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Chapter 1
UNUN

In Newtonian gravity, gravity is a mysterious force pulling objects together and spacetime is just a non-
interactive background. In this picture, the trajectory of an object in the spacetime (space is a 3-
dimensional Euclidean space) under the influence of gravitational field is not a shortest path. Unlike
Newtonian gravity, general relativity (GR) is a theory of spacetime and how energy and matter affect
the geometry of spacetime. In GR space, and time play a crucial role in the description of gravity, and
any free falling object in GR always take the shortest path. Of course such a phenomenon does not
occur in Euclidean space. The type of geometry that we use in GR is Riemannian geometry (or rather

psuedo-Riemannian geometry), which is what we will discuss next.
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Chapter 2
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(@) wHuRNAUUBILT e (b) waunlan

v 1

JUN 2.2 faghaveunuiiin

e 2.1.1 (wuwidlvladidslnlnlad) Usgulnlnlad M (Duusuidladiraenndeioulyassalyi

« M ifusgiliednesl (Hausdorff) : 9ndesgnle 9 aunsaugnamiuldmesadngourndelduneionty
ithuiamane

« second countable: waavasnlnladitudiuuiule

- iseuluyinaia (Locally Euclidean): v 9 99 p € M {g1uga (neighbourhood) U uagilandi ¢ :
U — R" lagi] o ladlososiia (homeomorphic) Auduisiavedsid isu5en (U, ) TUauiisn (coordinate
chart)

Tnevhluuda asdosnmsuiuifnunnimiafieofsaquuaniinadimun elfidunmisonesinfedna
Ineiti “Sramensneluthutaldiin” Snfedritddyiewnuilan (U7t 2.2b) osannlanlaileiuuy 51l
anunsaagiunuiilhdusildlaeiilidaniemzggalants msisauliuuuilvladiinuaudasuGeuluuina
Srfathudio 1. fldwh 9 Wieauaudidindn 2. Tuuinasfady 4 saunsnadliunsadaluliniynaald
Tuidndisnesdouiidnlasliyedsveswnvesiidadily wu nandeuase Funin o axvneteifinvo Ny

ANAUNUNTI 0 (Us) V8930 p € M

79879 2.1.2 Stereographic projection Ul 52 audn3) n,s € S2 ilugaiivamie wazldveslansanaus iy
19U (597 9ATY o, : 52 — {n} — R? lng

e(@,y,2) = 1iz(x,y) (2.1.1)



2.1. Byruvaauuilnag 9

(@) wHURNAUUBILTIaR (b) WRAlAINLNNNTINAY

JUN 2.3 uuiifinging 9

(593727509 a9NIATTag UL TN VSR R? 9an0a e iavun enviuanndaunilovesidimsinau gu 2.3b
ULMaen I NTI98d s [Tk na el ignaesusutiufe (S2—{n}, p.) oy (S2—{s}, ,) loviagnsoungy

yNIAUY S?
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Us) = 0a(Ua N Uy) vetiuitensiusey
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« R* Uspdignainen n-di
e 57 = {(z', 22, o2 € R (212 4 (22)2 + ... + (272 = 1} Aamsinauvdaiag n-i8

« SO(n) n3Un1malu n-11§ (Special orthogonal group) fdéﬁuﬁﬂzﬁl (Lie group)



10 CHAPTER 2. usiudlwadize 9

2.2  Wanduseu (Smooth function)
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2.3 Binmastudia wazuSalunuaui (Vector bundle and tangent space)
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JUN 2.4 nanliiveia [waikikiaquarium.org]

(a) w@ulAsn1sidaunuee SHEAPDIt (b) Mdudavuwluiinasintinwilouss

JUN 2.5 USuunuaui

¥
= %

$NASE UL ANUSLTunnmesFulavaRdulAY Feanunsamialaglifaaielnnastu a1l o € R™,

Y

Tnefle R? = {(a,v);v € R} waely T(R™) Wudaisiunsds o, : C°(R") — R Jeilenudisil

fla+tv). (2.3.1)

. d
Uaf - E o

Mnflew aunsalanslaegnsde 9
= d I3 t2 voH
Vo f = 7 fla) +tv"0, f(a) + v"v"0,0, f(a) + ...

2! =0

= (v“@uf(a) + %v”v“@uaﬂf(a) + )

t=0

= v, f(a) . (2.3.2)

& ! ! - &) | Ao 2/ a ax s .. . .. . .
AN UUIINITEN (a,v) — T, Lﬂuﬂﬁaﬁmﬂwﬂﬂidai’lwaﬁUiQﬁ,JL’JﬂLGIEJi (isomorphism : bijective linear map)
w1saunsaazuennwesiidusdniunseyiusld Taean Eq. (2.3.2) widvenlddndy {9,) Duvdaves
T(R™).
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Wosanuuuillnad M veusmhanmdeoudsgll R* Tuuinandn 9 (Locally Euclidean) 5nfias1ansas

[V

willoufiufiusiuuu Tufe X, : 0 (M) — R {Jueyiusingm p € M lnpazllauihaenadosiuanuduius

Xpfg=fp)Xpg+ (Xpf)9(p) , (2.3.3)

v
=83

el f,9 € C°(M)szdouwnudnveseyiusiieg T,M wazdanduinuigliunuauy @dnifedinmes
WAL aunsaigaulaiudaves T, M duiusiuudaves T, (R?) el

