Highlights from CMS experiment and prospects for Run3

Maurizio Pierini CERN

- There are interesting (but still small) discrepancies to watch for)
- More could come
- Pursuing the search process is a must
- With x2 more data coming at ~ same energy, maximal gain from exploring (also) new directions
- Alternative data taking could be crucial, to extend our search to the data that we normally throw away
 - Scouting
 - Parking

•

Anomaly detection
 Anomaly
 Anomaly

• With Run3 starting, we are still in the process of analysing Run2 data

• With Run3 starting, we are still in the process of analysing Run2 data

More could come

I am focusing on searches today, for lack of time A lor more happening with Higgs, top, EW, QCD and new **Heavy lons** ● A7t

that we normally throw away

Scouting

Parking

Anomaly detection

• There are interesting (but still small) discrepancies to watch for)

 Run 1 (7 TeV/8TeV) was a triumphant journey towards the Higgs discovery

• In Run 2 we shifted attention to new physics, thanks to energy increase (to 13 TeV)

• No discovery reported, but

• several analyses reported 3-4 sigma (local) excesses that should be monitored with more data

A little bit of history

Overview of CMS EXO results

16-140 fb ⁻¹ (13 TeV)	
	137 fb ⁻¹ 36 fb ⁻¹ 137 fb ⁻¹ 36 fb ⁻¹ 137 fb ⁻¹ 137 fb ⁻¹ 137 fb ⁻¹ 137 fb ⁻¹
2103.02708 (2 /)	140 fb ⁻¹ 140 fb ⁻¹ 77 fb ⁻¹ 77 fb ⁻¹
	18 fb ⁻¹ 140 fb ⁻¹ 137 fb ⁻¹ 101 fb ⁻¹ 140 fb ⁻¹ 36 fb ⁻¹ 101 fb ⁻¹ 101 fb ⁻¹ 136 fb ⁻¹ 138 fb ⁻¹ 36 fb ⁻¹ 36 fb ⁻¹ 36 fb ⁻¹ 77 fb ⁻¹
	36 fb ⁻¹ 38 fb ⁻¹ 38 fb ⁻¹ 36 fb ⁻¹
	36 fb ⁻¹ 36 fb ⁻¹ 101 fb ⁻¹ 137 fb ⁻¹ 137 fb ⁻¹ 137 fb ⁻¹ 137 fb ⁻¹ 136 fb ⁻¹ 137 fb ⁻¹ 36 fb ⁻¹ 36 fb ⁻¹ 137 fb ⁻¹ 137 fb ⁻¹
	36 fb ⁻¹ 36 fb ⁻¹ 137 fb ⁻¹ 36 fb ⁻¹ 36 fb ⁻¹
	36 fb ⁻¹ 36 fb ⁻¹ 137 fb ⁻¹ 137 fb ⁻¹ 137 fb ⁻¹
	36 fb ⁻¹ 36 fb ⁻¹ 36 fb ⁻¹ 77 fb ⁻¹ 36 fb ⁻¹ 36 fb ⁻¹ 101 fb ⁻¹ 36 fb ⁻¹
	$\begin{array}{c} 137 \ \mathrm{fb}^{-1} \\ 137 \ \mathrm{fb}^{-1} \\ 140 \ \mathrm{fb}^{-1} \\ 137 \ \mathrm{fb}^{-1} \\ 36 \ \mathrm{fb}^{-1} \\ 137 \ \mathrm{fb}^{-1} \\ 136 \ \mathrm{fb}^{-1} \\ 36 \ \mathrm{fb}^{-1} \\ 36 \ \mathrm{fb}^{-1} \\ 137 \ \mathrm{fb}^{-1} \\ 137 \ \mathrm{fb}^{-1} \\ 137 \ \mathrm{fb}^{-1} \end{array}$

Moriond 2022

European Research

Exclusion plots come with assumptions and warnings

• For instance, SUSY limits use simplified models

• Not a complete model, BR=100% typically assumed, Cross section computed assuming all other sparticles are decoupled

• The actual exclusion might be weaker

• The dijet resonance search identified an excess of a few events on the tail

• When inspected, these events revealed a common structure

• two jet pairs, merged into single jets with M~2 TeV

• The dijet system had mass above 6 TeV

Nothing yet significant, but something to watch

Some interesting excess

• The dijet resonance search identified an excess of a few events on the tail

• When inspected, these events revealed a common structure

• two jet pairs, merged into single jets with $M \sim 2 TeV$

• The dijet system had mass above 6 TeV

Nothing yet significant, but something to watch

Some interesting excess

European Research

• Excess seen in ATLAS dE/dx analysis. CMS still analysing Run2 data + will repeat the search in Run3

