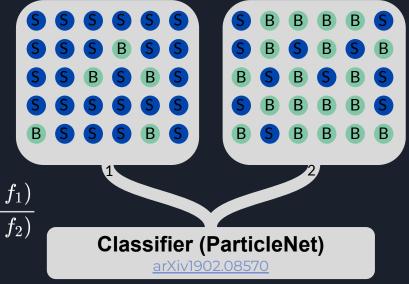
Weakly supervised methods for LHC analyses


Based on <u>JHEP08(2022)015</u> TF, Michael Krämer, Maximilian Lipp and Alexander Mück

> Thorben Finke (<u>finke@physik.rwth-aachen.de</u>) RWTH Aachen University Institute for Theoretical Particle Physics and Cosmology

Classification without labels (CWoLa) <u>arXiv1708.02949</u>

- Two samples M₁ and M₂ with signal fractions f₁ and f₂ with f₁ > f₂
- Optimal classifier for M₁ and M₂ also optimal for signal (S) and background (B)

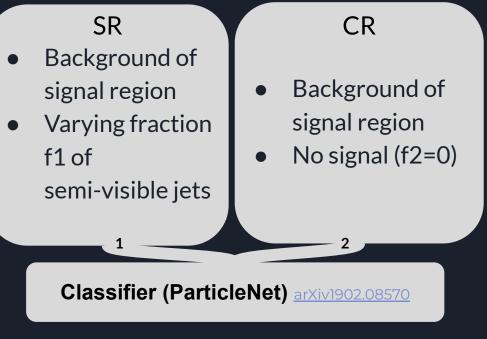
$$egin{aligned} L_{M_1/M_2} &= rac{p_{M_1}}{p_{M_2}} = rac{f_1 p_S + (1-f_1) p_B}{f_2 p_S + (1-f_2) p_B} = rac{f_1 L_{S/B} + (1-f_1) p_B}{f_2 L_{S/B} + (1-f_2) p_B} \ &= rac{f_1 L_{S/B} + (1-f_2) p_B}{f_2 L_{S/B} + (1-f_2) p_B} > 0 \end{aligned}$$

The ATLAS mono-jet search arXiv2102.10874

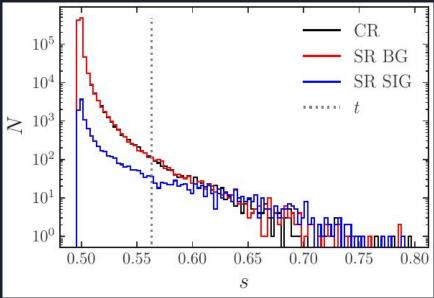
Selection cuts:

- $E_{T}^{miss} > 200 \text{ GeV}$
- leading AK4 jet with $p_T > 150 \text{ GeV}$ and $|\eta| < 2.4$
- < 4 additional jets with p_T > 30 GeV and $|\eta|$ < 2.8
- $\Delta \phi(\mathbf{p}_{T}^{jet}, \mathbf{E}_{T}^{miss}) > 0.4$
- lepton veto

SM backgrounds:


- **Z+jet** production with invisibly decaying Z (61 %)
- W+jet production with leptonically decaying W and non-identification of the charged lepton (31%)
- Top quark production (3.5 %)
- Di-boson production (2%)

Resulting in **O(10⁶) background events** and a model agnostic limit of 40k additional events at 95 % CL


What is our data?

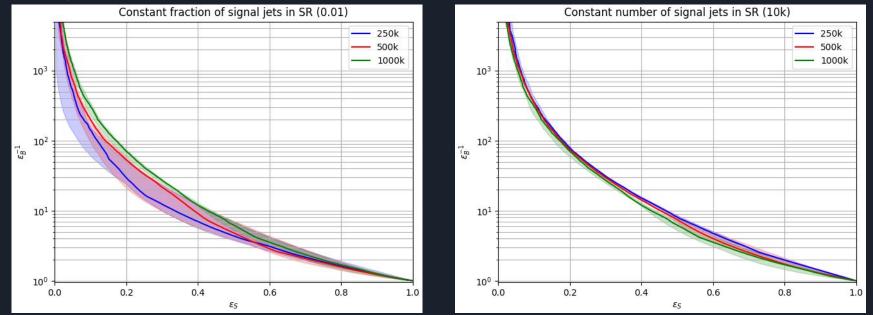
- Simulation using Pythia and Delphes
- Low level inputs
 - 40 leading constituents of leading p_T fat jet (R=0.8)
 - 7 features per constituent
- Jet of Z+j indistinguishable for Z->II (CR) and Z->vv (SR) ⇒ same background simulation for M1 and M2

Classifier output (f₁ = 1 %; only Z+j background)

- Peak at ~0.5
 - Expected from indistinguishable background
- Background in signal and control region follow same distribution
- Choose a threshold based on control region
 - \circ Set to keep 0.1 % (1000 events)
- Beyond threshold significant enhancement of S/B

Results using only main background (Z+jet)

- CWoLa does not introduce fake signal
- High sensitivity beyond current ATLAS limits (<40k events at 95 % CL)


f ₁	n ^{sr}	n ^{SIG}	stat. sign.
0 %	1048	0	1.07
0.6 %	1306	247	6.84
1 %	1666	625	14.89

