ML4Jets 2022, 1-4 Nov

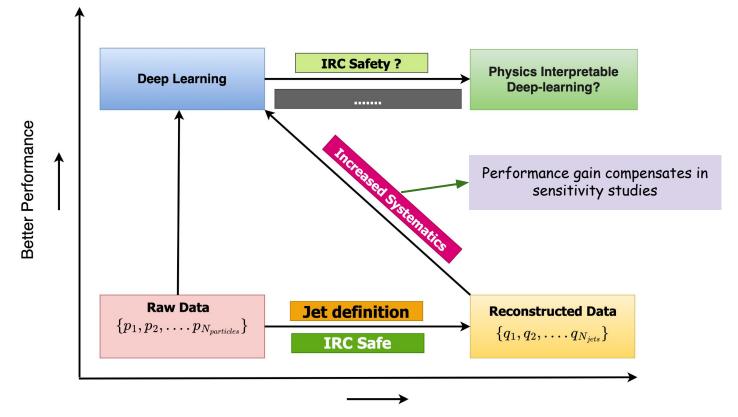
Infrared and collinear safe graph neural networks

Partha Konar, *Vishal Ngairangbam*, Michael Spannowsky <u>arxiv: 2109.14636 [JHEP 02 (2022) 060]</u>

Outline

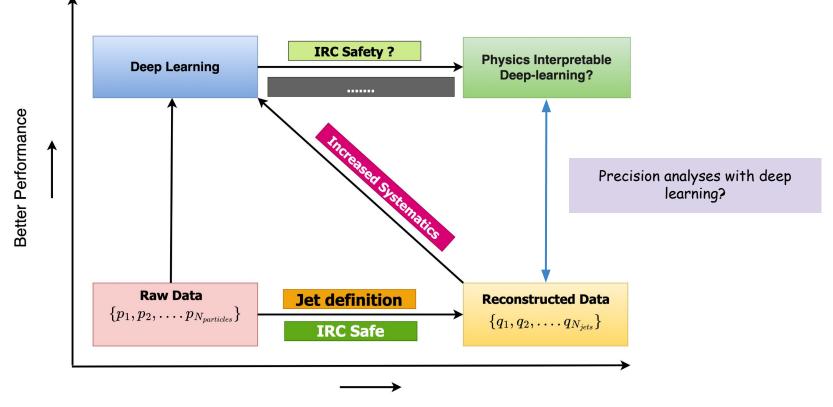
- Introduction
 - Why IRC safety in deep-learning?
 - Point clouds, graphs and message passing
- Energy-Weighted Message-passing (EPMN)
 - Building an IRC safe graph
 - IRC safe message-passing
- Results and discussions

Why Infra-red and collinear safety?



Better Understanding

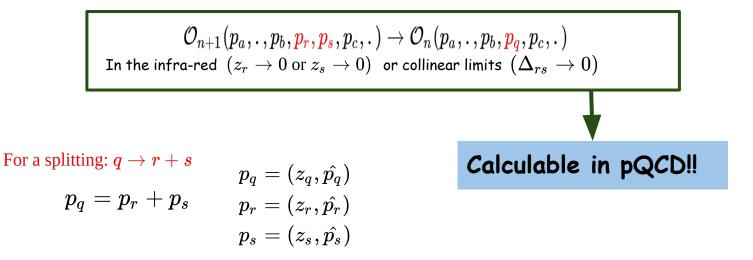
Why Infra-red and collinear safety?



Better Understanding

Infra-red and Collinear (IRC) Safe observables

For an observable \mathcal{O}_n defined on n particles.



Infra-red and Collinear (IRC) Safe observables

For an observable \mathcal{O}_n defined on n particles.

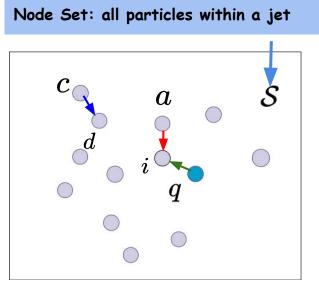
$$\begin{array}{c} \mathcal{O}_{n+1}(p_a,.,p_b,p_r,p_s,p_c,.) \rightarrow \mathcal{O}_n(p_a,.,p_b,p_q,p_c,.) \\ \text{In the infra-red } (z_r \rightarrow 0 \text{ or } z_s \rightarrow 0) \text{ or collinear limits } (\Delta_{rs} \rightarrow 0) \end{array}$$
For a splitting: $q \rightarrow r + s$

$$\begin{array}{c} p_q = (z_q, \hat{p_q}) \\ p_r = (z_r, \hat{p_r}) \\ p_s = (z_s, \hat{p_s}) \end{array}$$

$$\begin{array}{c} \textbf{Calculable in pQCD!!} \\ \textbf{=> concentrates on information of the hard interaction} \\ \textbf{=> relatively insensitive to low-energy non-perturbative effects} \end{array}$$