CMS

Lepton Flavor Universality

• Several

CMS

Uhat should we expect from Run3

• Luminosity doubling

• can improve current results by at least sqrt(2)

• can investigate previous excesses with comparable datasets

New trigger opportunities

- Improved algorithms and hardware let us do more than in the past
- New triggers imply new (i.e., unexplored) territory, basically a new experiment

cernative Data Laking Strategies: scouting erc Research Council

The LHC Big Data Problem

• LHC produces more events than what we can store • We then filter them using trigger

Many studies are trigger limited

- The menu is a negotiation between different physics topics and the rate of the corresponding processes

13

European Research

CMS

Example: Dijet resonance searches

Most of LHC events have two jets

energy has to be applied

Trade-off between # of events & event size

• write HLT objects (four-momenta, etc...) rather than full event content

15

limited by L1)

• write many more events (essentially HLT passthrough,

Di<u>Jet Scouting Streams</u>

 Dijet Data Scouting strategy in Run2 used two tiers

• A calo-scouting stream with minimal event content, to go as down as possible (limited by L1 trigger)

• A PF-scouting stream, going as down as HLT let us run the PF sequence. More complex event content and more flexibility (substructure, etc)

Di<u>Jet Scouting Streams</u>

• Same approached followed for other final states

• multiple jet resonances (e.g., trijet in

• jet substructure

• In particular, the use of PF (with full access to individual particles) showed a great potential, which so far was barely explored

See D. Sperka's talk at HOW2019

• Starting in 2015, the same idea was applied to dimuon events, to probe light dimuon resonances (prompt and displayed)

• Similar to LHCb turbostream analysis

el Analysis in CMS

CMS

DiMuon Scouting Stream

• Improved Trigger farm (heavy computing now on GPUs) makes it possible to run PF algorithm on a much larger dataset

• Can use PF scouting on O(10K) evt/sec, storing an event content including all PF particles

• Could boost the physics case of the scouting stream

ernative Data Taking Strategies: parking erc

LHC schedule: Runs and LeSs

• When we take data, we saturate our computing facilities with the data we take

• We could take more, but then we don't have enough computing power

• During long shutdowns, our CPUs are under-utilised (e.g., for MC) production)

- Since Run 1, we open up the triggers during the last year before a LS
- We send the events on tape (cheaper than disk) and reconstruct them during the shutdown
- We target specific physics use cases
 - Inclusive/invisible Higgs in Run 1
 - B physics in Run 2

Data Parking

- Saturated available rate with displaced muon trigger
- Selected ~80% pure sample of BB mesons
 - one leg biased by trigger
 - one leg trigger-selection free

• Used to establish a physics program targeting the LHCb anomalies

• Studies ongoing

• More to come in Run3

Trigger Level Analysis in CMS

<u>B-physics</u> Parking

24

See D. Sperka's talk at HOW2019

Research

Council

Alternative Data Laking Strategies: anomaly detectioner large larg

• The first step of the scientific method consists in observing nature

HEP searches in LHC era

- The first step of the scientific method consists in observing nature
- In the last 40 years, our starting point has been the SM (which was put together from experimental information collected in the 70s)
- We are victim of our success:
 - We use data mainly to confirm our hypothesis
 - We have lost the value of learning from data
 - Not by chance, we totally endorsed blind analysis as the ONLY way to search

• Rather than specifying a signal hypothesis upfront, we could start looking at our data first

• Based on what we see (e.g., clustering alike) objects) we could formulate a signal hypothesis