0 0

— = — fop™t. (2.3.4)
ozt ], Oz | ()
wdwnuauitudatiduniseileuresusglunuau
™ = [] T,M, (2.3.5)

peEM

o9 TM Wuwuillaniieu @ndnues TM Adeauuiinees (M3e 138ndnTein section) 1519¥UBNINEAU
Anmes X Wuauuiinmesiteu 61 X £ uilsiduiiou tavisnaz@ouunudavesaunuinmesSaunie T(TM)

fovnilisnaziansanauudnmassoudundn wagluidndiinaz@euwsmaulniuun

V= Vi) | v

o
3xp

wuuilnin 2.3.1 704 V, € T,M uaz f € C>(M) 93uani?1 V,f iuilsddsusey Anewdle v (uileitusey

v A

91111 msanadle o Tuwuiivadinazdesunsideniidadsneu uarnsmuluainadesinamilouiy

o =2

Tuynueiuitndsazannsvenliinduassuuniuiivad @@ndinazldin liudunmsudasiiin)

< 4
24  1ARNNAe3
Usgilawnuauy 7: M Judavesilsddudiadu o : T,M — R uwavdmeauii@aduinld 7; M Jaudfidudigh
nNwesMemvaiued

A8 2.4.1 (ddalmidew) Id p € M wag (¢, ...,q") t{Duildn 9alu confisuration space 1euiugsisy
(@4) = (q" s @7 G -y ™) FUNGTI99TTIIADIATNYSTUNUIUIITINDT FUNFINSUNITUTENOUDINIANA
diAnanmsindeuiivesanelaang V(q) isndeuainsiudeuduilensuls

1
L(g, &) = gmllal® = V(a) , (2.4.1)

NaNTINdeY L € R 51dpermmluilaaluaue) p; = 0L/8¢" 1517eusnilvsisenaigda lnganlu
USpdiiAe (q,p) = (¢4, ....q", p1, .. pn) t5IMEMalaileulnen suvaaovod

pid' =L+ H, (2.4.2)
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o
v o

lng H = |p|2/2m + V(q) udaiaudl p(q) — R (uisaduiigauinmes ¢ [idudimaueds sadu (q,p) €
T* M.

On the tangent space there is a natural inner product g : T,M x T,M — R. This is the Riemannian

metric (which we will discuss in details very soon.) Let X,,,Y, € T,M

9(Xp, Yp) = g(XHOplp, Y0 )
= X"Y"g(0u,0y)

= X"Y"g,, .
Using the Riemannian metric, one can define covector
wx =g(Xp, - ), (2.4.3)

which is easy to check that it is a linear functional. From the Riesz representation theorem, all linear
functional in an inner product space are in this form. We know that the basis of T,M is {9,}. The

following proposition will give us a clue to find a basis for T M

Proposition 2.4.2 Let {E;} be a basis of a vector space V. The set of linear functional {&'} satisfying
e'(E;) =16, , (2.4.9)

is the basis for V*, in particular dimV = dimV™*.

One can check that derivative of smooth function define by
df (Xp) = Xp f

is also a linear functional i.e. df € Ty M. Since each z* is a smooth function, dz* is a covector, moreover

d*(0yp) = dyx*(p) = 0y .
Hence from the previous proposition {dz*} is a basis for T,y M, and we also write

w = wydzt . (2.4.5)

From the Riesz’s theorem, there exists a vector X such that ¢(X, - ) =w = w,dz", so the component

of the covector is

Wy = g(XMa;n au) = X“g;w . (2.4.6)

For convenient we use the same symbol but use a subscribe i.e. X,.
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2.5 Tensors

Let V be a vector space. Tensor is a multilinear map (of rank n)
T:VxVx..xV-=R (2.5.1)

Suppose we have tensors T, and S of rank k and [ respectively. Tensor product isa map T'® S :

V XV x..xV — R defined by
—_————
k-t

T®S(X1, ..... ;XkJrl) :T(Xl,...,Xk)S(Xk+17...7Xk+l) (2.5.2)

A19819 2.5.1 [f we take V = T,M or T;M then
« vectors and covectors are tensors of rank (0,1) and (1,0) respectively.
 Riemannian metric g is a tensor (2,0), in a local coordinate g = g,,, dx*dz".

* The inverse metric g=! := ¢g""9, ® 9, s.t. " g, = 6%, is a (0,2) tensor.

2.6 Differential form

Now let us explore a special type of tensor called totally antisymmetric tensors. Let {X,},=1,. . be a
collection of linearly independent vector fields, consider a (2,0) tensor, which can be decomposed into

symmetric and anti-symmetric parts i.e.

—_

T(X1,X2) = 5 (T(X1, X2) + T(Xo, X1)) + % (T'(X1, X2) = T(X2, X1))

[\V]

= Oé(Xth) + W(Xl,XQ) R (2.6.1)

where a,w are symmetric and anti-symmetric (2,0) tensor respectively. Likewise, for any (k,0) tensor,

T(Xy, ..., X)) one can define a totally anti-symmetric tensor

X1y X)) = > S%(@T(xm), o Toti) - (2.6.2)

The collection of such totally anti-symmetric tensor of rank k is called k-form, denoted by A*T*M,
or Q¥(T*M). Note that, a smooth function and its derivative f,df are defined as 0-form and 1-form

respectively, and the maximum rank of forms is equal to the dimension of the manifold i.e. n-form.

