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PV-finder History – I
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PV-finder History – II
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Cartoon KDEs for a GPD
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PV-finder Updates – I
end-to-end DNN, train using 40× 10 mm intervals (LHCb simulation)
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PV-finder Updates – II
LHCb simulation, ≈ 5.5 visible PVs per beam crossing
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Moving Forward
LHCb:

instantiate existing tracks-to-hists inference engine inside Allen, the
GPU-resident first level trigger, as a proof-of-principle; we hope to use tensor
cores rather than CUDA cores;
iterate tracks-to-hists architecture to improve performance (efficiency vs.
false positive rate on one hand, memory footprint and number of
calculations/throughput on the other);

investigate use of “quantization” (fp16 arithmetic rather than fp32);
preliminary studies using “toy” MC rather than full LHCb MC indicate that the
“same” architecture can achieve the same FP rate with a drop in efficiency of a
small fraction of a percent.

ATLAS:

current status: kde-to-hists model implemented for ATLAS data;
vertex resolution exceeds that of the default algorithm;
the efficiency and false positive rates are comparable to default algorithm;
hope first validated results will be public soon.

would like to optimize architecture for ATLAS;
plan to try to implement in ACTS (perhaps with GPU implementation).

This work was supported, in part, by the U.S. National Science Foundation under

Cooperative Agreement OAC-1836650. All of the machine learning training described

here was done in PyTorch using nvidia GPUs.
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https://pytorch.org/
https://www.nvidia.com/en-us/


Back-up Material
see following pages
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Prior Work

We are indebted to all those who contributed to the of earlier versions of
PV-finder and the software infrastructure we are using, including
Gowtham Atluri, Thomas Beottcher, Sarah Carl, Rui Fang, Marian Stahl,
Constantin Weisser, and Michael Williams. In addition, we have used
simulated data prepared by LHCb’s Real Time Analysis team.

Earlier results have been reported in the following publications:

Rui Fang et al 2020 J. Phys.: Conf. Ser. 1525 012079, ACAT-2019.

S. Akar et al., arXiv:2007.01023, CtD-2020.

S. Akar et al., EPJ Web of Conferences 251, 04012 (2021), CHEP-2021.

Michael D Sokoloff, ML4Jets2022 University of Cincinnati

PV-finder 8 / 13

https://iopscience.iop.org/article/10.1088/1742-6596/1525/1/012079
https://arxiv.org/abs/2007.01023
https://www.epj-conferences.org/articles/epjconf/abs/2021/05/epjconf_chep2021_04012/epjconf_chep2021_04012.html


Example Histograms
LHCb
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Observed Resolution & Bias
LHCb
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Efficiency vs nTracks
LHCb
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PV-finder Evolution

PV-finder has evolved over several years. Some of the changes since its
first presentation at ACAT-2019 include:

originally, all target histograms (labels) had the same width, height,
and area; now, higher multiplicity PVs have smaller width, greater
height and area target histograms;

originally, a single KDE was calculated from tracks’
slopes,intercepts, and their uncertainties; now, two KDEs are used in
the KDE-to-hists DNNs and these use POCA-ellipsoid parameters.

originally, the AllCNN KDE-to-hists DNNs had “flat”
architectures; now, the UNet architectures is preferred;

the original attempt to build a tracks-to-hists DNN, described
at CHEP-2021, was trained using all tracks, building target
histograms for all 4000 bins at once covering 400 mm longitudinally;
now, a similar DNN is trained in intervals of 100 bins covering 10
mm longitudinally, and the results are stitched together.
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Training the tracks-to-hists Model

The tracks-to-hists DNN takes track POCA-ellipsoids as its input
features and produces target histograms from which candidate PV
positions and resolutions are deduced. The first part of the DNN consists
of fully connected layers. The second part is a convolutional neural
network (CNN) using a UNet-like architecture. The training builds on
domain “expertise” – it repeats the logic of its construction.

train a fully-connected network (FCN) to predict a single, 100-bin
KDE;

freeze the weights and biases in the first 5 layers of the FCN; replace
the 6th layer with 8 × 100-bin channels; use these 8 channels as the
input features of a UNet-like CNN; train to predict the KDE;

freeze the weights and biases in 6-layer FCN and train the UNet
parameters to predict the 100-bin target histograms;

float all the weights and biases in the FCN and the UNet CNN to
predict the target histograms.
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