

Luminosity Stability and Stabilisation Hardware

D. Schulte for the CLIC team

Special thanks to J. Pfingstner and J. Snuverink

Strategy

- Show that luminosity is stable with the baseline solution
 - Developing a model of the imperfections
 - Ground motion, element jitter, mechanical stabilisation, ...
 - Develop mitigation methods
 - Feedback, system design, ...
 - Integrate into code and perform fully integrated simulations with PLACET and GUINEA-PIG
 - This proves that a given solution is valid
- Understand the luminosity performance
 - Find simplified models to understand the effects
 - Ensure that full simulation results are understood
 - Point toward improvements for performance or cost

Model

Ground Motion

- Important source of luminosity loss
 - Level of ground motion at final site is not known
 - Technical noise transmitted via the ground is not known
- Use two models
 - Short time scales (< 100 s)
 - A. Seryi models: P(ω,k)
 - Long time scales
 - ATL law: $<(\Delta y)^2> = A*t*L$
- Model A corresponds to LEP tunnel with no technical noise
- Model B10 is made to fit measurements at Annecy and the CMS hall
 - Ad hoc correlation based on model B
- For ATL model we use A= 0.5 nm²/(ms)

Main Linac Quadrupole Stabilisation

- System reduces quad movements above 1 Hz (int. RMS 1 nm)
- Reduces emittance growth and beam jitter for high frequencies
- Implemented transfer function into beam dynamics code
 - For the moment all elements are moved with transfer function
 - But magnets completely dominate the luminosity loss

Taken from CERN stabilisation group

Pre-Isolator Transfer Function

Transfer function is complex

Modified ground motion generator to correctly model this

In reality will have also active stabilisation

Hardware Noise

Active stabilisation will induce noise

Received a spectrum last Friday

Simple model weights noise with feedback transfer function

- ✓ About 0.1nm effective jitter
- ✓ <0.1% luminosity loss

Consider not to implement

this for final CDR results

Will be considered later

Feedback Design

Feedback Design

- Every magnet is equipped with a BPM
 - We use information from all BPMs
- Each quadrupole is equipped with a corrector
 - Dipole magnet and mover from stabilisation system
- Correct the orbit globally
 - In matrix inversion only the most important singular values are used
 - Currently 16 singular values are used at full gain
 - 300 singular values are used at gain of 0.05
- Some singular values are important for luminosity but not yet well measured
 - Room for improvement

Orbit feedback and IP feedback are independent

Required BPM Resolution

- Let the feedback run at full speed
 - No ground motion, only BPM errors
- Baseline BPM resolution of 50 nm leads to less than $\Delta L/L << 1\%$
 - Value chosen to resolve 0.1σ beam jitter in the main linac
 - Significantly improved result due to noise-robust beam based feedback
 - Previous requirement had been 20nm for ΔL/L=1%

Results

Luminosity with Beam-based Feedback

No stabilisation used, vertical plane only

Results:

- Model A
 - $\Delta L/L=3.2\%$
 - does not need any stabilisation hardware
- For model B
 - $\Delta L/L=18.5%$
- With final doublet stabilisation
 - $\Delta L/L=7.9\%$
- B10 and C are not acceptable

Adding Magnet Stabilisation

- Use the main linac transfer function for all magnets, except final doublet
 - Conservative approach, might be able to do better in BDS
- Model A is worse
 - $-\Delta L/L=8\%$
- Model B is slightly worse than with pre-isolator alone
 - $-\Delta L/L=11\%$
- Model B10 now about acceptable
 - $\Delta L/L=15\%$
 - Are still optimising controller

Note: Simplified Calculation

- Simplified calculation allows to determine impact of each ground motion mode as function of
 - Wavelength
 - Frequency
- Tolerance shown
 - $-\Delta L/L=10\%$
 - sinus/cosinus with respect to IP
- Upper plot has no stabilisation
- Lower plot has air hook final doublet stabilisation

Consequences for Stabilisation Equipment

Estiamate luminosity loss for each ground motion mode (B10)

Estimated luminosity loss is 15%

- final doublet is assumed perfectly stable
- reasonable agreement with simulations

Luminosity loss is due to

- amplification close to micro-seismic peak
- amplification below 100Hz
- residual effects between 10 and 50Hz