• EXAMPLE: star classification was formulated on empirical characteristics

Class	Effective temperature ^{[1][2]}	Vega-relative chromaticity ^{[3][4][a]}	Chromaticity (D65) ^{[5][6][3][b]}	Main-sequence mass ^{[1][7]} (solar masses)	Main-sequence radius ^{[1][7]} (solar radii)	Main-sequence luminosity ^{[1][7]} (bolometric)	Hydrogen lines	Fraction of all main-sequence stars ^[8]
0	≥ 30,000 K	blue	blue	≥ 16 <i>M</i> ⊙	≥ 6.6 R ⊙	≥ 30,000 <i>L</i> ⊙	Weak	~0.00003%
В	10,000–30,000 K	blue white	deep blue white	2.1–16 <i>M</i> ⊙	1.8–6.6 R ⊙	25–30,000 L _☉	Medium	0.13%
Α	7,500–10,000 K	white	blue white	1.4–2.1 <i>M</i> ⊙	1.4–1.8 R ⊙	5–25 L _☉	Strong	0.6%
F	6,000–7,500 K	yellow white	white	1.04−1.4 <i>M</i> ⊙	1.15−1.4 <i>R</i> ⊙	1.5–5 <i>L</i> ⊙	Medium	3%
G	5,200–6,000 K	yellow	yellowish white	0.8−1.04 <i>M</i> _☉	0.96−1.15 <i>R</i> ⊙	0.6−1.5 <i>L</i> ⊙	Weak	7.6%
К	3,700–5,200 K	light orange	pale yellow orange	0.45–0.8 <i>M</i> ⊙	0.7–0.96 R ⊙	0.08–0.6 <i>L</i> ⊙	Very weak	12.1%
М	2,400–3,700 K	orange red	light orange red	0.08–0.45 M _☉	≤ 0.7 R ⊙	≤ 0.08 <i>L</i> ⊙	Very weak	76.45%

• Afterwords, the connection to physics properties (temperature) was understood

Learning from Data

Observation

Hypothesis

formulation

Experimental

verification Data match prediction? Communicate result

• Anomaly detection is one kind of data mining technique

- One defines a metric of "typicality" to rank data samples
- Based on this ranking, one can identify less typical events, tagging them as anomalies
- By studying anomalies, one can make hypotheses on new physics mechanisms **Object ID: 960415** 20

Learning from Anomalies

29

• A loss function of x and y specifying the task

• e.g., clustering: group similar objects together

European Research

Autoencoders are networks with a typical "bottleneck" structure, with a symmetric structure around it

• They go from $\mathbb{R}^n \to \mathbb{R}^n$

• They are used to learn the identity function as $f^{-1}(f(x))$

where $f: \mathbb{R}^n \to \mathbb{R}^k$ and $f^{-1}: \mathbb{R}^k$ $\rightarrow \mathbb{R}^n$

• Autoencoders are essential tools for unsupervised studies

Autoencoders

 An autoencoder can reproduce
 new inputs of the same kind of the training dataset

• The distance between the input and the output will be small

• If presented an event of some new kind (anomaly), the encoding-decoding will tend to fail

• In this circumstance, the *loss* (=distance between input and output) will be bigger

<u>Anomaly</u> detection

T. Heimel et al., <u>https://arxiv.org/abs/1808.08979</u> M. Farina et al., <u>https://arxiv.org/abs/1808.08992</u>

32

Offline might be too late

being writing the wrong events

the trigger

- With 40M beam crossings/seconds and 1000 stored, we might just
- If we want to take action on a "plan B" path, this has to happen at

-SAINC: NO FOF

• HLS4ML aims to be this automatic tool

- reads as input models trained on standard DeepLearning libraries

• comes with implementation of common ingredients (layers, activation functions, etc)

• Uses HLS softwares to provide a firmware implementation of a given network

• Could also be used to create co-processing kernels for HLT environments

Anomaly Detection on FPGA

encoder

Autoencoders can provide event discrimination for anomaly detection, even with the little information available at L1

 $-p_{\theta}(\mathbf{x}|Z) \longrightarrow \overline{X}$ $-p_{\Phi}(Z|X) \longrightarrow Z$ x —

decoder

Model	DSP $[\%]$	LUT [%]	FF [%]	BRAM [%]	Latency [ns]
DNN AE QAT 8 bits	2	5	1	0.5	130
CNN AE QAT 4 bits	8	47	5	6	1480
DNN VAE PTQ 8 bits	1	3	0.5	0.3	80
CNN VAE PTQ 8 bits	10	12	4	2	365

• The minimal final deliverable is a dataset of anomalous events

• Could be used to look for recurrent topologies

• By visual inspections, these "clusters" could inspire new searches on other (future) datasets

• Not very far away from how our field used to operate before bigdata computing solutions took over

Anomaly Dataset

Event H

Much more than BSM program

• More precise W and top mass measurements Broader reach to Flavor physics
 Aligned A second statement of the second s More exiting Heavy Ion physics • Stay tuned...

- LHC experiments will deliver much more than this

 - EFT operator analyses from differential cross section measurements in Higgs, top, and EW processes

Backup Slides

European

CMS

Network compression

Pruning: identify which part of the network is really relevant and remove the rest (makes network smaller)

Quantization: use limited precision for numerical representations (save resources)

Reuse: dilute the network inference on multiple clock cycles, trading off resource needs for latency