#7989 2.6.1 (Wedge product) Let {z"},—;...., be alocal coordinate, dz* is a (1,0) tensor, so one defines

.....

dat A dz” = da* @ dx¥ — dz¥ @ dat . (2.6.3)



2.6. DIFFERENTIAL FORM 15

Notice that, dz! = dx* A dz¥; v > p form a collection of linearly independent 2-froms, so there are
( Z ) of them. The set {dz'} will be basis of 2-forms If it needs to span Q. Since a 2-form is a tensor,
it can be written as (not linearly independent)

W(0a,08) = Wyppda” ® dz¥ (0, 0p) ,

then using the fact that it is anti-symmetric, we have @, = —&so. The 2-form can be rewritten in the

following way.
Gpdat @ dz” = %(wwdw ® da’ + @y uda’ @ dat)
= %(dm“ ® dz¥ — dz¥ ® dzt)
= wydat ANdz” . (2.6.4)
We can generalise this example to any k-form.
W= W odt Ada¥ A ... Ada” (2.6.5)
The operation A : QF x QY — QFH for k41 < n, is called the wedge product defined by
WA= Wy ooy o (AT A o A dT?*) A (d2 Ao A d™) (2.6.6)
The rank of forms is limited by dimension of manifold, the algebra of form defined by

A T*M = P k(T M) (2.6.7)
k=0

is called the exterior algebra, which is a finite dimensional algebra with dim A® T*M = 2™. The highest,

or the top form is n-form, written as follow
Wi pdzt A A dz™ . (2.6.8)

Note that for any orthonormal basis {F, ..., E,, } there is only one n-form, denoted by dV or Q, such that

Q(Es, ..., E,) = 1. This is the “volume form” on a manifold.
WUURNYA 2.6.2 Show that, for a Riemannian manfold Q...,, = /det Gij-

If we have a volume form, one can define integration on a coordinate chart as

/w :/ W12___ndv, (269)
U »(U)

where dV is a volume in R™. To obtain the integral over a manifold, one needs to sum over all charts

modulo the overlap area (use partition of unity).
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2.6.1 exterior derivative and interior product

Let w € QF, we define a map d : QF — Q**! on a local coordinate as follow

dw = iw#lj...a dxP Ndat Ndax¥ AN da? (2.6.10)
oxr

wuuBiniia 2.6.3 Show that d is dempotemp operator ,i.e. for any w € Q% d%w = 0.

One can also define a map that decrease the rank of p-form called the interior product. Let V € TM,
and w € QP(TM)
ivOJ(Xl,...,Xp) :OJ(V,Xl,...,Xp) . (2611)

This operator will play a part in Divergence theorem. Let consider a simple integral of a one-form df over

a curve C connecting points p and ¢. We know that

./sz@—f@=
C

f.
aC
We may think of this as an equality between pairing (similar to inner product) of one-form and a one-
dimensionl submanifold with the zero-form and the zero-dimensional submanifold i.e. {(df,C) = (f,dC).

Actually, this fact is true for all p-form, we call this the Stoke’s theorm.

NQWUN 2.6.4 (Stoke’s Theorem)
Ifwe QP(T*M) and N is a p + 1-dimensional submanifold, then

{dw,N) = (w,ON) (2.6.12)

2.7 Riemannian curvature

The special feature of Riemannian manifold is that one can always find the distance between any two
points. The distance is defined in the similar manner as in the Euclidean space i.e. integrate over the

norm of the velocity vector.

2.7.1 Infinitesimal and Riemannian metric

In Euclidean space, the distance function between p,q € R™ along a curve v : [0,1] — R"™ is

smm=/¢WMwwmwwa=Awwwmv+wwwﬁ. (2.7.1)

vl
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Consider the distance ds between p, q is sufficiently small such that ||v]| is constant, so that

§s* ~ 6t 0a 2—1— ga” 2 = (621)? + ... + (02™)? (2.7.2)
5 - 5 = . 1.

We call §s, or rather ds an infinitesimal. In a Riemannian manifold, the ds? is given by the local expression
of a metric tensor

ds® = g, datda” . (2.7.3)

Thus, for a given coordinate, if one knows the metric tensor on that manifold, then in principle one can

calculate the distance between any two points on that manifold.

gﬂﬁ 2.6 surface of a watermelon

Suppose we denote the surface of a watermelon of radius R by M = {(z,y, z) € R3|2?+y?+2? = R?}.
The fruit lives in the 3-dimensioinal space, or mathematically speaking, it is a subset of R3. Hence, it

inherits the infinitesimal distance from R3 i.e.
ds?® = da? + dy?® + dz? . (2.7.4)

Note that the coordinates z,y and z are on all independent on the sphere, i.e. zdx + ydy + zdz = 0, and

therefore,
xdx + ydy
(R2 — 22 —y2)1/2

Combining Eq. (2.7.4) and (2.7.5), the infinitesimal distance on the sphere reads

R2 — y2 21‘y R2 — $2
2 2 2 7
ds® = (m> dx + <—H2x2y2) da:dy + <—E2 .’L'2 y2) dy . (2 6)

dz = — (2.7.5)
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Hence in this example the metric (in the matrix form) reads
1 RZ — 2 T
9= Fr—— y Y (2.7.7)
-4 —y R2 _ g2

Ty

WUURNiiR 2.7.1 Show that if we let x = Rsinfcos¢, and y = Rsinfsin ¢, then the metric will take a

1 0
g=R? (2.7.8)
0 sin?0

wUUBniia 2.7.2 Find the distance around the equator of S2

form

2.7.2 Connection and curvature

The connection a way to define derivative for vector field. Why are we interested in finding derivative of

vector field in the first place? Because we want to know acceleration of curves on manifold.
Y& 2.7.3 An affine (or linear) connection is a map V : TM x T(TM) — T'(TM) satisfying
e VixygvZ = fVxZ+gVyZ, for f,ge C>®(M)
e Vx(aZy +bZy) =aVxZi +bVxZy, for a,beR
* Vx(f2)=fVxZ+(X))Z, for feC®(M)
Let {z#} be a coordinate basis at point p € M. Since the range of V is in T'(T'M)

