Tutorial problems on Gravitational Perturbation and Gravitational Waves

Jod and Nick

July 2022

1 Gravitational Perturbation

1.1 Problem 1: Equivalent between linearized Einstein tensor and Lagragian of the small metric perturbation $h_{\mu \nu}$

Considering the metric decomposition $g_{\mu}=\eta_{\mu \nu}+h_{\mu \nu}$ and $g^{\mu}=\eta^{\mu \nu}-h^{\mu \nu}$, show that

- At the first order of $h_{\mu \nu}$, the Christoffel symbol is given by

$$
\begin{align*}
\Gamma_{\mu \nu}^{\rho} & =\frac{1}{2} g^{\rho \lambda}\left(\partial_{\mu} g_{\nu \lambda}+\partial_{\nu} g_{\mu \lambda}-\partial_{\lambda} g_{\mu \nu}\right) \\
& =\frac{1}{2} \eta^{\rho \lambda}\left(\partial_{\mu} h_{\nu \lambda}+\partial_{\nu} h_{\mu \lambda}-\partial_{\lambda} h_{\mu \nu}\right) . \tag{1}
\end{align*}
$$

- At the first order of $h_{\mu \nu}$, the Riemann tensor is given by

$$
\begin{align*}
R_{\mu \nu \rho \sigma} & =\eta_{\mu \lambda} \partial_{\rho} \Gamma_{\nu \sigma}^{\lambda}-\eta_{\mu \lambda} \partial_{\sigma} \Gamma_{\nu \rho}^{\lambda} \\
& =\frac{1}{2}\left(\partial_{\rho} \partial_{\nu} h_{\mu \sigma}+\partial_{\sigma} \partial_{\mu} h_{\nu \rho}-\partial_{\sigma} \partial_{\nu} h_{\mu \rho}-\partial_{\rho} \partial_{\mu} h_{\nu \sigma}\right) . \tag{2}
\end{align*}
$$

- At the first order of $h_{\mu \nu}$, the Ricci tensor and Ricci scalar are given by

$$
\begin{equation*}
R_{\mu \nu}=\frac{1}{2}\left(\partial_{\sigma} \partial_{\nu} h_{\mu}^{\sigma}+\partial_{\sigma} \partial_{\mu} h_{\nu}^{\sigma}-\partial_{\mu} \partial_{\nu} h-\partial_{\sigma} \partial^{\sigma} h\right), \tag{3}
\end{equation*}
$$

where $h=h^{\nu}{ }_{\nu}=\eta^{\mu \nu} h_{\mu \nu}$.

$$
\begin{equation*}
R=\left(\partial_{\mu} \partial_{\nu} h^{\mu \nu}-\partial_{\sigma} \partial^{\sigma} h\right) \tag{4}
\end{equation*}
$$

- Then, the Einstein tensor $G_{\mu \nu}=R_{\mu \nu}-\frac{1}{2} \eta_{\mu \nu} R$ is given by

$$
\begin{equation*}
G_{\mu \nu}=\frac{1}{2}\left(\partial_{\sigma} \partial_{\nu} h_{\mu}^{\sigma}+\partial_{\sigma} \partial_{\mu} h_{\nu}^{\sigma}-\partial_{\mu} \partial_{\nu} h-\partial_{\sigma} \partial^{\sigma} h-\eta_{\mu \nu} \partial_{\rho} \partial_{\sigma} h^{\rho \sigma}+\eta_{\mu \nu} \partial_{\sigma} \partial^{\sigma} h\right) . \tag{5}
\end{equation*}
$$

- By varying with respect to the $h^{\mu \nu}$, show that the equation of motion of the following Lagrangian density is equivalent to the linearized Einstein tensor in Eq.(5)

$$
\begin{align*}
\mathcal{L}= & \frac{1}{2}\left[\left(\partial_{\mu} h^{\mu \nu}\right)\left(\partial_{\nu} h\right)-\left(\partial_{\mu} h^{\rho \sigma}\right)\left(\partial_{\rho} h_{\sigma}^{\mu}\right)\right. \\
& \left.+\frac{1}{2} \eta^{\mu \nu}\left(\partial_{\mu} h^{\rho \sigma}\right)\left(\partial_{\nu} h_{\rho \sigma}\right)-\frac{1}{2} \eta^{\mu \nu}\left(\partial_{\mu} h\right)\left(\partial_{\nu} h\right)\right] \tag{6}
\end{align*}
$$

1.2 Problem 2: Gauge invariant transformation of the small metric perturbation $h_{\mu \nu}$

Show that the linearized Riemann tensor in Eq.(2) is invariance under the gauge transformation of the small metric perturbation, $h_{\mu \nu} \rightarrow h_{\mu \nu}+\partial_{\mu} \xi_{\nu}+\partial_{\nu} \xi_{\mu}$.

