Toner tutorial

1. Using $\eta_{\alpha \beta} u^{\alpha} u^{\beta}=-c^{2}$ and $p^{\alpha}=\operatorname{m\gamma }(c, \vec{v})$, Derive the well-known formula $E^{2}=m^{2} c^{4}+p^{2} c^{2}$
2. Show that

$$
\begin{aligned}
& P_{\beta}^{\alpha} w^{\beta}=0=u_{\alpha} p_{\beta}^{\alpha} \\
& p_{\mu}^{\alpha} p_{\beta}^{\mu}=p_{\beta}^{\alpha} \\
& p_{\alpha}^{\alpha}=3 \\
& p^{\alpha} \beta=e_{(1)}^{\alpha} e_{(1)}^{\beta}+e_{(2)}^{\alpha} e_{(2)}^{\beta}+e_{(3)}^{\alpha} e_{(3)}^{\beta}
\end{aligned}
$$

3. (Particle Dynamics)

Defining 4-acceleration

$$
a^{\alpha}=\frac{d u^{\alpha}}{d \tau}
$$

a) Show that $a^{\alpha} u_{\alpha}=0$
b) Using $u^{\alpha}=\gamma(\rho, \vec{v})$, show that $a^{0}=\vec{a} \cdot \frac{\vec{v}}{c}$

Hint $\vec{v}=\frac{d \vec{r}}{d t}, \underbrace{\vec{u}}=\frac{d \vec{r}}{d \tau}, \vec{a}=\frac{d^{2} \vec{r}}{d \tau^{2}}$
spatial spatial
components components
components spatial
of 4 -velocity of 4 -acceleration
c) Relativistic version of Newton's Law

$$
F^{\alpha}=m a^{\alpha}
$$

show that

$$
F^{0}=\frac{\vec{F} \cdot \vec{v}}{c}
$$

and combining this result with that from b) to discuss that $F^{0}=m a^{0}$ is a relativistic statement of the work-energy theorem

(from Poisson \& Will, 2014, Gravity)

4.

The Lorentz transformation for an arbitrary velocity whose components in S are v^{j} is given by

$$
x^{\prime \alpha}=\Lambda_{\beta}^{\alpha} x^{\beta},
$$

where the components of Λ_{β}^{α} are given by

$$
\begin{aligned}
& \Lambda_{0}^{0}=\gamma, \\
& \Lambda_{j}^{0}=-\gamma v_{j} / c, \\
& \Lambda_{0}^{j}=-\gamma v^{j} / c \\
& \Lambda_{k}^{j}=\delta_{k}^{j}+(\gamma-1) n^{j} n_{k},
\end{aligned}
$$

where $n^{j}=v^{j} /|\boldsymbol{v}|$.
(a) Show that this reduces to Eq. (4.1) when \boldsymbol{v} is aligned with the x-direction.
(b) By considering the invariance of the interval $d s^{2}$, show that the Minkowski metric in S^{\prime} is related to the Minkowski metric in S by

$$
\eta_{\alpha \beta}=\eta_{\gamma \delta}^{\prime} \Lambda_{\alpha}^{\gamma} \Lambda_{\beta}^{\delta} .
$$

(c) Verify using the general Lorentz transformation that $\eta_{\alpha \beta}$ has the same diagonal form with entries $(-1,1,1,1)$ as it had in S^{\prime}. You can do this using matrix mustiplication by recognizing that the transformation of the metric can be expressed as the matrix equation $\eta=\Lambda^{\mathrm{T}} \eta^{\prime} \Lambda$.
5. Show that

$$
\eta^{\alpha \beta}=-e_{(0)}^{\alpha} e_{(0)}^{\beta}+e_{(1)}^{\alpha} e_{(1)}^{\beta}+e_{(2)}^{\alpha} e_{(2)}^{\beta}+e_{(3)}^{\alpha} e_{(3)}^{\beta}
$$

by checking its components (a) in a frame where the basis vectors are attached to a particle at rest, and (b) in a frame where the vectors are attached to a particle moving in the x-direction with velocity v.
6.

Consider a freely moving particle $\left(a^{\alpha}=0\right)$.
The action

$$
\begin{aligned}
S & =-m c^{2} \int_{1}^{2} d \tau \\
& =\int_{1}^{2} d t L
\end{aligned}
$$

where $L=-m c \sqrt{-\eta_{\alpha \beta} \frac{d r^{\alpha}}{d t} \frac{d r^{\beta}}{d t}}$
Using the Euler-Lagrange equation (corresponding

$$
\frac{d}{d t} \frac{\partial L}{\partial \partial^{\mu}}-\frac{\partial L}{\partial r^{\mu}}=0
$$

Show that a uniform motion of a free particle, according to $\delta S=0$, maximizes the elapsed proper time between E_{+}and E_{2}