Vo,0, =17,0, , (2.7.9)

yn

where I'? | is a smooth function called Christoffel symbol, and for a smooth vector field V € I'(T M)

7%

Vo, V', = (8,V")8, + T3, V"0,

= (0,V° +T5, V"), . (2.7.10)

Proposition 2.7.4 Every manifold admits an affine connection
A given connection on T'M can be extended on tensor bundle T} M such that

— o
* Vo, wy = Opws — I'} wo

k B l
V1....Vg J— Vi....UL v V...V _ « V1....Vg
* Vaﬂ.T o1...01 aﬂT Ol,.ny o] + Zi:l F,LLIQT 01...0] Zi:l ]'—‘[LD'iT 01...04...0]
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Obviously the choice of connection is not unique on a Manifold; each choice of Christoffel symbol
gives rise to different connection. However, In GR we are interested in a special type of connection called

Levi-Civita connection.

wqwﬁ‘uw 2.1.5 Let (M, g) be a Riemannian (or pseudo-Riemannian) manifold. There exists unique affine

connection that is metric compatible and torsion free.

We call this connection the Levi-Civita connection. We shall now describe the meaning of the words
metric compatible and torsion free. Metric compatibility is the generalisation of the property of derivative

on Euclidean space which is compatible with the inner product i.e. for V. W € R"™
oV -W)=(0;V)-W+V-(o;W), (2.7.11)
so we require that the Levi-Civita connection to be compatible with the metric
Vxg(Y,Z) = g(VxY,Z) +g(Y,VxZ) , (2.7.12)
for X,Y,Z € T'(TM). A connection is torsion free if it satisfies a condition
VxY -VyX =[X,Y]. (2.7.13)

The Christoffel symbol of the Levi-Civita connection can be written in terms of metric tensor as follow

FZV = gT(augua + al/gau, - aozgp,u) . (2714)

Note that, for convenient, we will write Vo, :=V,, .

Exercise Show that (i) Eq. (2.7.12) and (i) Eq. (2.7.13) lead to
(i). Vugag =0

(i. Iy, =T

vt

2.7.3 Curvature from acceleration

For mathematician, curvature is a local invariant that distinguishes one Riemannian manifold from another.
However, physicists are more interested in the dynamics of objects moving in Riemannian manifold. To
understand the notion of curvature, let us start with curves in 2-dimensional space. Suppose we have a
circle of radius R and v : [0,1] — S?, is a curve with unit velocity i.e. ||%(¢)|| = 1, the curvature at a point

p = (to) is defined by k(tg) = ||57(to)|l. From classical mechanics we know that

e AP 1
1@ = R TR (2.7.15)
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For more general curves, the curvature can be computed by attaching a circle with appropriate radius to
the curve. Note that in this case, the curvature is quite easy to calculate since the manifold (curve) is
embedded inside the higher dimensional manifold (IR?). However, one can obtain intrinsic (no embedding
require) definition of curvature using the notion of parallel transport.

Parallel transport is the way to transport a vector along vector fields such that there is no acceleration.
Let Z e I'(T'M) be a vector field, and v : [0,1] — M be a curve. A vector field is parallel transport along

a curve v if

VinZ =0, (2.7.16)

In other words, the vector field is constant with respect to the velocity of the curve. In particular, we
may consider the parallel transport of the velocity vector itself from p to ¢ € M. We may express the

velocity in coordinate basis 4 = (i1, ...,2")

0= V4 = Vv, @0,
= &V, (2"0,) = i¥(0,(2")0) + 'T7,0,)

= (&7 +[7,@"3")0,

The equation

27 +1y,2"" =0, (2.7.17)

is called the geodesic equation. Think of parallel transport in Euclidean space, the trajectory of the
parallel transport vector is the straight line which is the shortest path between any two points. Likewise,
the solution of of this equation is the shortest curve connecting p and ¢ in a curve space. Since it is the
shortest curve between two points, the geodesic can also be derived through the least action principle.
Assuming that a mass m is moving freely on curved spacetime, the action is given by the proper time

integral of the kinetic energy

Slg] = /dTL(J:,a':) = /drémgw(a:)i‘“x'” (2.7.18)

Let us ignore the factor $m for simplicity, using the Euler-Lagrange equation

d (L d (0gu,a"i” d .
Sl e B I Y L I Y T
dr (8350’) dr ( Ox® > dr Inet

= 2903”4+ 20, gua 't ,

oL
ox®

v
= OuGud"'T

(2.7.19)
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So we have

o
|

= 29uad" + 20,940 2" E” — Oagu t"d”

af
sV

=i + 97((%9;@ + &/gua - aaguu)j:“x

=i + T ata . (2.7.20)

§i79814 2.7.6 Find the geodesic equation on S2. Which curve is a geodesic?

Now from the idea of geodesic, let us try to understand the concept of curvature. As we mentioned
before, the concept of curvature arises from the concept of acceleration. In the flat space all the
geodesics are straight lines, and the two parallel lines do not accelerate toward each other. However, in

curve space, two geodesic can accelerate toward/away from each other.

