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Jets

● Due to QCD confinement, free quarks produced in collision undergo hadronization to create an colorless objects
which are reconstructed as jets by jet algorithms.

● This study uses jets reconstructed using the anti-kt algorithm[0].

Tagging of Jet flavour for MC events

Gen jets:  
Apply anti-kt algorithm on final gen-state particles (excluding neutrinos).

Reco jets: 
Apply anti-kt algorithm on Particle-Flow (PF) candidates.

Jet flavour is determined by matching gen and reco jets (with ΔR < 0.25)
● If gen jet have b-hadron    → b-jet
● If gen jet have c-hadron    → c-jet
● Remaining jets                   → l(udsg)-jets
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DeepCSV [1]: 
Jet flavour classification algorithm

● Dense layer neural network.

● Training data: QCD and TT MC.

● Input variables: Track, secondary & global vertex features.

● Architecture: 4 hidden layers (100 nodes each)

● Output classes: P(b), P(bb), P(c), P(cc), P(udsg)

● DeepCSV classifier score used in this talk = P(b) + P(bb)
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● Different thresholds (working points swp) on the classifier score (s) are used to quantify the performance of the 
classifier.

● Three standard working points are used in CMS based on the light-flavour mis-tag rate.
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Selection cut approach to estimate classifier efficiency wrt to a working point

Direct tagging ● Apply a classification cut and select events above the working point 
threshold.

● The efficiency is the ratio of number of selected events by total number of 
events.

● Limited statistical precision 
● Uncertainty of the efficiency measurement by this approach depends on 

the number of events that can be simulated in a given region of phase 
space.
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Efficiency weight approach to estimate classifier efficiency wrt to a working point

Efficiency weighting ● Apply a weight to each jet instead of just accepting/rejecting cut based-
approach of direct tagging.

● The weight corresponds to classifier efficiency for a given working point.

● This method is also called Truth Tagging (TT).
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Ways to estimate classifier efficiency wrt to a working point

accept

reject

Direct tagging

Efficiency weighing
Efficiency weights 
for each jet/event
wrt  sWP
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How to calculate efficiency weights?

● In order to achieve parameterization of classifier efficiency weights, a set of low level
observables (θ) are chosen which capture the dependency of classifier score (s(x)) where x are 
generally the high level variables.

● Example choices for θ are variables like 
● transverse momentum (pT) which captures dependencies corresponding to secondary vertex 

reconstruction 
● Pseudo-rapidity (η) which captures dependencies corresponding to the track reconstruction.  

● Way to estimate (approximate) efficiency weights:
● Efficiency maps (2 dimensional parameterization)
● GNN (multidimensional parameterization)
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Efficiency Maps

● Here, the efficiency weights of each flavour of jet (f) are parameterized in bins of pT and η.

● From the per-jet weights, per-event weights are estimated depending on the number of b-
tagged jets required in the analysis

● Main limitation: 
● Finite correlation corresponding to 2D are captured.  
● Can not account for environment effects.
● Correlations between jets are also neglected.
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GNN approach

● First proposed by researchers at ATLAS [2].

● Takes full event as input and provides simultaneous efficiency weights for each jet flavour and for 
each of the standard working points.

● This approach could also capture higher order correlations, environmental effects, correlations 
among jets of an event.

● No binning of parameterization variables required as done in efficiency map approach.
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MC dataset used in the study

● dilepton decay channel
● 3 million training events 

● pp collisions into multi-jet events
● Leading jet pT slice: 300-470 GeV
● Enriched in muons
● 600k training events 
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5 blocks of GNN 
with skip connection after each block

Message passing function : MLP
Aggregation function         : Sum
Update function                 : MLP

GATv2* [4]

* Graph attention network (v2) is used only for QCD multi-jet training/evaluation

P(<L)

P(L-M)

P(M-T)

P(>T)

5 hidden layer
feed forward neural 

network

Efficiency weight predictions

efficiency weight (Tight WP)  = P(>T)
efficiency weight (Medium WP) = P(M-T) + P(>T)
efficiency weight (Loose WP)  = P(L-M) + P(M-T) + P(>T)

Event with 5 jets

Njets X jet features Njets X hidden features Njets X hidden features Njets X 4 output nodes

GNN architecture
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GNN architecture
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● Bootstrap aggregation is performed to get the central value and uncertainty of the final GNN predictions.
● Multiple trainings are performed using a training set sampled with replacement.
● For each bootstrap training, corresponding predictions are evaluated on the common test set. 
● The central value of an observable in the final result is the median values of the central value of the histogram bins of all the bootstrap sample.
● The uncertainty on the histogram bin of the final result is the corresponding statistical uncertainty of the bin.

Top pad: 
Distribution evaluated from 
each of the bootstrap trainings 
and the ensemble using the 
median efficiency predictions.

Middle pad: 
Ratio of the bin values of 
individual bootstrap trainings 
with the ensemble.

Bottom pad: 
Ratio of the statistical 
uncertainty of the individual 
bootstrap trainings with the 
ensemble.

Bagging

Tight WP
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Evaluation metrics (chi-squared distance (χ2 )): 

● Quantify closure of efficiency weight based methods (efficiency map and GNN approach) wrt to direct 
tagging.

● We use χ2  distance metric to quantify closure of  histograms of an observable of efficiency weight based 
methods (Hew) (efficiency map and GNN approach) wrt to direct tagging (Hdt). 

● For the GNN approach, we apply a bagging procedure as described previously to obtain the central value 
and uncertainty of an observable.

Evaluation metrics



  

Krunal Gedia 22

● Introduction and DeepCSV b-tagging classifier

● Jet classifier efficiency measurement algorithms
● Using selection cuts

● Direct Tagging
● Using efficiency weights 

● Efficiency Map (2D parameterization)
● GNN-based MVA approach (nD parameterization)

● GNN approach in detail

● Results

● Conclusion



  

Krunal Gedia 23

Results

Efficiency predictions obtained for Tight WP



  

Krunal Gedia 24

Efficiency predictions obtained for Medium WP
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Top pad:
Histograms resulting from direct 
tagging, the efficiency map, and 
the GNN model.

Bottom pad:
Ratio of the statistical uncertainty
of the bin values resulting from efficiency 
map and GNN to direct tagging.

Middle pad:
Ratio of the central values as
predicted by the efficiency map and 
GNN to direct tagging.

Tight WP
Tight WP
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Conclusion

● Estimating the efficiency of a process using selection cuts is statistically limited by the number of 
events that could be simulated in a given phase space. 

● Efficiency weighting approaches could help to mitigate this issue.

● Traditional approach of efficiency map parameterized in pT & η suffers from curse of 
dimensionality. It also can not account for higher order correlations, environment effects or 
correlations among jets in an event.

● GNN based approach presented here helps to solve these issues and as shown, outperforms the 
traditional efficiency map approach for both Tight and Medium working point predictions.

● Also, as expected, the efficiency weights approach leads to significant gains in statistical uncertainty with 
respect to the direct tagging approach.
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Back - up
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Gain in statistical uncertainty due to efficiency weighting technique 
over direct tagging
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Tight WP
Tight WP
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GNN block
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