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PU mitigation at hadron colliders

Anna Benecke
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Analysing 2016 
data which is 
limited to ~50 PU


But most of Run 2 
is up to 50 PURu

n 
3

Pileup: additional pp collisions
superimposing to main collision
PU has increased in Run3 (〈nPU〉 = 50)
and will increase in HL-LHC (〈nPU〉 = 140)
Will severely degrade quality of
observables (jet multiplicity, jet
substructure, ...) if not properly treated
Easy task for charged particles: use
tracking information to disentangle particles
Very challenging for neutral particles
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Overview of PU mitigation techniques

Currently in use (e.g., CMS): PUPPI [1407.6013]
Rule-based algorithm
For each neutral particle, consider the energy of neighboring particles
Extract a probability for the particle to be LV or PU
Relies on properties of charged particles and extrapolates to neutrals

Nature and complexity of task inspired machine-learning-based approaches
PUMML: treat jets as images, reconstruct LV neutral radiation [1707.08600]
Semi-supervised PUPPI: train on charged, apply on neutrals [2203.15823]

Recurring problem: lack of truth “labels” for neutrals
We developed a new ML-based approach to overcome this bottleneck

Use Attention-Based Cloud Network (ABCNet, [2001.05311]) combined with
optimal transport
TOTAL: Training Optimal Transport with Attention Learning
Train model on a Delphes-based simulation of the CMS Phase2 detector
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A novel approach to PU mitigation

Definition of truth labels is highly non trivial in simulations at hadron colliders
Our approach: simulate identical proton-proton collisions in two scenarios

1 Only the hard interaction is simulated: no-PU sample
2 Pileup is superimposed to the hard interaction: PU sample

Do not assign per-particle labels: rather just assign a “global“ label to
samples
Train network to learn differences between the two samples

F. Iemmi (IHEP) TOTAL PU mitigation November 4, 2022 4 / 16
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How to learn: OT concepts for a loss function

We build a custom loss inspired by
optimal transport ideas (OT) OT example: the Earth Mover’s

Distance is the minimum work to move
earth to fill some holes

EMD(~x , ~y) = min
f

W (f , ~x , ~y)

With OT you can match distributions
(e.g., earth-holes)
We want to match the distributions for
the no-PU particles and PU particles
weighted by an ABCNet weight (~ω)

F. Iemmi (IHEP) TOTAL PU mitigation November 4, 2022 5 / 16
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Efficient OT: sliced Wasserstein distance (SWD)

The optimal transport problem has a
closed form for 1D problems:

Wc(pX , pY ) =
∫ 1

0
c

(
P−1

X (τ), P−1
Y (τ)

)
dτ

where pX , pY are 1D PDFs and
P−1

X (τ), P−1
Y (τ) are the respective CDFs

If we only have samples from the
distributions, x ∼ pX , y ∼ pY the
task becomes evens simpler
The problem is reduced to a sorting
problem
Fast and easy to solve

7

Fig. 2: The Wasserstein distance for one-dimensional probability distributions pX and pY (top
left) is calculated based on Eq. (9). For a numerical implementation, the integral in Eq. (9) is
substituted with 1

M ∑M
m=1 am where, am = c(P−1

X (τm), P−1
Y (τm)) (top right). When only samples

from the distributions are available xn ∼ pX and yn ∼ Y (bottom left), the Wasserstein distance
is approximated by sorting xms and yms and letting am = c(xi[m], yj[m]), where i[m] and j[m] are
the sorted indices (bottom right).

such that xi[m] ≤ xi[m+1] and where i[m] is the index of the sorted xms, it is straightforward to
confirm that P−1

X (τm) = xi[m] (see Fig. 2 for a visual confirmation). Therefore, the Wasserstein
distance can be approximated by first sorting xms and yms and then calculating:

Wc(pX, pY) =
1
M

M

∑
m=1

c(xi[m], yj[m]) (14)

Eq. (14) turns the problem of calculating the Wasserstein distance for two one-dimensional
probability densities from their samples into a sorting problem that can be solved efficiently
(O(M) best case and O(Mlog(M)) worst case).