E‘Uﬁ 2.7 geodesic deviation

From this fact, we can define curvature by looking at the deviation of geodesic curve. Suppose we have
two geodesic curves v (z(7)) and v2((Z(7))) sitting next to each other (note that, Since they are closed
we can use the same local coordinates). The coordinate of v5 can be written as (1) = z%(7) + y*(7),
where y© denote the separation between the two curves. Since s is a geodesic
d? (z + y%) d (2% +y°) d (a" + y*)

dr? dr dr
=i+ y + (T5,(x) + 0, (x)y") (%" + &Py + yPar + y°y")

0=

+ 5, (x +y)

= 5oy Fgu(x)ﬂbﬂf“ + oy 4 Fg#(x) (iBy” + Pt + Z'/Byu)
+ 0,18, (w)y” (73 + 3P + 97 + 57

=y + 2T, (2) P y" + 0,15, (x)y 7 i (2.7.21)
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The last line is obtained using the fact that z*(7) is the coordinate of the geodesic curve, the first two
terms vanish. We also assuming that y“ is small, so the second order terms can be ignored. Let us find

the second derivative of deviation

d? d
d2( aa):d (y +FQV )aoz

= (j*+0sI'} L0 EYy —|—F5iy +T5,2"y —|—Fﬁ rs,a" ivyP +I'G,2"y ﬁ)aa

( 2I'g, Py -0,I'g, yiP it + 0513, #oavy’ — Fg5fzyiﬂiyy5
414,97 + 14,4 9" + 15,1583 y") Oa

:( BFByxx”—&—&;F‘ngxy —FB(;I"S et yﬁ—&—I’ﬁV x”xy)aa

(=0T + 0,105 — TosT0 5 + T0510 ) i’ y” Oq

=R, "%y 0, (2.7.22)

The quantity B9, 5 is called the Riemannian curvature tensor.

L\N e

g‘dﬁ 2.8 parallel transport on a shpere

WUURNYA 2.7.7 Show that u’V,y# = yvVuk, where u" := @*. Then show that the geodesic deviation

equation can be written as
2

3 (W) = 'y’ [V, V, ] (uPg) . (2.7.23)
Alternatively, one can define curvature by parallel transport a vector in a close loop. if a vector Z, is
parallel transported along a closed curve back to its starting point, then one may obtain a new vector
Z, that is different from the original one. The infinitesimal difference between these vectors give rise to
a linear map given by the curvature tensor. For X, Y € I'(TM), the map R(X,Y) : T(TM) - T'(TM) is a

smooth linear map defined by

R(X,Y)Z :=|Vx,Vy]|Z + V[X7y]Z . (2.7.24)
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Suppose we choose X,Y to be basis vectors

R, 28, == R(8,,,)52"0,
= V,V,(2°0,) — VN ,u(2°8,) + Vig, 0,270,
= V0,270, + Z°T5,0,) — YV, (8,2°0, + Z°T%,,0,)
= (0,0,27)0, + 0, 27T, 05 + 0,2°T7 0,
+ Z°(8,1°C,)0y + Z°T, 1%, 0,

— (0,0,27)0, — 0,2°T3,05 — 0,2°T,0,

— Z°(0,17,,)05 — Z°T} T, 0a
= (0,7, = oI, + T3, Iy, = T7,1,,) 270, , (2.7.25)
so we have
R, =0.07, - 0], + .10, —T7.T, . (2.7.26)

274  AuaNURYaANUYRIAINLAY

Proposition 2.7.8 The curvature tensor has the following properties
* Ruvpoe = —Ruppo
* Ruvpo = Rpopv
* Ruvpo + Ruppo + Rppvo =0

The third property is called the algebraic Bianchi identity (or the first Bianchi identity). From curvature

tensor, one can define Ricci tensor R,,,, and Ricci scalar (or scalar curvature) R as
R, =9¢"R.pe , R:=g""R,, . (2.7.27)

We will se shortly that these two quantities play a crucial role in Einstein equation.

Exercise Show that R,,, is symmetric tensor.

Proposition 2.7.9 (Differential Bianchi identity) the total derivative of curvature tensor satisfies the fol-
lowing property
VaRuvpe + VoRuvoa + VeRuvap =0 . (2.7.28)

From the above proposition, one can find a divergent free second rank tensor, which is the most

important quantity in the Einstein equation, i.e. the Einstein tensor. Contract the differential Bianchi
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identity with the metric one obtains

0= gﬂagay(vaR;wpa + va,uua(x + VJR,uuap)
= 4" (VaRy,® — VR + Vo Ryp)

=2V.R — V,R

1
= 20,5V (R™ = 29" R) .

so we have that G* := R — 1g" R has a vanishing divergence.

CHAPTER 2. usiudlwadize 9

(2.7.29)



Chapter 3

N1a8INIA LLasada?

So far we have restricted our view to Riemannian manifold, where the metric in the local coordinate
resembles those of the n-dimensional Euclidean space, R™. In classical physics, we are familiar with Eu-
clidean space, where there is no speed limit. However, in relativity everything must respect the following

rules
+ The speed of light is the same to all observer (So no observer can move faster than light)
 The law of physics is the same in all inertia alreference frame

The first assumption is actually the new result (at that time) from the experiment by Morley and
Michelson that starts the revolution in the theory of relativity. The second assumption is called principle
of relativity, which exists long before the time of Einstein. It was first described by Galileo

“Shut yourself up with some friend in the main cabin below decks on some large ship, and have with
you there some flies, butterflies, and other small flying animals. Have a large bowl of water with some
fish in it; hang up a bottle that empties drop by drop into a wide vessel beneath it. With the ship standing
still, observe carefully how the little animals fly with equal speed to all sides of the cabin. The fish
swim indifferently in all directions; the drops fall into the vessel beneath; and, in throwing something to
your friend, you need throw it no more strongly in one direction than another, the distances being equal;
Jjumping with your feet together, you pass equal spaces in every direction. When you have observed
all these things carefully (though there is no doubt that when the ship is standing still everything must
happen in this way), have the ship proceed with any speed you like, so long as the motion is uniform
and not fluctuating this way and that. You will discover not the least change in all the effects named,
nor could you tell from any of them whether the ship was moving or standing still. In jumping, you will
pass on the floor the same spaces as before, nor will you make larger jumps toward the stern than

toward the prow even though the ship is moving quite rapidly, despite the fact that during the time that

