Optimal transport solutions for pileup mitigation at hadron colliders
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PU mitigation at hadron colliders
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Pileup: additional pp collisions
superimposing to main collision

PU has increased in Run3 ((nPU) = 50)
and will increase in HL-LHC ((nPU) = 140)

Will severely degrade quality of
observables (jet multiplicity, jet
substructure, ...) if not properly treated

Easy task for charged particles: use
tracking information to disentangle particles

Very challenging for neutral particles
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Overview of PU mitigation techniques

©

©

©

Currently in use (e.g., CMS): PUPPI [1407.6013]

Rule-based algorithm

For each neutral particle, consider the energy of neighboring particles
Extract a probability for the particle to be LV or PU

Relies on properties of charged particles and extrapolates to neutrals

© © 0 o

Nature and complexity of task inspired machine-learning-based approaches
o PUMML: treat jets as images, reconstruct LV neutral radiation [1707.08600]
o Semi-supervised PUPPI: train on charged, apply on neutrals [2203.15823]
Recurring problem: lack of truth “labels” for neutrals
We developed a new ML-based approach to overcome this bottleneck

o Use Attention-Based Cloud Network (ABCNet, [2001.05311]) combined with
optimal transport

o TOTAL: Training Optimal Transport with Attention Learning

o Train model on a Delphes-based simulation of the CMS Phase2 detector
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A novel approach to PU mitigation
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©

Definition of truth labels is highly non trivial in simulations at hadron colliders tetion.
Our approach: simulate identical proton-proton collisions in two scenarios 3 (et

@ Only the hard interaction is simulated: no-PU sample
@ Pileup is superimposed to the hard interaction: PU sample

Do not assign per-particle labels: rather just assign a “global” label to e

samples

Train network to learn differences between the two samples
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How to learn: OT concepts

o We build a custom loss inspired by
optimal transport ideas (OT)
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for a loss function
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o OT example: the Earth Mover's F. lemmi

istance is the minimum work to move  introduction
Distance is th k t

earth to fill some holes e el

TOTAL PU
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Loss function: SWD
Model

o With OT you can match distributions ...
(e-g-. earth—h0|es) QCD multijet

tEproduction

o We want to match the distributions for ...
the no-PU particles and PU particles Conclusions
weighted by an ABCNet weight (&)
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Efficient OT: sliced Wasserstein distance (SWD)

TQ"I.'AL-PU
o The optimal transport problem has a miestion
P port b o If we only have samples from the F. lemmi
closed form for 1D problems: o

distributions, x ~ px,y ~ py the S

1 ) L task becomes evens simpler PU miigoion t

W, = c (P* T), Py (7 ) dr : . S
c(px: py) Jo x (1), Py (7) o The problem is reduced to a sorting ToraL pu

mitigation

problem

General idea

where px, py are 1D PDFs and . d | Loss functon: SWD
Px'(7), Pyl(7) are the respective CDFs © Fast and easy to solve o
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Efficient OT: sliced Wasserstein distance (SWD)

o Now can solve the 1D OT

o SWD: take our n-D feature space and problem for each slice

project (slice) it to 1D

. , o Sort particles by slice
o Project on a vector belonging to S"1 P y

o The average SWD on all slices
and particles becomes the loss
function

o For robustness, take multiple random
slices

Sorted Ryg,, p1 in R

Linear Task-Specific
Projection Sliced Wasserstein Discrepancy

Sorted Rg,, p2 in R
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Energy conservation in OT: MET constraint

o SWD focuses on the optimal matching between individual particles in no-PU
and PU samples

o No guarantee that energy is conserved between the two
o Add an event-level MET constraint term to the loss
o Enforce energies in no-PU and PU events to be similar

o Final loss function:

[ OT = SWD(X, - @, Zp) + MSE (MET(%, - &) — MET (%)) ]

where X, = PU sample; X,, = no-PU sample; MSE = mean squared error
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The model

Post-aggregation layers
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o Optimizer: Adam

o Train on 300k events, equally split between QCD multijet, tt dileptonic and

VBF Higgs(4v) processes

o Consider 9000 particles per event (zero-padding included)
o Gather the 20 k-nearest neighbors for each particle when building graph
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The model

Post-aggregation layers
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Aggregation layers

o We define the resolution as:

o Compare TOTAL with PUPPI
and no-PU scenario

o Reweight each particle's
4-momentum by the network
weight

o Cluster TOTAL jets and
TOTAL MET

5= 475% — q25%

where gxo, is the X-th quantile of the considered response distribution
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Results: QCD multijet
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Conclusions

o Jet energy resolution as a function of jet pt (left) and jet n (right)

o Improvement up to 30% in JER, up to 25% in 7 resolution
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Results: dileptonic tt
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o Jet energy resolution as a function of jet pt (left) and jet n (right)
o Improvement up to 40% in JER, up to 40% in 7 resolution
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Results: dileptonic tt
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o MET pr resolution (left); MET pt distribution (right)
o MET resolution is reduced by 24%
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Inspecting particles weights
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o Ratio T (n, ¢) for PUPPI and TOTAL (right) in QCD multijet events R
T,noPU

o Smoother behavior for TOTAL in central and forward region

o Still room for improvement in transition region
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Robustness
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o Evaluate resolution on processes and PU scenarios unseen during training  ©ondson
o Network is trained on QCD+tt+VBF with (NPV) = 140
o Evaluate on W+jets production, flat NPV between 0 and 200
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Conclusions

TOTAL PU
o We presented novel algorithm to reject PU particles at high-intensity :'ti::ln
hadron colliders
o Trained and tested on Delphes simulation of Phase2 CMS detector ieducten
o We are Training Optimal Transport with Attention Learning: TOTAL T}O‘TALHPU
o We do not rely on explicit, per-particle labeling mitieation

o Such an algorithm will be crucial at the High-Luminosity LHC, where much
harsher data-taking conditions are expected
o Our approach can be generalized to a wide range of denoising problems
o Only needed input is a reliable simulation of signal and noise

o Can this method be generalized to statistically independent samples? Conclusions
o Simulation-free pileup rejection?
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