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NA63

Studies fundamental strong

field effects by means of 

crystals in GeV e+/e- beams
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Strong fields

E1s/E0 = 3Z3 =1.32·1016 V/cm

Picture from H.-J. Kluge, presented at the BriX workshop 2008, SCK•CEN, Mol, Belgium



4

Crystals as a source of strong fields

E1s/E0 = 3Z3
=1.32·1016 V/cm



Crystals as a source of strong electric fields

Extremely strong electric fields 10⁹-10¹¹ V/cm
Electron trajectories

Positron trajectories



Crystal planar

alignment

Crystals prealigned 

with x-rays

2017 data

(planar case)

Lindhard critical angle @ 50 GeV: 

23 microrad



SLAC E-144 (mid-90’s, 1 TW laser)

SLAC E-320 (almost ready to run, 10 TW laser)

LUXE @ DESY (ready in 2025, 30 TW laser)

Lasers as a source of strong fields

- 2-3 micron transverse size

- 40 - 100 fs pulse length

- overlap with counterpropagation          

bunched electron beam

New development in laser technology →  many upcoming

SFQED experiments:

New radiation reaction experiments with lasers:

10²² W/cm²



Jackson 1975 p. 786-798

N2

Lorentz-Abraham-Dirac (LAD) equation

No field, solution to LAD eq.:
(runaway – energy conservation)

Step-fct. field, solution to LAD eq.:
(pre-acceleration - causality)

Classical Radiation Reaction

Larmor

(no radiation)

Possible remedy: ‘Landau-Lifshitz equation’



Significant damping in strong fields

• Landau-Lifshitz equation, “Reduction of order”, valid when

classical for:

which means:

for significant damping

experiment:

A ‘specialty’ of NA63 (and NA43) 

to address strong fields



Example of results, silicon (2017 data)
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Example of results, diamond (2018 data)

An example from 

a total of 22

experimental 

comparisons with 

theory reported 

in the paper 

published in 

PRD.
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3 papers published
(27 NA63 papers published, since 2008)

Published in PRD:

Published in Phys. Rev. Research:
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2018 data:

2017 data:

Newly published in New Journal of Physics, Special issue: 2017 data + 2018 data:



Trident enhancement in strong field

Theory Significant 

discrepancy!

Found in the 

framework of 

NA63



New theoretical simulations of trident production

rates is in agreement with 2009 predictions.

• Positron (trident) spectrum for 150 and 180

GeV electrons hitting a 400 micron Ge

<111> crystal. Red curve corresponds to

the theoretical prediction used in 2009.

• Positron (trident) spectrum 180 GeV

electrons hitting a 0.5, 1 and 1.5 mm thick

Diamond <100> crystal.

Simulations by: Jeppe Heering Surrow, Aarhus University 2021

• Agreement between new and old predictions means that

discrepancy in 2009 experiment most likely is experimental



MIMOSA-26 detectors
(M. Winter, Strasbourg)

Vertex detectors for CLIC (?)
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10 k frames/s, resolution 3.5 µm



2022 Setup

• Minimal background
• 8 mimosas instead of only 6
• LN2 cooled crystal to enhance strong field effects
• Stronger magnet to increase energy resolution



Energy resolution of tracks



Efficiency of the setup:



Direct vs two step – possible measurement in 2023

Total signal is comprised of two-step

and direct trident.

Depends on the virtuality of the 

photon.

Two-step: ~ L² scaling

Direct: ~ L scaling

Requires thin crystals – lower count

rate.

We foresee to request 3 weeks

of beam in 2023



Change in spokesperson:

from: Ulrik I. Uggerhøj
to: Christian F. Nielsen



Scientific investigations in the framework of NA63 

(full list of publications in report)

• Direct measurement of the Chudakov effect: PRL 100, 164802 

(2008); NIMB 269, 1919 (2011)

• LPM effect: NIMB 266, 5013 (2008); NIMB 269, 1977 (2011); 

NIMB 289 5-17 (2012); PRD 88, 072007 (2013)

• Macroscopic formation length: PLB 672, 323 (2009); PRL 108, 

071802 (2012); NIMB 315, 278 (2013); PLB 732, 309-314 

(2014)

• Beamstrahlung in strong fields: JPCS 198, 012007 (2009); 

PRST-AB 17, 051003 (2014)

• Strong field trident production: PRD 82, 072002 (2010)

• Logarithmic thickness dep. of radiation: PRD 81, 052003 (2010)

• Quantum synchrotron radiation: PRD 86, 072001 (2012)

• Strong field vacuum birefringence: PRD 88, 053009 (2013)

• Quantum/classical Radiation Reaction: PLB 765, 1-5 (2016); 

Nat. Comm. 82, art. 795 (2018); PRR 1, 033014 (2019); PRL 

124, 044801 (2020); PRD submitted
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Overview of the experiment

• In RR regime, naturally 

many photons are 

emitted per incoming 

charge 

• Sufficiently thin 

converter foil is required 

to convert a single 

photon per event
Permanent 

magnet

(shuntable)

MIMOSAs 3-6



‘Picture’ of a 1.5 mm 

thick diamond, taken 

with tracked e+e-

pairs:

MIMOSA



What is classical radiation reaction?

• Landau-Lifshitz equation, “Reduction of order”:

or in 3-vector notation:

Schott



Detectors and 

crystal
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In a purely electric field (in the lab frame), ’Landau-Lifshitz’ equation :

Derivative term not 
accessible in laser 
interactions

• Challenging, but the only place where 

there would be a chance to see the 

effect of the derivative term in the LL 

equation. 

11/6/20 Ulrik Uggerhøj, NA63 27



This number shows a compromise: with increase of chi the damping becomes more 

significant, but the validity of the LL becomes more questionable: the fractional 

difference between energy lost according to the (Lorentz-force with LL damping) 

trajectory and energy lost according to the full spectrum increases.
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The experimental setup
• How does this setup measure photon energies?

• All you know is the position where some charged particles hit the detector

Position sensitive detectors

M1 M2 M3 M4 M5 M6

Crystal
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Designing the experiment.
• How does this setup measure photon energies?

• All you know is the position where some charged particles hit the detector

Position sensitive detectors

M1 M2 M3 M4 M5 M6

Crystal
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Designing the experiment.
• How does this setup measure photon energies?

• All you know is the position where some charged particles hit the detector

• Experiment must be simulated

Position sensitive detectors

M1 M2 M3 M4 M5 M6

Crystal

Multiple 

scattering
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Xtras