25
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you are in the air the floor under you will be going in a direction opposite to your jump. In throwing
something to your companion, you will need no more force to get it to him whether he is in the direction
of the bow or the stern, with yourself situated opposite. The droplets will fall as before into the vessel
beneath without dropping toward the stern, although while the drops are in the air the ship runs many
spans. The fish in their water will swim toward the front of their bowl with no more effort than toward
the back, and will go with equal ease to bait placed anywhere around the edges of the bowl. Finally the
butterflies and flies will continue their flights indifferently toward every side, nor will it ever happen that
they are concentrated toward the stern, as if tired out from keeping up with the course of the ship, from
which they will have been separated during long intervals by keeping themselves in the air...” However,
Einstein did add a new feature to the principle of relativity; The inertia frame is now in 4-dimensional
spacetime. We define the concept of spacetime, which is the setup of special relativity, using Minkowski

space.

3.1 Spacetime

The infinitesimal distance in the Minkowski space is given by

ds® = (cdt)? — 2® —y® — 22

= nuudxudxy 5 (3.1.1)
where
1 0 0 0
0 -1 0 0

0o 0 -1 0

0 O 0 -1
So one notices that the distance only makes sense on/inside the light cone. The inertia frame are all
related by Lorentz transformation. The transformation between the two inertia frames with relative

velocity v in the x-axis is given by

ct’ v 8 0 0 ct
x! 00 x
| , (3.1.2)
y 0 0 10 Yy
Z 0 0 01 z

where v = (1 — 8?)~Y/2 and g = v/c. It is not difficult to show that

Y—(p)2=1. (3.1.3)
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From Eq. (3.1.3), one can parametrise v = cosh? ¢ and v = sinh? ¢ = 1.

WUURNYA 3.1.1 What is the Lorentz transformation for the inertia frame with relative velocity v in y and

2-axes.
WUURNYA 3.1.2 Show that, under Lorentz transformation (3.1.2), the infinitesimal ds? is unchanged.

Since we suddenly live in the four-dimensional spacetime, there are some important physical quantity
we should mention in order to describe things around us. Let us try to define 4-velocity explicitly based
on the definition of velocity mentioned in the previous chapter. suppose 7 is the time in the same frame

as the observer. Define the proper time to be the time in the coordinate (7,0, 0, 0), then we can write

ct v 48 0 0 cT cyT
T | 8 ~v 00 0 | @ BT
Yy - 0 0 10 0 - 0

z 0 0 01 0 0

This defines a curve o(7) = (ct(7), z(7), y(7), (7)), then one gets
u:= (1) = v(c,v,0,0,0) .

In general we have u = (¢, v), where v is the 3-velocity. We then define momentum to be p = (p°, p) =
(E/c,p), where E is the energy of the particle. For massive particle one can define p = m~y(c,u) ... the
norm of 4-momentum is given by

pup! = nup”pt = mQWW/UMuV = m2'y2 (02 - U2) = (mc)2

Using the definition of p we also have p,p# = E? /¢ —p?, so as the result we obtain the energy-momentum
dispersion relation

E? = (pc)® + (mc®)? . (3.1.4)
Special relativity is well-defined within the frame work of Minkowski space, but this setup is still not
enough for general relativity. For general relativity, we still want the spacetime to locally obey special
relativity. Hence, in what follow, we choose Lorentzian geometry, which is similar to Riemannian geometry
in the previous section, but it is locally Minkowski instead of locally Euclidean. Note that, the relations
we have derived in the previous section are still valid. To simplify the calculation, we from this point on

we will set ¢ = 1.

3.2 Energy-momentum tensor and Einstein equation

Einstein equation is the equation that describes how mass and energy distort the curvature (which leads

to acceleration) of spacetime. We define the energy density in the spacetime using an energy-momentum
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2
°(Ct) -r =-o
o ct’-r* >0
e tet)'-ric o

E‘U‘ﬁ 3.1 Minkowski space as spacetime: photon and muon from the sun moving toward the Earth. The
position of the photon is alway on the surface of the light cone while the muon stay within the light

cone.

tensor T#¥, which is a symmetric tensor defined by

+ T energy density p

« T9% energy flux through surface normal to z°

+ T% momentum flux in direction of z! through surface normal to 7
Let us look at an example of energy momentum tensor
{29819 3.2.1 Energy-momentum tensor

« Electromagnetic field

1
T = FHEF™ — Zg”VFaﬂFag 7 (3.2.1)

where F,,, is the field strength tensor.

* Perfect fluid (which will be important when we start doing cosmology.) In the rest frame

(3.2.2)

(e R =l o}

0 0
P 0
0 0
0 P

o Ny o o
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Under the Lorentz boost, i.e. the observer is moving with relative velocity v to the fluid, we have

~ -6 0 0 p 0 0 O y -6 0 0
g | T v 00 0P 0 0 8 4 00
0 0 10 00 P 0 0 0 10
0O 0 01 00 0 P 0O 0 01
Yo+ (B8P —*B(p+P) 0 0
| —PBle+P) (98)*p+4*P 0 0
- 0 0 P 0
0 0 0 P
Vo+[(v8)? +1P  —*B(p+ P) 0 0 —P 0 0 0
_ —Be+P) B+ -DP 0 0 | f 0 P 0 0
0 0 P 0 0 0 P 0
0 0 0 P 0O 0 0 P
Y2(p+P) —¥?B(p+P) 0 0 -P 0 0 0
_ | B+ P) (Be+P) 0 0 f 0O P 0O O
0 0 0 0 0 0 P 0
0 0 0 0 0O 0 0 P

=(p+Puu—Pn.

