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(KASCADE Collaboration, 2018;
Lal & Peters, 1967) 2

Cosmic-ray muons, μ- and 
μ+, are created in the upper 
atmosphere when 
high-energy cosmic-ray 
primary particles interact 
with the nuclei of 
atmospheric particles, a 
process that produces 
pions, π + and π −, which in 
turn produce muons via 
their decays



● Pierre Auger 

○ Discovered air showers 
in 1938

○ Detected coincidences 
between counters 
separated by several 
meters

(Auger et al., 1939) 3



(Rossi, 1952; Ianni, 2020) 4

Muons are highly 
penetrative particles with a 
large time-dilated lifetime, 
which allows them to  
survive long enough to 
reach sea level and beyond.

Net result is a flux of muons 
that is easy to detect and 
use as a tool but is also a 
problem for low-background 
experiments.



(KASCADE Collaboration, 2001;
Kamata & Nishimura, 1958;
Greisen, 1960)

The Nishimura - Kamata - 
Greisen (NKG) function is a well 
established mathematical 
equation used to describe the 
lateral distribution of charged 
particles, such as muons. It 
includes three parameters:

- Age parameter, s 
(broadening of shower) 

- Molière radius, rm 
(lateral size)

- Number of particles, Ne

Lateral distribution of muons above 230 MeV 
kinetic energy fitted to NKG
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● Scintillation Detectors

○ Eljen EJ200 Plastic 
Scintillator

○ Hamamatsu R580 
Photomultiplier Tube 
(PMT)

○ HV Cockcroft-Walton 
Multiplier

(Leo, 1994) 6
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Scintillation detector in 
the lab

The large square of plastic 
scintillator is wrapped in 
Tyvek reflective material 
and covered with black 
cloth to prevent light leaks. 

A wooden cover is 
attached on top for 
operation to provide 
mechanical structure.

A PMT is glued to one side 
to detect the scintillation 
light.



Calibrating Detector Responses
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The high voltages needed for efficient operation of counters C and D were 
determined by counting instances where detectors A, B, and C would 
detect a signal and instances where detectors A, B, and D would detect a 
signal over different voltages using coincidences in A and B as a trigger.
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Responses of detectors C and D with relation to tested high-voltages (1500 V, 
1600, V, 1700 V, 1800 V, 1900 V, and 2000 V), regions where the counts 
plateau were used to calibrate the responses of detectors C and D
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Coincidence Circuit for Cosmic-Ray Muons:

Scintillator PMT
CAEN N840 
Discriminator

Scintillator PMT
CAEN N840 
Discriminator

ORTEC 
996 

Counter

Phillips 755
Coincidence



● NIM Modules 

○ CAEN N840 
Discriminator

○ Phillips 755 Logic Unit

○ ORTEC 996 Counter 
(two counting ABC and 
ABD coincidences 
shown) 

(Leo, 1994) 11
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Distribution of coincidence rate in counts per seconds along with NKG fit, 
the vertical axis is set to a logarithmic scale.

Fit parameters

Age parameter, s = 0.92 ± 0.14 
Molière radius, rm = 37.8 ± 27 meters
Normalization constant, c(s) = 0.0022 ± 0.002



Time Differences Between Traces Taken With Oscilloscope
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Time differences 
between muon 
coincidences for a 
detector separation of 
8.9 m were recorded 
using a SDS1204X-E 
SIGLENT oscilloscope to 
control for bursts or 
other anomalies. 

Each coincidence event 
was recorded, along with 
a timestamp.
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Assuming the timing 
of the coincidences 
to be random but at 
a constant rate, the 
time differences 
follow  Poisson 
statistics.

Hence, the 
probability to wait 
longer between 
events declines 
exponentially with 
waiting time such 
that:

Equation for fit

Fit parameters

Initial count, Nₒ = 
385.7 ± 5.7
Mean time difference, T = 
125.1 ± 2.6 seconds



Conclusion

● NKG function demonstrates that 
air-showers exist and can shed light 
regarding lateral size

● Poisson nature of arrival times based on 
exponential pattern of time-differences
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