Graphs: Compact efficient data structures

 $\mathcal{S} = \{a, b, i, q, \dots\}$



 $\mathcal{E} = \{ (i, a), (i, q), (d, c), \dots \}$

A graph $G(\mathcal{S}, \mathcal{E})$ defined on a set \mathcal{S} , with edge set \mathcal{E}

Node-features: $\{\mathbf{h}_a, \mathbf{h}_b, \mathbf{h}_c, \dots\}$

Four-momenta, charge, etc,

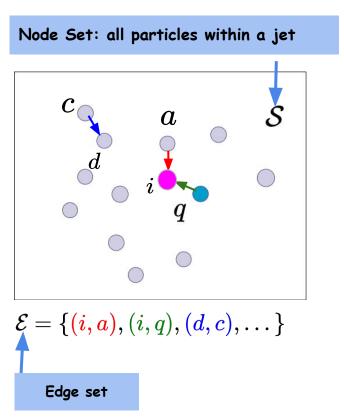
Edge-features: $\{\mathbf{e}_{ia}, \mathbf{e}_{iq}, \mathbf{e}_{dc}, \dots\}$

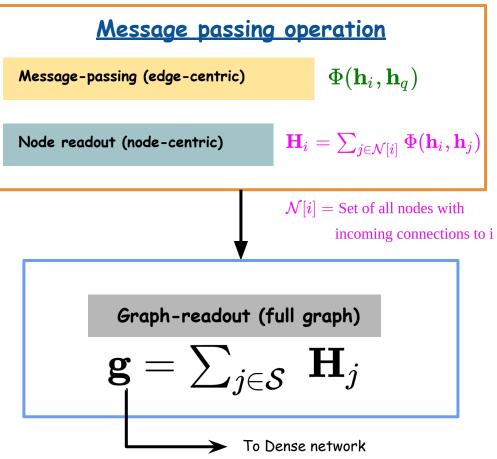
 $m_{ia}, \Delta R_{ia} etc,$

Edge set

Message-passing neural networks

 $\mathcal{S} = \{a, b, i, q, \dots \}$





Deep-sets vs Message-passing neural networks(MPNN)

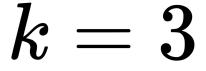
Deep-sets per-particle map: $\Phi(p_i)$	MPNNs Message-function: $\Phi(p_i, p_j)$		
Cannot extract inter-particle correlations	Can extract inter-particle correlations		
Only single particle information	Graph construction algorithm controls information extraction at first layer(via node-readout)		
Iterative application has no additional complexity on feature extraction, except functional composition $\Phi'(\Phi(p_i))$	Gradual increase in information in node-features, after each iteration		
No such control	Number of iterations control the scope of information contained in the final node-feature		

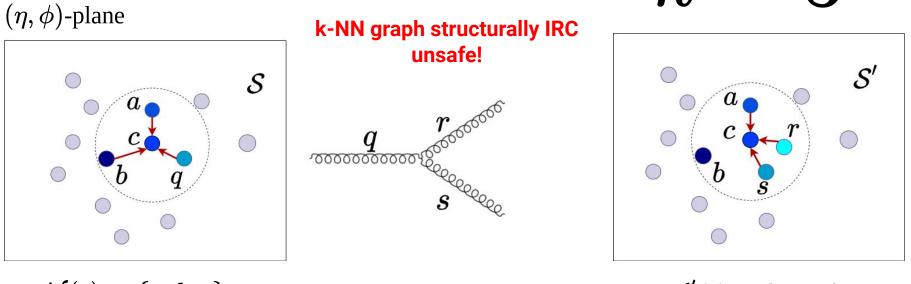
Energy Flow Networks : IRC safe deep-sets framework

JHEP 01 (2019) 121, Komiske, Metodiev, Thaler

IRC safe Graph Construction

Jet-graph: k-nearest neighbour





$$egin{aligned} \mathcal{N}(c) &= \{a, b, q\} & \mathcal{N}'(c) &= \{a, r, s\} \ & \mathbf{h}_i^{(l+1)} &= egin{aligned} & \lim_{j \in \mathcal{N}(i)}{}^i \mathbf{m}_j \end{aligned} egin{aligned} & \lim_{z_r o 0}{} \mathbf{h}_c'^{(l+1)} &
eq \mathbf{h}_c^{(l+1)} \ & \mathbf{h}_c^{(l+1)} \end{aligned} & \mathbf{h}_c^{(l+1)} \end{aligned}$$
 Similar in the collinear limit