Note that, we use relation (3.1.3) in the calculation above. In the component form, one can write

the perfect fluid energy-momentum tensor as
™ = (p+ Pyufv” — Py, (3.2.3)
where p is energy density, P is pressure and u is a normalised timelike 4-velocity i.e. u* = 1.

One can check that the two energy momentum tensors are divergence free (given that the matter fields
obey their equation of motion.) Since Einstein tensor and energy momentum tensor are both divergence
free, we can put

GH = kTH | (3.2.4)
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where k is some (dimensionful) constant. The value of k can be determined when consider Newtonian

limiti.e. Kk = 87 G.

3.2.1 Einstein Hilbert action

There is an alternative way of deriving Einstein equation using an action functional (the map from the

vector space of function to real number). The action is called Einstein-Hilbert action
S :/ dx4\/fg(lR+£m) . (3.2.5)
M K
Vary Eq. (3.2.5) with respect to the metric
0=358 = / dw4[6\/7—g(%R + L)+ Fg(%aR oL . (3.2.6)
M

To find the expression of §,/—g in terms of §g#¥, let us consider a symmetric matrix M (so that it is
diagonalisable), and let C~'MC = D = diag(D11, Daa, ..., Dpy). Suppose t is a very small parameter such

that we can ignore t™,n > 2

det(1 + tM) = det(CC~' +tCDC™Y)

det(1 +tD)

= (1+tD11)(1 +tDa)...(1 + tDpp)

=1 +tzn:Dii +t22n:DiiDjj + ...
i=1 i#j

~ 1+tr(tD) =1+ tr(tM) . (3.2.7)
Hence for determinant of the metric

6g = det(gu + 6g,0) — g
= g[det(g™") det(g, + 0gun) — 1]
= g[det (5 + g*"0g,n) — 1]
~ g tr(g*"6gum)

= 99" 09 = —99,L09"" . (3.2.8)
Put this back in Eq. (3.2.6) we obtain

1 1 1 1
0= / dx4[—§\/—ggw,§g””(ER + L)+ \/—g(Eég“”Rw + ngéR/w +0Lm)
M

1 1 oL 1 1
_ 4 — 7= - pnv m - iy - pv
— / Ao/ g[K(RW guwR)IgH + (59“” 2gm,£m)5g + Hg OR,] . (3.2.9)

2
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Notice that if we define

oL 1
_ m = v
5o + 59 Lo , (3.2.10)

T =

and g""dR,,, somehow vanishes then we will obtain Einstein equation. Let us consider g0 R,,,.

9" R = g (0a01, — 0,015, + 6T0,T0, + 001,
= 0500, = T3pole,)
= g" (0a01%, — D030T%, — T4,010, + 10010,
— 0,0T%, + 15675, + T8 ,61%, —T% 675,

= (Vag" o, — V,g" T2, (3.2.11)

which is the boundary term, therefore, using divergence theorem, the integral of (3.2.11) vanishes. Hence,

we obtain Einstein equation.
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Chapter 4

Cosmology

The most accepted model of our universe is ACDM which is based on the theory of general relativity.
The metric used for describing the universe is one of the exact solutions of Einstein equation. The model
includes three different kinds of energy density in our universe i.e. cosmological constant, cold dark
matter, and normal matter, which we will explore in detail later on. For the time being, let us focus on
the curvature side of the Einstein equation. Since no one knows the general solution of Einstein equation,
the exact solutions are obtained by imposing some symmetry requirement that reduce the difficulty of

the equation.

4.1 Cosmological Principle

Cosmological principle states that the universe is spatially homogeneous and isotropic or one can say
that it looks the same (invariant) under translation and rotation. This is a kind of symmetry assumption.
We also use the term “maximally symmetric space” for the homogeneous and isotropic space. The

useful fact about maximally symmetric space is that the Ricci tensor take the form

R;; = —2kh;; , (4.1.1)
where £ is a constant.
WUURNYA 4.1.1 Show that the Ricci tensor of S? satisfies (4.1.1). What is the value of k?

Assuming that the universe is the collection of 3-dimensional sheets i.e. M = R x %, where X is maximally
symmetric. Since the universe is not static, one multiple the 3-dimensional metric with a function of time.

In addition, being maximally symmetric automatically means spherical symmetric, therefore, the metric

33
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can be written as
ds® = dt* — a®(t)h;jdx'dx?
= dt* — a*(t) (f(r)%dr® + r*(d6® + sin60°d¢?)) . (4.1.2)

Substitute spatial metric of (4.1.2) into (4.1.1) for R,.. and Rgy one will obtain
2 f

= 2k f? (4.1.3)
rf
/
1
r% ~ +1=2kr?, (4.1.4)
which yield
1
fr)=1—03- (4.1.5)
The result is what so call the Friemann-Lemaitre-Roboson-Walker metric or FLRW metric.
2 2 2 dr? 2/ 12 <92 7,2
ds® = dt* — a(t) Ty (dO” + sin 0d¢?) (4.1.6)
— RT

wuuBniia 4.1.2 Show that f(r) = 1/(1 — kr?).

It might seem unreasonable why we should concern about homogeneous isotropic spacetime while
distribution of our neighbouring galaxies and stars do not look so uniform. The problem lies within the

scale we observed the universe, which we will discuss in the next subsection.

