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Relevance of atmospheric aerosol

» Cloud formation
(CCN & INP, Dusek et al., Science, 2007;
Froyd et al., Nature Geosci., 2022)

> Visibility
(e.g., v. Marle et al., Nature, 2022)

» Climate
(IPCC ARG6 2021; Bellouin et al., Rev. Geophys. 2019)

» Health effects

(7 Mio premature deaths)
(WHO report; Lelieveld et al., Cardiovasc. Res, 2020)

» Heterogeneous reactions
(e.g., on PSCs; Peter, Ann. Rev. Phys. Chem., 1997)
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Figure 2 Schematic diagram of the reactions leading to polar ozone depletion.



Aerosol effects on clouds and climate

low aerosol high aerosol
concentrahons concentrations

® Acrosols above ~50nm constitute
Cloud Condensation Nuclei (CCN)
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Aerosols are important for climate change

Change in effective radiative forcing from 1750 to 2019
IPCC 6th Assessment Report, August 2021
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® Changes of aerosols since pre-industrial times have offset a large but poorly understood fraction of
warming from greenhouse gases

® The uncertainty in total anthropogenic radiative forcing is dominated by aerosols

® This results in a factor 3 uncertainty in Earth’s climate sensitivity and expected warming in 21st century:
» 1.5-4.50C for a doubling of CO2 (ARD)

® Future emissions reductions eg. SOz will reduce the cooling from aerosols. But by how much?



CLOUD studies the formation of new aerosol particles from precursor gases

Several gases were discovered to play a role for atmospheric new particle formation
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Approximate pressure (hPa)

Recent measurements in the tropical upper troposphere m
show occurence of high levels of aerosol nucleation CIOUd
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Nucleation precursor gases?
Nucleation processes?
Quantification of nucleation
and growth rates?

- CLOUD
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Recent measurements in the tropical upper troposphere CIOUd

show frequent occurence of high levels of aerosol nucleation
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» @
T11 beam area with CLOUD Experiment CIOUd

> Improved space and infrastructure

» New control room, new chemical room

» Rebuilt gas system & IT network

» New T11 beamline magnets and power supplies



CLOUD 2022

New experimental facility
FLOTUS (FLOw TUbe System)
set up for preparation

of pre-aged aerosol particles

Intense UV exposure to simulate
Several days of oxidative
exposure.

Greatly extends science
reach of CLOUD.




OH a.u.

Extension of experimental capabilities
through HORUS instrument from MPI-Chemistry:

» Allows direct measurement of OH and HO, radicals

» OH is the most important reactive chemical in the troposphere

Coioie

» Highly challenging measurement: OH concentrations around 0.1 pptv
and OH lifetime below 1 s

OH measurement
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Results Clga.a

Study of nucleation for iodic acid HIO:
Detailed mechanism for charged and neutral nucleation identified.:

He et al., Science, 2021: Importance for Arctic marine and coastal nucleation.
3-fold increase of atmospheric iodine due to sea ice thinning
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Results CI(.)l(J.():l

Study of nucleation for iodic acid HIO:

Determination of nucleation rates (A) and growth rates (B);

HIO; identified as potent nucleator

Strong enhancement of particle formation rate at +10C from GCR ions (up to x100)

He et al., Science, 2021
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CLOUD Experiments m
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Can we replicate atmospheric o Neutral
conditions for deep convective W/ ’ J¥ GCR
lifting of precursors ' | N—

in East Asian monsoon?
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Results CI(.)l(J.()j

Study of nucleation for nitric acid - ammonia - sulfuric acid system:
Determination of nucleation rates at upper troposphere conditions

Wang et al., Nature, 2022:  highly efficient aerosol nucleation

in the outflow of East Asian monsoon.
Ammonium nitrate particles also efficient INP for cirrus

Asian monsoon upper troposphere
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EU Marie Sktodowska Curie Action - Doctoral Network “CLOUD-DOC* awarded:
Sep 2022 — Aug 2026, 12 PhD students, 2.7 Mio Euro

CLOUD-DOC

Research plan: Focus on four scientific areas

> Arctic

» Upper Troposphere in the monsoon outflow over
Asian megacities and agricultural regions

» Upper troposphere above pristine tropical rain forests

» Southern Ocean/Antarctic
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CLOUD15 experiment in fall 2022

Science goals: Cold conditions.

1. Pure biogenic nucleation with aged organics
Use FLOTUS to age mixtures of biogenic vapours and inject these aged vapours
into the CLOUD chamber. Study the chemistry of aged organic vapours
and their ability to form and grow new particles

2. Carbon closure
Explain quantitatively the fate of all carbon molecules injected into FLOTUS/CLOUD.
Track the oxidative evolution of organic carbon over its entire atmospheric lifetime.

3. Marine nucleation and growth with methanesulphonic acid (CH;SOzH, MSA)
Extend our initial CLOUD15T studies of MSA and ammonia new particle formation
and growth to characteristic of marine and polar regions between
the boundary layer and upper troposphere.

4. lodic acid nucleation and growth under upper tropospheric conditions
Study new particle formation and growth involving iodine vapours at upper
tropospheric conditions: low temperatures (-30°C —-50°C), low vapour concentrations
and high ion concentrations.
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Beam requests 2022 for CLOUD15 run

CLOUD requests 9 weeks of beam in fall 2022 (Sep-Nov)
for the CLOUD15 run (as in previous years).



CLOUD Run Coordinator m’)

Major component of CLOUD Run Coordinator's work involves dealing with CERN
safety requirements for the CLOUD facility and its more-than-50 instruments:

» electrical safety, chemical safety, flammable and toxic gases, radioactive
sources, X ray sources, lasers

CLOUD Run Coordinator handles all planning & logistics for 50-or-so analysing
instruments that are shipped to CERN at the start of each run and then returned at
end, in coordination with:;

» CERN shipping and receiving personnel
» CERN crane operators
» CERN radiation personnel

Previous Run Coordinators were CLOUD full-time CERN research staff
(Kirkby 2009-2013, Gordon 2014-2017, Manninen 2017-2019)

Run Coordinator tasks cannot be carried out by small CERN CLOUD technical team
(1.7 FTE CERN staff, none is full-time)

Critical position for CLOUD. Not yet solved
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Summary

CLOUD is eager to restart science runs after LS2 & Covid shut-down.
Renovation during LS2 lead to greatly improved experimental area.
CLOUDI15T technical run took place in spring 2022.

CLOUDA15 experiment planned for fall 2022.

Continued achivement scientific results with high impact.
CLOUD-DOC funding secured through EU MSCA-DN.

Ambitious experimental programme for 2022-2026.
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» CLOUD-DOC, EU Marie Sktodowska Curie Action - Doctoral Network, Sep 2022 — Aug 2026,
12 PhD students, 2.7 Mio Euro

Funding

» Regular support by national funding, e.g., by German BMBF, Swiss National Science Foundation,
the Academy of Finland Center of Excellence program, other national funding agencies...

» Regular meetings of CLOUD Financial Review Committee at CERN.
CERN support is gratefully acknowledged.
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