B. Slicing empirical distributions
In scenarios where only samples from the d-dimensional distribution, pX, are available, xm ∼

pX, the empirical distribution can be estimated as pX = 1
M ∑M

m=1 δxm . Following Eq. (10) it is
straightforward to show that the marginal distributions (i.e. slices) of the empirical distribution,
pX, are obtained from:

RpX(t, θ) =
1
M

M

∑
m=1

δ(t− xm · θ), ∀θ ∈ Sd−1, and ∀t ∈ R (15)

see the supplementary material for a proof.

C. Minimizing sliced-Wasserstein via random slicing
Minimizing the sliced-Wasserstein distance (i.e. as in the second term of Eq. 13) requires an

integration over the unit sphere in Rd, i.e., Sd−1. In practice, this integration is substituted by
a summation over a finite set Θ ⊂ Sd−1,

minφ SWc(pZ, qZ) ≈ minφ
1
|Θ| ∑

θl∈Θ
Wc(RpZ(·; θl),RqZ(·; θl))
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Efficient OT: sliced Wasserstein distance (SWD)

SWD: take our n-D feature space and
project (slice) it to 1D
Project on a vector belonging to Sn−1

For robustness, take multiple random
slices

Now can solve the 1D OT
problem for each slice
Sort particles by slice
The average SWD on all slices
and particles becomes the loss
function

Input

C1

C2

G Task-Specific 
Sliced Wasserstein Discrepancy

Linear  
Projection 

Figure 1: An illustration of the proposed sliced Wasserstein discrepancy (SWD) computation. The SWD is designed to capture the
dissimilarity of probability measures p1 and p2 in Rd between the task-specific classifiers C1 and C2, which take input from feature
generatorG. The SWD enables end-to-end training directly through a variational formulation of Wasserstein metric using radial projections
on the uniform measures on the unit sphere Sd−1, providing a geometrically meaningful guidance to detect target samples that are far from
the support of the source. Please refer to Section 3.3 for details.

(2) freeze the parameters of the generator G and update the
classifiers (C1, C2) to maximize the discrepancy between
the outputs of the two classifiers on the target setXt, identi-
fying the target samples that are outside the support of task-
specific decision boundaries,

min
C1,C2

Ls(Xs, Ys)− LDIS(Xt) (2)

where LDIS(Xt) is the discrepancy loss (L1 in [58]).
Ls(Xs, Ys) is also added to this step to retain information
from the source domain, and
(3) freeze the parameters of the two classifiers and update
the generator G to minimize the discrepancy between the
outputs of the two classifiers on the target set Xt,

min
G
LDIS(Xt) (3)

This step brings the target feature manifold closer to the
source.

3.2. Optimal Transport and Wasserstein Distance

The effectiveness of domain adaptation in the aforemen-
tioned MCD framework depends entirely on the reliability
of the discrepancy loss. Learning without the discrepancy
loss, essentially dropping step 2 and step 3 in the training
procedure, is simply supervised learning on the source do-
main.

The Wasserstein distance has recently received great at-
tention in designing loss functions for its superiority over
other probability measures [74, 41]. In comparison to other
popular probability measures such as total variation dis-
tance, Kullback-Leibler divergence, and Jensen-Shannon
divergence that compare point-wise histogram embeddings
alone, Wasserstein distance takes into account the proper-
ties of the underlying geometry of probability space and it is
even able to compare distribution measures that do not share
support [1]. Motivated by the advantages of the Wasserstein
distance, we now describe how we leverage this metric for
measuring the discrepancy in our method.

Let Ω be a probability space and µ, ν be two probability
measures in P(Ω), the Monge problem [43] seeks a trans-
port map T : Ω→ Ω that minimizes the cost

inf
T#µ=ν

∫
Ω

c(z, T (z))dµ(z), (4)

where T#µ = ν denotes a one-to-one push-forward from
µ toward ν ∀ Borel subset A ⊂ Ω and c : Ω × Ω → R+

is a geodesic metric that can be either linear or quadratic.
However, the solution T ∗ may not always exist due to the
assumption of no splitting of the probability measures, for
example when pushing a Dirac measure toward a non-Dirac
measure.

Kantorovitch [27] proposed a relaxed version of Eq 4,
which seeks a transportation plan of a joint probability dis-
tribution γ ∈ P(Ω× Ω) such that

inf
γ∈Π(µ,ν)

∫
Ω×Ω

c(z1, z2)dγ(z1, z2), (5)

where Π(µ, ν) = {γ ∈ P(Ω× Ω)|π1#γ = µ, π2#γ = ν}
and π1 and π2 denote the two marginal projections of Ω×Ω
to Ω. The solutions γ∗ are called optimal transport plans or
optimal couplings [73].

