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Gravitational wave detection working principle: 

GW change distances between objects, while the objects themselves locally remain at 
rest, by changing the metric of space-time

2Credits:  ET-0007B-20 ET Design Report Update 2020



Gravitational wave detection working principle: 

Measure the change in length  

→ 

Measure change in phase
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Michelson 
Interferometer



Gravitational wave detection working principle: 

Actually… it is much more 
complicated:

We need a stratagem to have longer 
arms and more power → optical 

cavities + Pound-Drever Hall 
technique .
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Gravitational wave detection working principle: 

Much, much more…
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Underground: 

● More stable 
interferometer!

● Better low frequency 
sensitivity

Credits: GWIC 3G Committee, the GWIC 3G Science Case Team, 
and the International 3G Science

Team Consortium, “3G Science Book,” 2020
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● Equilateral triangle (xylophone):
○ 3 nested detectors 
○ Each one split in two interferometers:

■ Low-frequency (cold) 
■ High-frequency (hot)

● Why this shape?
○ Equally sensitive for both GW polarisations
○ Redundancy 

■ Null stream
■ Observation continuity 

Why a     ⃤  ?
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Response to 
linear 

polarization:

Janssens et al 
arXiv:2205.00416

From the ET conceptual design study

3 Michelson
(triangle)

Single 
Michelson

https://arxiv.org/abs/2205.00416


Improving the low frequency band is very expensive: do we 
really need it?

● New possible discoveries
● BNS: Hours – Days

○ Parameter estimation
○ EM early warning
○ Sky localization with only ET

● Massive BBHs:
○ intermediate mass BH (102-105 solar 

masses)
○ Higher redshift→PBHs?

● Search of GW cosmological 
signal
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What has been reached with LIGO-Virgo-KAGRA
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ET to expand our horizons:
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“To boldly go where no man 
has gone before.”

Captain James T. Kirk
Credits: Nature, “ROADMAP, 

Gravitational- wave physics and
astronomy in the 2020s and 

2030s”,  Figure courtesy of Evan 
Hall
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A comparison between present and future detectors
Astrophysical reach for equal-mass, non-spinning binaries

GW190521



Neutron Star post-merger phase:

13

● Properties of cold, dense matter in 
NSs 

● New physics during a binary NS 
merger (higher temperatures and 
more extreme densities) 

● Formation of heavy elements from 
synergies with electromagnetic 
observations.

 Gravitational wave signal 
from a NS-NS merger at a 

distance 100 Mpc, as it 
sweeps across the 

detector-accessible 
frequency range.  

From  M. Maggiore, Gravitational Waves. Vol. 2. 
Astrophysics and Cosmology. Oxford University

 Matter encountered in 
neutron

stars and binary mergers 
explores a large part of the 

QCD phase diagram in 
regimes that are inaccessible 

to
terrestrial collider 

experiments.
Credits:  ET-0007B-20 ET Design Report 

Update 2020



Probing gravity in its most extreme conditions
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Reach in spacetime curvature versus 
potential energy. 

M and L:  characteristic mass and 
length involved in the

observed system. 

Credits: GWIC 3G Committee, the GWIC 3G Science Case Team, 
and the International 3G Science

Team Consortium, “3G Science Book,” 2020



Dark matter   
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H0
Primordial black holes?

Ultralight dark matter 
bosons? Cosmological 

Stochastic GW 
background

Fundamental physics

Miller et al
arXiv:2012.12983

Clesse et al 
 arXiv:2110.07487v1

Miller et al
Phys. Rev. D 103, 103002
Phys. Rev. D 105, 103035

Janssens et al
 arXiv:2206.06809

Caldwell et al
arXiv:2203.07972v1



Not only instrumental related challenges: also computational and 
data analysis!
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● 2G interferometer: 1PB/year ( LHC ~ 110 PB/year in 2018)
● Compact binary coalescences: detected by template-based matched-filtering

○ Longer templates (more memory)
○ Overlapping signals

●  After detection: parameters extracted with Bayesian inference 
○  much less parallelisable algorithms 
○ computing power scales linearly with the detection rate

● Day-long signals: the detector moves with respect to the source
● Timely and reliable distribution of candidate triggers
● Rapid parameter estimation, before the objects merge (multi-messenger astronomy)
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Low-Frequency ET

High-Frequency ET

ET sensitivity curve:
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ET sensitivity curve: thermal noise

