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Scintillating Bubble Chamber:

SBC-LAr10

* Quasi-background-free Bubble
Chamber

* 10 kg of liquid argon
* Aims to hit lower thresholds (100 eV)

Snowmass 2021 Scintillating Bubble Chambers: Liquid-noble Bubble Chambers for Dark Matter and CEvNS Detection [https://doi.org/10.48550/arXiv.2207.12400]



How does SBC work?
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Silicon Photomultipliers (SiPMs)
» Detect single photons near UV to near IR
« SBC SiPMs detect LAr and LXe UV light

« Consists of many single-photon avalanche
photodiodes (microcells)




Understanding SiPMs =
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SiPMs Background

Crosstalk

* Occurs when primary avalanche in one
microcell triggers another in an adjacent
cell

« Occurs in on top or near initial pulse
» Causes increased initial pulse magnitude

« May have inflection point




SiPMs Background
After-Pulsing

* There is a probability that an
adjacent cell may release a delayed

pulse
* Occurs in recover phase
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Motivation

To explore new methods of determining the
and using
methodologies and compare to algorithmic
approaches.
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Pulse Counting with Computational Algorithms

»

VUV-sensitive Silicon Photomultipliers for Xenon Scintillation

»

Light Detection in nEXO

Jamil et al. 2019
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Unsupervised Machine Learning

K-means Clustering

50 Clusters ® 10 000 Initial Pulses
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Resulting Algorithm
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Algorithm

Improved pulse
parameter error
from 20% to 1%
on simulated
data




Supervised Machine Learning

~4000 hand-picked labels M Algorithm
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Current Results

Traditional Algorithms
 Accurately calculates t0

* Calculates charge

* Near 100% accuracy on
simulated data

Machine Learning

e Real Dataset

e Near-even distribution of
labels

» ~80% accuracy

e Trial run

* 1000 unseen datapoints
* Uneven distribution of labels
* ~90% Accuracy



Conclusion

Unsupervised ML effectively classifies
background groups

Supervised ML can be used for pulse
analysis

ML can effectively improve current
algorithmic approaches
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