For q ≥ 1, the q-Wasserstein distance between µ and ν
in P(Ω) is defined as

Wq(µ, ν) =

(
inf

γ∈Π(µ,ν)

∫
Ω×Ω

c(z1, z2)
qdγ(z1, z2)

)1/q

, (6)

which is the minimum cost induced by the optimal trans-
portation plan. In our method, we use the 1-Wasserstein
distance, also called the earth mover’s distance (EMD).

3.3. Learning with Sliced Wasserstein Discrepancy

In this work, we propose to apply 1-Wasserstein dis-
tance to the domain adaptation framework described in
Section 3.1. We utilize the geometrically meaningful 1-
Wasserstein distance as the discrepancy measure in step 2
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Energy conservation in OT: MET constraint

SWD focuses on the optimal matching between individual particles in no-PU
and PU samples

No guarantee that energy is conserved between the two
Add an event-level MET constraint term to the loss

Enforce energies in no-PU and PU events to be similar
Final loss function:

OT = SWD(~xp · ~ω,~xnp) + MSE (MET(~xp · ~ω) − MET(~xnp))

where ~xp = PU sample; ~xnp = no-PU sample; MSE = mean squared error

F. Iemmi (IHEP) TOTAL PU mitigation November 4, 2022 8 / 16
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The model
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Aggregation layers

Post-aggregation layers
9 input features:

(pT, η, φ, E)
Charge
PDG ID
dXY & dZ impact parameters
PUPPI weight

Loss: SWD(~xp · ~ω,~xnp) + MET
constraint
Sliced features: (pT, η, φ, E )
Output: per-particle weight ~ω

Optimizer: Adam
Train on 300k events, equally split between QCD multijet, t̄t dileptonic and
VBF Higgs(4ν) processes
Consider 9000 particles per event (zero-padding included)
Gather the 20 k-nearest neighbors for each particle when building graph
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The model
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Compare TOTAL with PUPPI
and no-PU scenario
Reweight each particle’s
4-momentum by the network
weight
Cluster TOTAL jets and
TOTAL MET

We define the resolution as:

δ = q75% − q25%
2

where qX% is the X-th quantile of the considered response distribution
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Results: QCD multijet
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Jet energy resolution as a function of jet pT (left) and jet η (right)
Improvement up to 30% in JER, up to 25% in η resolution
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Results: dileptonic tt̄
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Jet energy resolution as a function of jet pT (left) and jet η (right)
Improvement up to 40% in JER, up to 40% in η resolution
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Results: dileptonic tt̄

-2 -1 0 1 2
MET pT resolution

0.0

0.5

1.0

1.5

2.0

N
or

m
al

iz
ed

 e
nt

rie
s

0 PU: 0.120
TOTAL: 0.186
PUPPI: 0.244

0 50 100 150 200 250 300

10 4

10 3

10 2

N
or

m
al

iz
ed

 e
nt

rie
s

0 PU
TOTAL
PUPPI
Gen

0 50 100 150 200 250 300
MET [GeV]

-50

0

50

D
iff

er
en

ce
. (

%
)

MET pT resolution (left); MET pT distribution (right)
MET resolution is reduced by 24%
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Inspecting particles weights
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(η, φ) for PUPPI and TOTAL (right) in QCD multijet events
Smoother behavior for TOTAL in central and forward region
Still room for improvement in transition region
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Robustness
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Evaluate resolution on processes and PU scenarios unseen during training
Network is trained on QCD+t̄t+VBF with 〈NPV〉 = 140
Evaluate on W+jets production, flat NPV between 0 and 200
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Conclusions

We presented novel algorithm to reject PU particles at high-intensity
hadron colliders

Trained and tested on Delphes simulation of Phase2 CMS detector
We are Training Optimal Transport with Attention Learning: TOTAL
We do not rely on explicit, per-particle labeling
Such an algorithm will be crucial at the High-Luminosity LHC, where much
harsher data-taking conditions are expected
Our approach can be generalized to a wide range of denoising problems

Only needed input is a reliable simulation of signal and noise
Can this method be generalized to statistically independent samples?

Simulation-free pileup rejection?
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