● Soft and long suspensions
● Heavier test masses (m)
● Larger beam size (wider mirrors)
● Cryogenic temperatures (T = 10 K)
● High quality materials (high Quality factor, Q)
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ET sensitivity curve: seismic and Newtonian noise

● Long suspensions 
● Pendulum cascade
● Low seismic noise (underground)
● Active controls

● Low seismic noise (underground)
● Far from atmosphere (underground)
● Coherent noise cancellation
● High end sensors
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ET sensitivity curve: seismic and Newtonian noise
Just a glimpse of the complexity of 

GW detectors suspensions …
Attenuation ∝1/f2N

 

From: Accadia et al, “A state observer for 
the Virgo inverted pendulum”, Review of 
Scientific Instruments 82, 094502 (2011)

Suspensions 
concepts for ET

~108
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ET sensitivity curve: quantum noise

● More massive mirrors (m)
● Frequency dependent  squeezing
● Low Power (P)

● Frequency dependent  squeezing
● High Power (P)
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● More massive mirrors (m)
● Frequency dependent  squeezing
● Low Power (P)

● Frequency dependent  squeezing
● High Power (P)

ET sensitivity curve:

This is why ET is arranged in xylophone 
configuration: we cannot have both low 

radiation pressure and shot noise (Standard 
Quantum Limit)! 
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Low-Frequency ET

High-Frequency ET

ET sensitivity curve: not only fundamental noises…

BETTER SENSORS 

AND 

BETTER CONTROLS!!!



The birth of the ET Collaboration
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During the XII symposium of the Einstein Telescope (ET) in 
Budapest on the 7th - 8th of June 2022 
~1200 members and 40+ institutions

● Euregio Meuse-Rhine 
(Belgium/Netherlands/Germany)

● Saxony (Germany)

● Sardinia (Italy) 



European Strategy Forum on Research Infrastructures - ESFRI
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ET was included in the 2021 upgrade of its roadmap → it strengthens ET at the European level



E-TEST:
● funded by the European 

program Interreg Euregio 
Meuse-Rhine

● Goals:
○ develop a prototype of 

large suspended 
cryogenic silicon mirror

■ Cryo (20K)
■ Radiative cooling
■ Suspension
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Di Pace et al 
Galaxies 2022, 10, 65

Belgian effort towards ET:



Belgian effort towards ET:
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E-TEST:
● funded by the European 

program Interreg Euregio 
Meuse-Rhine

● Goals:
○ develop a non-invasive 

imaging of the geology 
in the EMR region and 
development of an 
observatory of the 
underground 

■ Geophysics
■ Tunnel layout

Credits: Koley, meeting in Nuoro link

Credits: E-Test website

https://agenda.infn.it/event/28070/


28

ET Pathfinder:
● Unique test environment for 

ET: fully integrated 
interferormeter

● Conductive Cryo (120 K and < 
20 K)

● Vacuum
● laser 1550 – 2100 nm
● Silicon instead of fused silica
● Directly observe coating 

thermal noise
● Later stage: single T and laser 

wavelength (depending on 
previous results)

Image from the 
ET-Pathfinder first 

publication
arXiv:2206.04905v1

Belgian effort towards ET:



Summary:

29

● Brand new collaboration (2022)

● Two candidate sites: Limburg/Sardinia
 

● Technologic challenges: infrastructural, optical components, suspensions, noise 
mitigation…

● Large and rich science case (astrophysics of BHs, NSs, GR tests, dark matter, 
dark energy, cosmology, QCD, multi-messenger astrophysics…)

● Computational challenges

Merci for listening…



Backup
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Cumulative distribution of the 
sky-localisation uncertainty for three 
detector configurations: ET (green), 
ET+CE (orange) and ET+2CE (blue).

(Ronchini et al, arXiv:2204.01746v1)
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Image from: 
TEST_Conceptual-Design-Rep

ort_June_2022.pdf

https://www.etest-emr.eu/wp-content/uploads/2022/06/E-TEST_Conceptual-Design-Report_June_2022.pdf
https://www.etest-emr.eu/wp-content/uploads/2022/06/E-TEST_Conceptual-Design-Report_June_2022.pdf
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Multiband detection:
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Multimessenger challenges:
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Fermi

CTA

Vera Rubin
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SNR
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● The case for alternative topologies for quantum noise reduction.
● Signal-to-noise ratio or sensitivity vary dramatically with the interferometer configuration.
● A Michelson-based detector →  using the experience and the optical technologies of the first two detector 

generations.