Node readout and IRC safety

For a splitting: q
ightarrow r + s $p_q = p_r + p_s$

In the infra-red $(z_r o 0 ext{ or } z_s o 0)$ or collinear limits $(\Delta_{rs} o 0)$

$$egin{aligned} p_q &= (z_q, \hat{p_q}) \ p_r &= (z_r, \hat{p_r}) \ p_s &= (z_s, \hat{p_s}) \end{aligned}$$

 \min / \max

Selects a single node in the neighbourhood

 \Rightarrow C unsafe when the particular node splits

sum

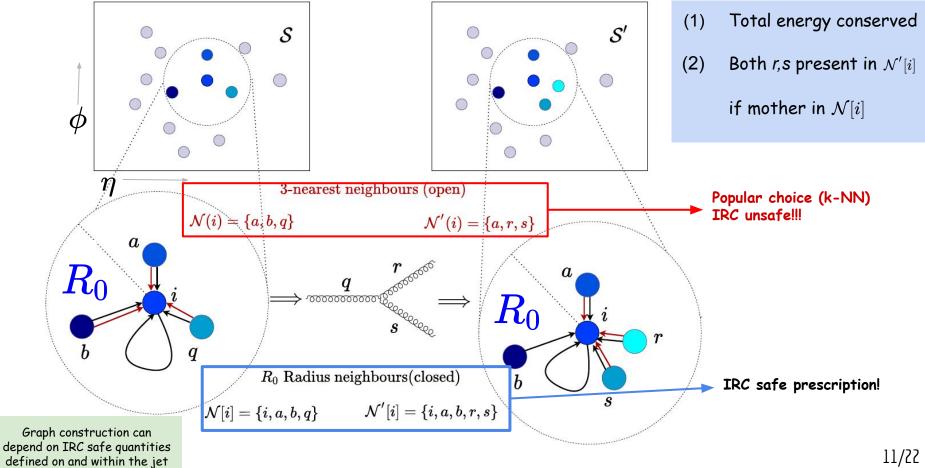
= (semi) inclusive with no explicit dependence on the number of nodes in $\mathcal{N}(i)$ mean

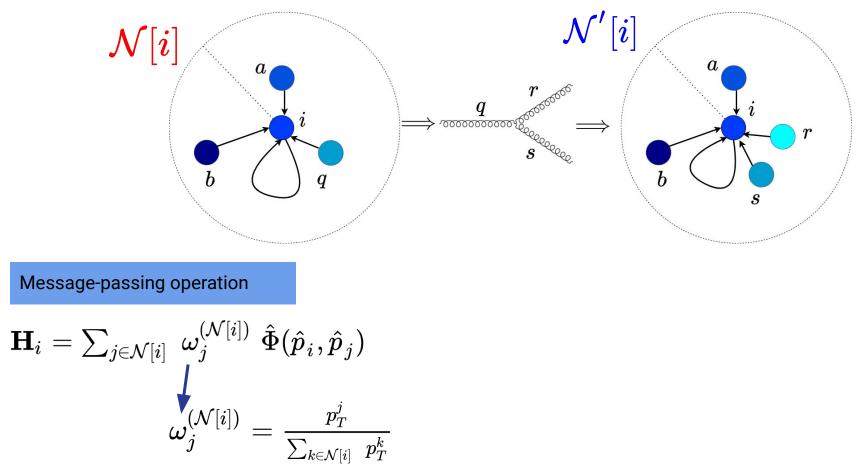
- = Depends explicitly on the number of nodes in $\mathcal{N}(i)$
- ⇒ Arbitrary number of emmisions in the enhanced regions (soft or collinear)

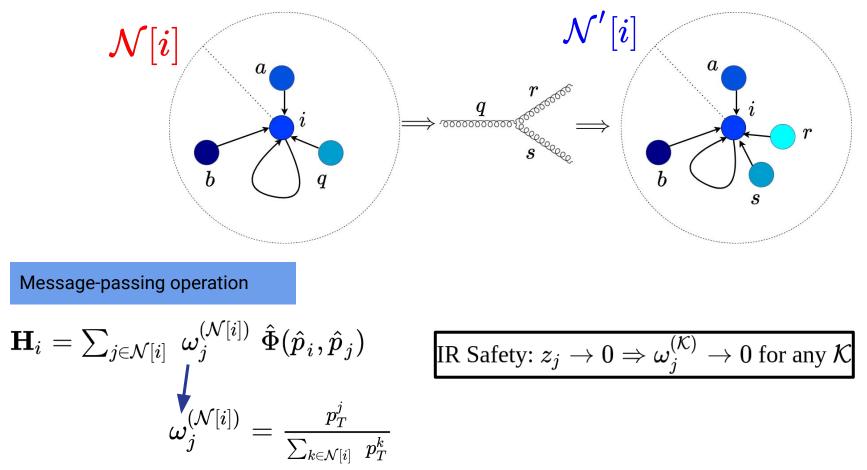
semi??

