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2Introduction

How can we find new physics at the LHC?
Maybe it is hidden in rare processes

⇓

Need better analysis techniques!

Traditional analysis
• Hand-crafted observables
• Binned data

Matrix element method
• Based on first principles
• Estimates uncertainties reliably
• Optimal use of information

⇓

Only fraction of information used
⇓

Perfect for processes with few events
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4Matrix Element Method

• Process with theory parameter α, hard-scattering momenta xhard
• Likelihood at hard-scattering level given by differential cross section

p(xhard|α) =
1

σ(α)

dσ(α)
dxhard

• Neyman-Pearson lemma =⇒ optimal use of information
• Differential cross section only known analytically at hard-scattering level

Theory
α

Hard
process Decay ISR

FSR Shower Hadroni-
zation Detector Recon-

struction
Events
xreco

likelihood
known

likelihood intractable
⇓

use neural network



5MEM at reconstruction level

• Integrate out hard-scattering phase space

p(xreco|α) =
∫

dxhard p(xhard|α)︸ ︷︷ ︸
diff. CS

p(xreco|xhard, α)︸ ︷︷ ︸
estimate with network

• Need to learn probability distribution p(xreco|xhard, α)
In practice: ignore α-dependence and learn p(xreco|xhard)

• Not known analytically→ learn from data

Solution:
normalizing flow→ Transfer-cINN



6Normalizing flows

• Conditional Invertible Neural Networks (cINN): [Ardizzone et al., 1907.02392]
chain of learnable, invertible transformations with tractable Jacobian

• Distributions linked through change of variable formula

p(zn) = p(z1) det ∂z1(zn; c)
∂zn

p(z1) p(z2|c) p(z3|c) p(z4|c)

Simple latent
distribution
(Gaussian)

Data
distribution

Condition c

f1 f2 f3

training on samples
density estimation

sampling



7Flows with uncertainties

deterministic weights wi
↓

weights wi ∼ N (µi, σi)

• Quantify training uncertainty with
Bayesian Invertible Neural Networks (BINN)
[MacCay, 1995] [Neal, 2012] [Bellagente et al., 2104.04543]

• Simple modification of deterministic network:
→ Replace deterministic weights with distribution
→ Additional term in loss function

• Extracting uncertainties:
sample from weight distribution

• Use as generator→ Histograms with error bars
• Use as density estimator→ Error on density



8How to compute the integral?
• |M|2 spans several orders of magnitude
• Narrow distribution from Transfer-cINN
• Importance sampling with proposal distribution q(xhard)

p(xreco|α) =
〈

1

q(xhard)
p(xhard|α) p(xreco|xhard, α)

〉
xhard∼q(xhard)

• Bayes’ theorem: Integration becomes trivial if

xhard ∼ q(xhard) = p(xhard|xreco, α)

Solution:
normalizing flow→ Unfolding-cINN

[Bellagente et al., 2006.06685] [see also Mathias Backes’ and Matthew Leigh’s talks]

Integration challenging



9Putting it all together

p(xreco|α) = 1
σfid ⟨ ∂xhard

∂r
dσ

dxhard
p(xreco|
xhard) ⟩

Unfolding
cINN

Transfer
cINN

α

xreco
{r}r∼p(r)

{xhard}

• Training data

(α, xhard, xreco)

• Transfer-cINN learns

p(xreco|xhard)

→ transfer function
→ fast forward simulation

• Unfolding-cINN learns

p(xhard|xreco, α)

→ phase space sampling
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11LHC process

• Single Higgs production with anomalous non-CP-conserving Higgs coupling

Lt̄tH = − yt√
2

[
cosα t̄t+ 2

3
i sinα t̄γ5t

]
H with CP-angle α

[Artoisenet et al, 1306.6464] [de Aquino, Mawatari, 1307.5607] [Demartin et al, 1504.00611]

• Decays tHj→ (bW) (γγ) j. Test on different datasets

Leptonic decay
(bµ+νµ) (γγ) j

Challenge:
reconstruct ν

Hadronic decay
(bjj) (γγ) j

Challenge:
jet combinatorics

Hadronic decay + ISR
(bjj) (γγ) j+ QCD jets

Challenge:
no clear combinatorics



12Why we need the MEM
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Around the SM, α = 0◦:

low total cross section (few events)
+

low variation of rate
+

kinematic observables still sensitive
⇓

need kinematic observables
to use all available information

⇓

ideal use case for MEM
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14Testing the cINNs
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Transfer-cINN (reco level plots)
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Unfolding-cINN (hard-scattering level plots)

• Check performance on test dataset
→ Transfer-cINN as forward simulator
→ Unfolding-cINN: once for each event

• Good agreement with Truth
• Error bars from Bayesian network
→ Within BINN errors in bulk

• deterministic Unfolding-cINN
used for integration



15Likelihoods for hadronic decay without ISR
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• Deterministic network, α = 0◦, 45◦, 90◦, 400 events each
• Extract likelihood for different α, sum events, fit polynomial (orange line)
• Compare to likelihood from hard-scattering data (blue line)
• Good agreement between hard-scattering and reco-level
→ But how large is the systematic uncertainty from training?



16Training uncertainty from BINN
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• Extract likelihood for 10 sampled networks
→ estimate of systematic error from training

• Only uncertainty from finite training data
→ lack of expressivity not captured



17Calibration checks
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• Minimum and 68% confidence intervals for 20× 100 events
• Good correlation betwen reco- and hard-scattering level
• Slight bias can be removed by calibration
• Lagrangian almost symmetric around α = 0◦

→ sometimes wrong sign



18Hadronic decay with ISR
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• Final state (bjj) (γγ) j
+ additional jets from ISR and FSR

• Can’t resolve between relevant jets and
ISR jets during reconstruction
→ combinatorics more difficult
[see also Lawrence Lee’s talk]

• Loss of sensitivity around α = 0◦

• Worse calibration, more bias
• Increased systematic uncertainty
captured by Bayesian network
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20Outlook

• Measure fundamental Lagrangian parameters from small numbers of events
• Transfer-cINN: encode QCD and detector effects
• Unfolding-cINN: efficient integration over hard-scattering phase space
• Without ISR: close to hard-scattering truth
• With ISR: worse performance from more challenging combinatorics
• Promising for extracting maximal information from small event numbers

• Next steps
→ Better handling of jet combinatorics
→ Include NLO corrections for matrix element
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