Results using also additional backgrounds

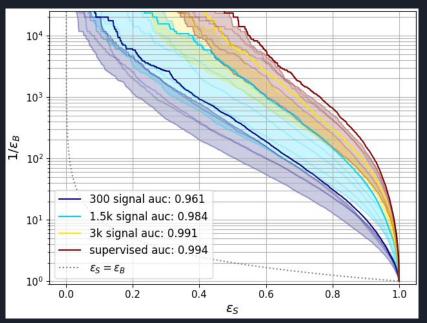
r _{tt} ^{CR}	r _{vv} ^{CR}	n ^{sr}	n ^{DM}
0 %	0 %	4383	223
2.8 %	1.6 %	1465	456
3.5 %	2.0 %	1686	633

- Added 3.5 % top and 2 % di-boson background to 1 % signal in signal region
- Ignoring additional backgrounds in control region leads to wrong signal
- Matching the background perfectly recovers the previous performance
- Not matching the background perfectly decreases performance, but does not spoil it completely ⇒ Control region does not need to be perfect

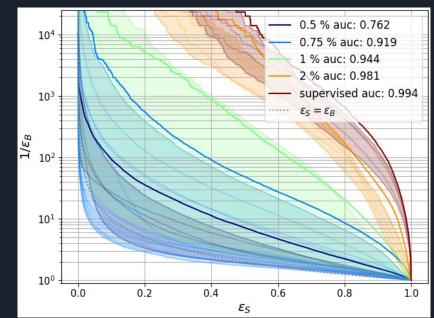
How does the method scale with region size and signal fraction?

• The total number of signal events sets the performance

• Statistics needed in high dimensions for the signal to stand out of noise

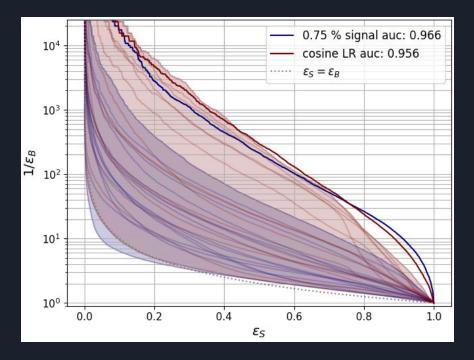

The LHCO R&D dataset $_{\mbox{\tiny LHCO}}$ and CATHODE $_{\mbox{\tiny arXiv2109.00546}}$

- The LHCO dataset consists of high p_T di-jet events with a resonant signal
 Modified classifier setup with two EdgeConv heads processing the leading
 - two jets
- CATHODE gives an alternative way to define M1 and M2
 - \circ Use resonant feature (m_{ii}) to define SR and CR (SB)
 - Use conditional density estimation and sample background in SR by interpolation
- Idealized setup: perfect background samples in SR ⇔ our setup before


Work in progress

Imbalanced supervised vs. weakly supervised training

Supervised varying #signals

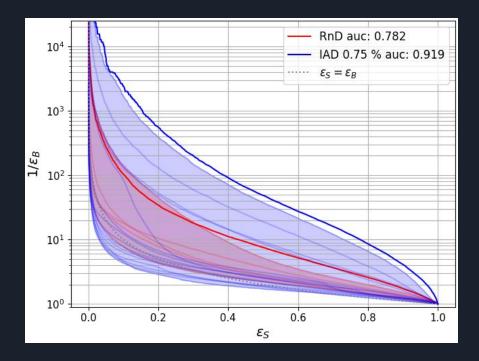


Weakly supervised varying f1

Ensembles for boosting performance

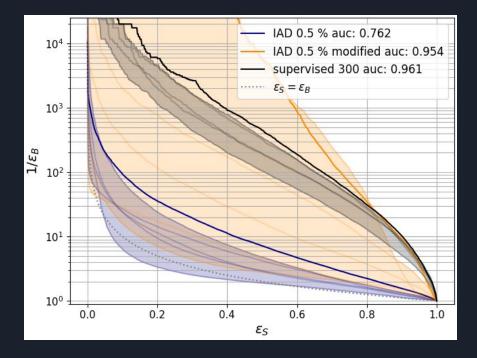
- The mean prediction of 15 classifiers outperforms individual classifiers significantly
- If a strong classifier exists, weak classifiers do not harm performance much
- Training can be optimized to need fewer networks

Conclusion


- The CWoLa method allows for enhanced sensitivity without using truth level information
- Sensitive to any difference in control and signal region
 Can be used to check validity of the control region
- The method will benefit from more statistics as the total number of signal events is more crucial than the fraction
- Presented findings can be transferred to the idealized anomaly detection setup in CATHODE
 - Further studies within that framework are currently ongoing, especially the classifier training and improvements with ensembles
 - Adding symmetries to enhance training: LorentzNet or PELICAN?

Backup

CATHODE R&D setup


- R&D setup:
 - SR: 120k events, f1=0.64%(768 signal events)
 - CR: 300k events
- IAD 0.75:
 - SR: 300k events, f1=0.75 (2250 signal events)
 - CR: 300k events

Modified signal to stand out

- Modify signal such that p₇=p₂+p₅
 Leads to signal being outside of background distribution
- If this correlation is picked up, performance is better than supervised regular signal
 ⇒ Signal needs to be significantly different from background, either by number or by structure

