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Introduction

How can we find new physics at the LHC?
Maybe it is hidden in rare processes

4

Need better analysis techniques!

Traditional analysis Matrix element method
e Hand-crafted observables e Based on first principles
e Binned data e Estimates uncertainties reliably
e Optimal use of information
4 4

Only fraction of information used Perfect for processes with few events



Two Invertible Networks for the Matrix Element Method

Combining MEM and cINNs



Matrix Element Method

® Process with theory parameter «, hard-scattering momenta Xp4q
e Likelihood at hard-scattering level given by differential cross section

1 do(a)

P (Xhard|ar) = m WDparg

e Neyman-Pearson lemma = optimal use of information
e Differential cross section only known analytically at hard-scattering level
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MEM at reconstruction level

e |ntegrate out hard-scattering phase space

P (Xreco|¥) = /dXhard P(Xhard|@)  P(Xreco|Xnard; )

diff. CS estimate with network

* Need to learn probability distribution p(Xreco|Xnhard, &)
In practice: ignore a-dependence and learn p(Xreco|Xhard)

e Not known analytically — learn from data

Solution:
normalizing flow — Transfer-cINN




Normalizing flows C6/

e Conditional Invertible Neural Networks (cINN): [Ardizzone et al., 1907.02392]
chain of learnable, invertible transformations with tractable Jacobian

e Distributions linked through change of variable formula

071(2n; C)

p(zn) = p(z1) det oz,

training on samples

l density estimation ‘
p(21) p(z2[c) p(zs)c) p(z4)0)

Simple latent oata
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Flows with uncertainties

deterministic weights w;

1
AP WA

weights w; ~ N (i, o)

Quantify training uncertainty with
Bayesian Invertible Neural Networks (BINN)
[MacCay, 1995] [Neal, 2012] [Bellagente et al., 2104.04543]

Simple modification of deterministic network:
— Replace deterministic weights with distribution
— Additional term in loss function

Extracting uncertainties:
sample from weight distribution

Use as generator — Histograms with error bars
Use as density estimator — Error on density



How to compute the integral?

® | M|? spans several orders of magnitude
e Narrow distribution from Transfer-cINN
* Importance sampling with proposal distribution g(Xharqg)

} Integration challenging

Q(Xhard

P (Xrecolar) = < ) P(Xnhard|) p(Xreco|Xhard70‘)>

Xhard~9(Xhard)

e Bayes' theorem: Integration becomes trivial if

Xhard ~ G(Xhard) = P(Xhard [Xreco, @)

Solution:
normalizing flow — Unfolding-cINN

[Bellagente et al., 2006.06685] [see also Mathias Backes' and Matthew Leigh’s talks]



Putting it all together

Xreco

YY

Unfolding
cINN

{Xhara}

P (Xrecol
Xhard)

e Training data

(@, Xhard Xreco)

e Transfer-cINN learns

P (Xreco|Xnard)

— transfer function
— fast forward simulation

e Unfolding-cINN learns

P (Xhard [Xreco, @)

— phase space sampling
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LHC process



LHC process

e Single Higgs production with anomalous non-CP-conserving Higgs coupling

Vi -2, - .
L :——[cosatt—l——lsmozt t}H with CP-angle o
ttH NG 3 Y5 g
[Artoisenet et al, 1306.6464] [de Aquino, Mawatari, 1307.5607] [Demartin et al, 1504.00611]
e Decays tHj — (bW) (yv) J. Test on different datasets

Leptonic decay Hadronic decay Hadronic decay + ISR
(b v) (v7)J (bjj) (vv) J (bjj) (v) j+QCD jets
— —
Challenge: Challenge: Challenge:
reconstruct v jet combinatorics no clear combinatorics




y we need the MEM 62

leptonic 1072 s Around the SM, o = 0°:
0.004 o 107 ﬂ
oo t Generated :’2 .
£ T low total cross section (few events)
€ 0.002 ém—s 2 N
025 - = low variation of rate
£ ool T
© 025 f Pt 107 - +
e OOV : kinematic observables still sensitive
0.20 lL
L0 need kinematic observables
Zow to use all available information
0.05 U
0.00 ideal use case for MEM
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Results



Testing the cINNs
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Unfolding-cINN (hard-scattering level plots)

Check performance on test dataset
— Transfer-cINN as forward simulator
— Unfolding-cINN: once for each event

Good agreement with Truth

Error bars from Bayesian network
— Within BINN errors in bulk

deterministic Unfolding-cINN
used for integration



Likelihoods for hadronic decay without ISR

10 hadronic, a = 0°, 400 events 10 hadronic, a = 45°, 400 events 10 hadronic, a = 90°, 400 events
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e Deterministic network, a = 0°,45°,90°, 400 events each
e Extract likelihood for different o, sum events, fit polynomial (orange line)
e Compare to likelihood from hard-scattering data (blue line)

e Good agreement between hard-scattering and reco-level
— But how large is the systematic uncertainty from training?



Training uncertainty from BINN

10 hadronic, a = 0°, 400 events 10 hadronic, a = 45°, 400 events 10 hadronic, a = 90°, 400 events
—— hard hard
81 reco 81 reco / 81
< 6 < 6 < 6
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e Extract likelihood for 10 sampled networks
— estimate of systematic error from training

e Only uncertainty from finite training data
— lack of expressivity not captured



Calibration checks
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e Minimum and 68% confidence intervals for 20 x 100 events
® Good correlation betwen reco- and hard-scattering level
e Slight bias can be removed by calibration

e Lagrangian almost symmetric around o = 0°
— sometimes wrong sign




Hadronic decay with ISR
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Final state (bjj) (vy) J

+ additional jets from ISR and FSR
Can't resolve between relevant jets and
ISR jets during reconstruction

— combinatorics more difficult

[see also Lawrence Lee’s talk]

Loss of sensitivity around a = 0°
Worse calibration, more bias

Increased systematic uncertainty
captured by Bayesian network
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Outlook

e Measure fundamental Lagrangian parameters from small numbers of events
e Transfer-cINN: encode QCD and detector effects

e Unfolding-cINN: efficient integration over hard-scattering phase space

e Without ISR: close to hard-scattering truth

e With ISR: worse performance from more challenging combinatorics

e Promising for extracting maximal information from small event numbers

e Next steps
— Better handling of jet combinatorics
— Include NLO corrections for matrix element
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