1.3 Problem 3: Gauge invariance of the Bardeen variables

Consider the perturbed FRW metric written as the following line element,

$$
\begin{equation*}
d s^{2}=a^{2}(\tau)\left[-(1+2 A) d \tau^{2}+2 B_{i} d x^{i} d \tau+\left(\delta_{i j}+2 E_{i j}\right) d x^{i} d x^{j}\right] \tag{7}
\end{equation*}
$$

where

$$
\begin{align*}
B_{i} & =\partial_{i} B+\hat{B}_{i} \tag{8}\\
E_{i j} & =\delta_{i j} C+\left(\partial_{i} \partial_{j}-\frac{1}{3} \delta_{i j} \partial_{k} \partial_{k}\right) E+\frac{1}{2}\left(\partial_{i} \hat{E}_{j}+\partial_{j} \hat{E}_{i}\right)+\hat{E}_{i j} \tag{9}
\end{align*}
$$

The coordinate transformation at the same physical point, p is given by

$$
\begin{equation*}
x^{\mu} \rightarrow \tilde{x}^{\mu}(p)=x^{\mu}(p)+\xi^{\mu}(p) \tag{10}
\end{equation*}
$$

where

$$
\begin{align*}
\xi^{0} & =T \\
\xi^{i} & =L^{i}=\partial^{i} L+\hat{L}^{i} \tag{11}
\end{align*}
$$

The Scalar-Vector-Tensor decomposition variables are transformed as

$$
\begin{align*}
& A \rightarrow A-T^{\prime}-\mathcal{H} T, \tag{12}\\
& B \rightarrow B+T-L^{\prime}, \quad \hat{B}_{i} \rightarrow \hat{B}_{i}-L_{i}^{\prime} \tag{13}\\
& C \rightarrow C-\mathcal{H} T-\frac{1}{3} \partial_{j} \partial^{j} L, \tag{14}\\
& E \rightarrow E-L, \quad \hat{E}_{i} \rightarrow \hat{E}_{i}-\hat{L}_{i}, \quad \hat{E}_{i j} \rightarrow \hat{E}_{i j}, \tag{15}
\end{align*}
$$

where $\mathcal{H} \equiv a^{\prime} / a$ and $X^{\prime}=d X / d \tau$.
The Bardeen variables are defined to avoid the gauge problem of the metric
perturbations that do not invariant under the the change of coordinates. They are defined by

$$
\begin{align*}
\Psi & \equiv A+\mathcal{H}\left(B-E^{\prime}\right)+\left(B-E^{\prime}\right)^{\prime} \\
\hat{\Phi}_{i} & \equiv \hat{B}_{i}-\hat{E}_{i}^{\prime} \\
\Phi & \equiv-C+\frac{1}{3} \partial_{i} \partial^{i} E-\mathcal{H}\left(B-E^{\prime}\right) . \tag{16}
\end{align*}
$$

Show that the Bardeen variables, $\Psi, \hat{\Phi}_{i}$ and Φ are gauge invariance.

2 Gravitational Waves

2.1 Lorenz gauge of the trace reversed perturbation

The trace reversed perturbation, $\widetilde{h}_{\mu \nu}$ is defined by

$$
\begin{equation*}
\widetilde{h}_{\mu \nu}=h_{\mu \nu}-\frac{1}{2} \eta_{\mu \nu} h . \tag{17}
\end{equation*}
$$

Having use the Lorenz gauge $\partial_{\mu} \widetilde{h}^{\mu \nu}=0$, show that the linearized Einstein tensor in Eq.(5) can be written in the following form,

$$
\begin{equation*}
G_{\mu \nu}=-\frac{1}{2} \partial_{\rho} \partial^{\rho} \widetilde{h}_{\mu \nu} . \tag{18}
\end{equation*}
$$

2.2 Gravitational waves from cosmological background

Consider the following line element,

$$
\begin{equation*}
d s^{2}=a^{2}(\tau)\left[-d \tau^{2}+\left(\delta_{i j}+h_{i j}\right) d x^{i} d x^{j}\right] \tag{19}
\end{equation*}
$$

The non-vanished Christoffel symbols of the line element are given by

$$
\begin{align*}
\Gamma_{00}^{0} & =\mathcal{H}, \\
\Gamma_{i j}^{0} & =\mathcal{H} \delta_{i j}+2 \mathcal{H} h_{i j}+h_{i j}^{\prime}, \\
\Gamma_{j 0}^{i} & =\mathcal{H} \delta_{j}^{i}+\delta^{i k} h_{k j}^{\prime}, \\
\Gamma_{j k}^{i} & =\partial_{j} h^{i}{ }_{k}+\partial_{k} h^{i}{ }_{j}-\delta^{i l} \partial_{l} h_{j k}, \tag{20}
\end{align*}
$$

where $\mathcal{H} \equiv a^{\prime} / a$ and $X^{\prime}=d X / d \tau$.

- Show that the spatial part to the perturbed Einstein tensor is

$$
\begin{equation*}
\delta G_{i j}=h_{i j}^{\prime \prime}-\partial_{k} \partial^{k} h_{i j}+2 \mathcal{H} h_{i j}^{\prime}-2 h_{i j}\left(2 \mathcal{H}^{\prime}+\mathcal{H}^{2}\right) . \tag{21}
\end{equation*}
$$

- Combining the result of the perturbed Einstein tensor above and using $\delta T_{i j}=$ $2 a^{2} h_{i j} \bar{P}$ where \bar{P} is pressure in the background. Show that, the perturbed Einstein equation ($\delta G_{i j}=8 \pi G \delta T_{i j}$) is written by

$$
\begin{equation*}
h_{i j}^{\prime \prime}+2 \mathcal{H} h_{i j}^{\prime}-\partial_{k} \partial^{k} h_{i j}=0 . \tag{22}
\end{equation*}
$$

Hint. One can rewrite the pressure in the background \bar{P} in terms of the geometrical quantities by considering the spatial component of the unperturbed Einstein equation.

