both injector options exist,
 more detailed technical design has to start
- Will continue following up the photo injector option
- Try to design test facility which allows to test both
- Have to start with thermionic gun and 1 GHz system as soon as possible!