

NEWS-G Neutron Beam Solid Transmission Monte Carlo Simulations

Ry Cyna CASST - 15/08/2022

NEWS-G Dark Matter Search

- Trying to detect low energy WIMPS using light gasses in SPCs
- Currently running at 2km underground at SNOLAB called SNOGLOBE

Expected SNOGLOBE Sensitivity

 Spherical Proportional Counters (SPC) are spheres filled with light gases filled used to detect WIMPs

- Spherical Proportional Counters (SPC) are light gases filled spheres used to detect WIMPs
- WIMP interacts with gas via nuclear recoil

- Spherical Proportional Counters (SPC) are light gases filled spheres used to detect WIMPs
- WIMP interacts with gas via nuclear recoil
- This ionizes the gas and electrons drift to diode through electric field

- Spherical Proportional Counters (SPC) are light gases filled spheres used to detect WIMPs
- WIMP interacts with gas via nuclear recoil
- This ionizes the gas and electrons drift to diode
- Each gas has a unique amount of ionization from deposited energy (quenching factor)

Quenching Factor

- Quenching Factor allows us to determine the mass of WIMP by using the relationship:
- *E* is the deposited energy due to the nuclear recoil (nr) and electronic equivalent (ee)
- Since QF to a first order approximation is constant for each gas then we can use neutrons to calibrate.
- Can use QF to find the deposited dark matter energy:

•
$$E_{DM} = E_{nr}(n_{e^{-}}) = \frac{E_{ee}(n_{e^{-}})}{QF}$$

Quenching Factor Experiment At RMTL

 Measuring the ionization quenching factor at Reactor Materials Testing Laboratory's proton

accelerator.

Quenching Factor Experiment At RMTL

New Beam Line Experimental Setup:

Neutron Filter Simulations in GEANT4

Transmission Neutrons for Common Neutron Filters

New Beamline Materials

- When making the new beamline the alloys we choose will have different gamma backgrounds produced.
- The beamline will be made out of stainless steel and Al alloy

Stainless Steel Simulations

Transmission Neutron

Transmission Gamma

Al Alloy Simulations

Transmission Gamma

Simulation Results

	Alloy					
	Stainless Steel				Al	
	304	304L	316L	316LN	6063	2219
Alloy Gamma Output/Pure Material Gamma Output	1.00	1.08	0.97	1.03	0.95	0.85
Standard Deviation	0.76	0.89	0.48	0.72	0.44	0.47

- The 316L has the lowest average (less gamma output than Fe) and the smallest spread and so should be used for the target holder.
- Both Al alloys have lower gamma outputs than pure aluminum and both will be used.

Conclusion

- We are going to conduct the Ionization quenching factor for methane in the next couple of months at RMTL
- The neutron filter used for the new experiment will be Fe
- The target holder should be made out of stainless steel 316L as it has the lowest produced gamma background

Questions?