4.1.1 The Friedmann equations

As we assuming that the universe is homogeneous and isotropic, matters that existed in the universe
should possess the same properties. In our everyday life scale, matters do not appear to be uniformly
distributed, but things look different in the cosmic scale. For example, each grain of sand in Fig. 4.1a
looks very different, but one can see no different as we zoom out in Fig. 4.1b. In cosmology, we study the
property of spacetime on a very very ... large scale, therefore, cosmologists treat all the matters in our
universe as fluid, or more specifically, perfect fluid: owing the small interaction between most galaxies.
In addition, It is reasonable to think that we are under the “flow” of the matter in the universe. So we
choose co-moving frame, which means that the relative velocity between the observer and the fluid is
zero i.e. u = (1,0,0,0).

Now let us put everything we have into the Einstein equation. It is not difficult (but tedious) to show

that

R, = —3%
a

Gii

Rii = = “5(ai+ 24° + 2k)
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i

(a) Grains of sand [sandgrains.com] (b) Sand [dreamstime.com]

E‘Uﬁ 4.1 Closer look at grains of sand (a) every single grain is different, while they all look pretty much

the same as we zoom out (b).

WUURNYR 4.1.3 Show that R, =0 for a # 3 and R = —6 (% + (9)2 + ﬁ)

Consider component ¢t. On the LHS of Einstein equation we have

and for RHS
87G((p + P)urus — Pgyt) = 8nGp .

Hence, we partially obtain the Friedmann equation

LN 2
<a> TRLAN. S (@.1.7)

a a? 3

Now consider component i we have

. LN\ 2
Ris — ~giR=— 9% (aii+ 202 + 2k) + 395 | 2+ (%) + =
2 a? a a

.. .\ 2

a a k

a a a

(2a N SWGIO) 7
a

= Gii 3

and

87TGT”' = —87TGgiiP y
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So we obtain

a 4rG

Eqg. (4.1.7) and (4.1.8) are called Friedmann equations. These two equations are what we use to under-
stand the evolution of scale factor under the influence of matter. Alternatively, one might use continuity
equation, which can be obtained either from the Friedmann equations or the conservation of energy
momentum tensor i.e.
0= V;LT#V = vu [(,0 + P)U'LLUV — g“”P]

= Oulp + Pyuf'u” + (p+ P)(Vyul'u” + ufV ") — g0, P

= uulOup +u"Th, (p+ P) + [u"u" 0, P + (p + P)utV u” — g" P] .
Note that u = (1,0,0,0) and u? = 1, if we multiply the above equation with u,, then the terms in squared

bracket would vanish, and then we have

4.1.2 What kind of fluid?

Since we use perfect fluid to represent all kind of matters In the universe, different kind of fluid would
have different relation between their energy density and the pressure they exert on environment. In

thermodynamics, we know that perfect gas satisfies equation of state

_n n(l
where v is the thermal speed of the gas. It is easy to see that p = nm/V, so we can rewrite the equation
of state as
P=wp. (4.1.11)
Put (4.1.11) back in to the continuity equation
p = poa >0+ (4.1.12)

Now we shall discuss different kind of matters that give different contribution to the evolution ACDM

universe

« Non-relativistic matter w = 0:

The thermal velocity v < ¢ =1, so it is safe to set w = 0. Hence,
p = poma > (4.1.13)
Assuming that k = 0, Eq. (4.1.7) gives

a = (67Gpom)/3t2/3. (4.1.14)



4.2. COSMIC INFLATION 37

4.2

Relativistic matter w = 1/3:
One might have heard the term radiation pressure from electrodynamics or statistical mechanics.
In the early state, all kind of particles are relativistic, so the universe is under the radiation pressure.

Assuming k = 0, one obtains

p=pora, (4.1.15)
and /
1/4

we (327T§por> /2 (4.1.16)

Cold dark matter w = 07:
The true equation of state is still unknown, but we assume that it behaves like the non-relativistic

matter.

Cosmological constant w = —1:

For w = —1, one get p = constant, which we may call A. Substitute this back into Eq. (4.1.8) yields

A
_8mGA o @.1.17)
3
which gives a general solution
a(t) = c1eVETENBt ) e VETGA/SE (4.1.18)
Since the scale factor is smaller in the past, we set c¢; = 0. So for matter with w = —1, we obtain

exponential expansion. It is also called dark energy.

Cosmic Inflation

The need of inflation came from the following problems

Flatness problem: Why our universe is very close to be spatially flat.

Horizon problem: Why CMB photons have the same temperature even though some of them are

not causally connected.

Monopole problem: There should be a relic from symmetry breaking.

The easiest inflationary scenario is the scalar field inflation.

861 = [ dev=a (5500050 - V(9)) @.2.)

Using variational principle on field variable, we have the equation of motion
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Since we assume homogeneity, d,,¢ = 0, hence
é+sgq§+a¢v =0. (4.2.3)

Notice that, the scalar field couple with the scale factor. The term a/a behaves like a damping coefficient.

To get the energy density, one may use the variational principle to find the energy momentum tensor
T = 0,000 gy 50°020030 - V() ) @.24)
then compare this energy momentum tensor to those of perfect fluid
p =Ty =% — (;ga58a¢85¢ - V(¢)> _ %dﬂ +V(4) . (4.2.5)

Alternatively, one can use the Legendre transformation to get Hamiltonian from above Lagrangian. Next

we calculate the pressure given by the scalar field
% ij 1 Nz 3 2
8P =T} = g90:60;6 — ( 58" 0u00,0 ~V(9) ) = 56* ~3V(9) .
= P=# V().
From the equation of state we have
=2 (4.2.6)
302+ V()

To get inflation from scalar field, one choose the potential V' to be very flat, so we can neglect the

P3P -V(9)
p

Hence, we have w = —1. The duration of slow-roll is correspond to the duration of inflation. But as the

field rolls faster .... inflation stop
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Chapter 5
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(Gravitational Perturbation)
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