Should tailor hardware transfer function to these findings

Improved Transfer Function

Modify baseline transfer function

- to shift resonance away from micro-seismic peak
- 2. avoid second resonance

Significant improvement in the two resonances expected

Result for Optimised System

- Full simulation of vertical only
- ✓ Performance would be satisfactory
 - ∆L/L=4.2%
- Residual loss should be largely due to final doublet
 currently simulations with PID are running
- Concept for hardware exists
- But hardware needs to be developed

Impact of RF Jitter

- RF jitter leads to luminosity loss
 - Limited BDS bandwidth
 - Residual dispersion
- Can interact with orbit feedback
 - Non-zero horizontal target dispersion in BDS fakes orbit jitter
- Performed simulation of baseline machine with RF jitter and running feedback
- ✓ Not a problem in the vertical plane
- ✓ Filtering the dispersion signal and reducing horizontal gain reduces additional effect
 - RF jitter 2.6% loss
 - RF jitter and feedback 3.8%
 - Impact on orbit feedback is negligible $\Delta(\Delta L/L)=O(0.1\%)$
- Further optimisation should be possible

Need to re-run final simulations with dispersion filter

Horizontal Motion

- Would expect more margin in horizontal plane
 - Larger emittance
- But some additional complications
 - Transfer function is different in x
 - Have to use lower gain because of horizontal dispersion
- ✓ The additional luminosity loss is 1.4%

Need to repeat some simulations with horizontal feedback

Long Term Luminosity Stability

- Beam-based orbit feedback can only maintain luminosity for limited time
- Simulation of long term ground motion
 - Apply long term motion using model B/B10
 - Feedback is not active during this period
 - Run the feedback until it converges
 - Running during the ground motion could yield better results
- Can probably be improved by optimizing beambased feedback
- Can use tuning knobs to further improve

Future

- Finish studies for CDR
- Improve the controller
 - Better algorithms
 - Better layout
- Guide improvement of hardware
 - Interaction with beam-based feedback
 - Cross talk between different systems
 - Ground motion sensor based feed-forward on the beam
- Further improvement of modelling
 - Technical noise, ground motion, RF jitter, stray fields
- Cost reduction
- Integrated tests
 - E.g. pulse-to-pulse beam vs. ground motion in ATF2/ATF3

Improved Controller

- Non-linear controller at IP is being tested in Annecy (B. Caron)
 - Will be integrated when tests are successful

Intra-pulse Interaction-point Feedback

Intra-pulse feedback is being developed at Oxford

- Is currently kept as a reserve
- Can yield up to factor 4 reduction of luminosity loss
- i.e. factor 2 in tolerances
- Can have secondary beneficial effects
- Simple beam-beam feedback based on deflection angle at IP
- Assuming 37 ns latency one can hope for factor 2 gain in tolerance
- ullet Only cures offsets, μm BPM resolution is sufficient, but large aperture
- Collaboration with JAI

Experiments

- Good opportunity could be ATF2/ATF3
- Ground motion-based feed-forward
 - Measure the motion of quadrupole pulse-to-pulse
 - Predict the beam motion in BPMs for each pulse
 - Compare to measured beam motion pulse to pulse
- Simulation seem promising
 - ATF2 ground motion
 - Sensor sensitivity

Note: Main Linac Estimate

- Ground motion only
 - Multi-pulse emittance used
 - $\Delta \epsilon_{v} = 0.4$ nm $\simeq \Delta L/L = 1\%$
- Model B yields
 - No stab.: ΔL/L=0.15-0.3%
 - Stab.: ΔL/L=0.03-0.06%
 - Stabilisation not required for ground motion only
- Model B10
 - No stab.: ΔL/L=1.5-3%
 - Stab.: ΔL/L=0.3-0.6%
 - Stabilisation marginally required
- Model C does not work
 - Also with stabilisation

Conclusion

- The current model for the stabilisation hardware is implemented in our simulations
 - The noise induced by the hardware is not yet included, but appears acceptable
- We have chosen ground motion model B10 as our benchmark point
 - But will adapt to real motion once known
- Horizontal ground motion and interaction with RF jitter seems OK
- Luminosity loss with current baseline hardware would be 16% for B10
 - But further hardware development will improve this; 4.2% (no noise, y only)
- Further optimisation of the beam-based controller and feedback is ongoing
- The use of tuning knobs to reduce the long-term luminosity loss is under investigation
- We plan to gain experience in ATF2/ATF3