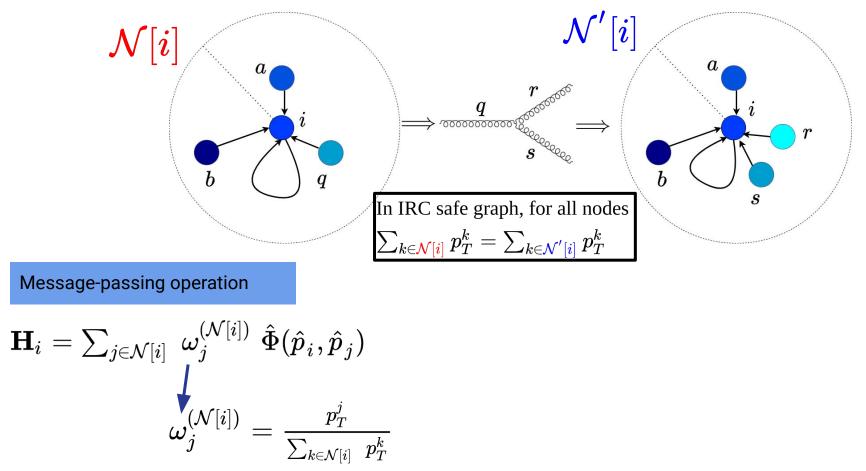
 $i
ot \in \mathcal{N}(i) \quad [ext{open neighbourhood}] \ i \in \mathcal{N}[i] \quad [ext{closed neighbourhood}]$

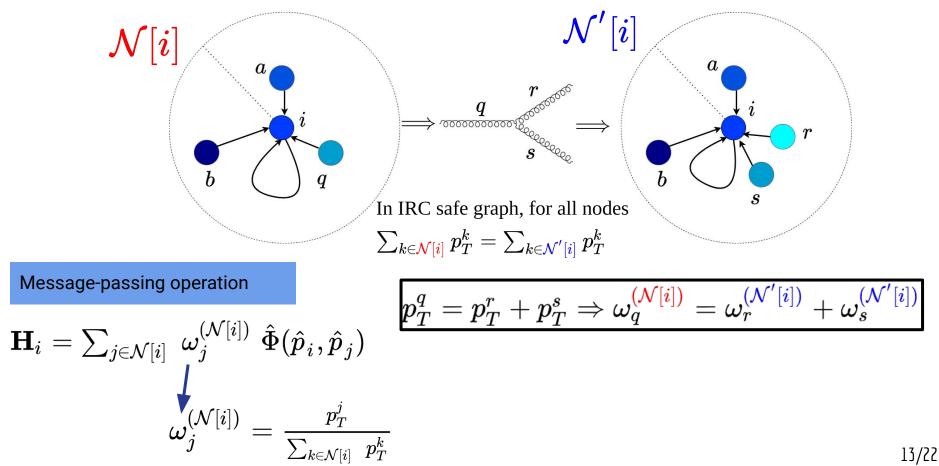
IRC safe jet-graphs

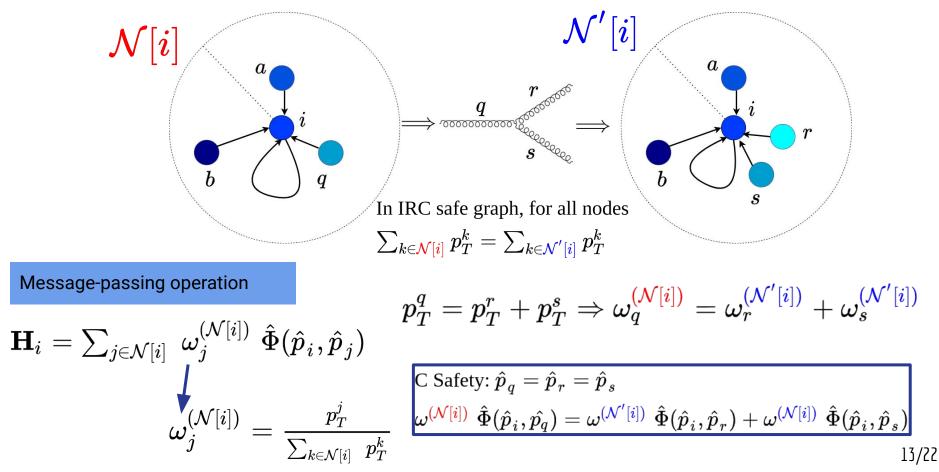


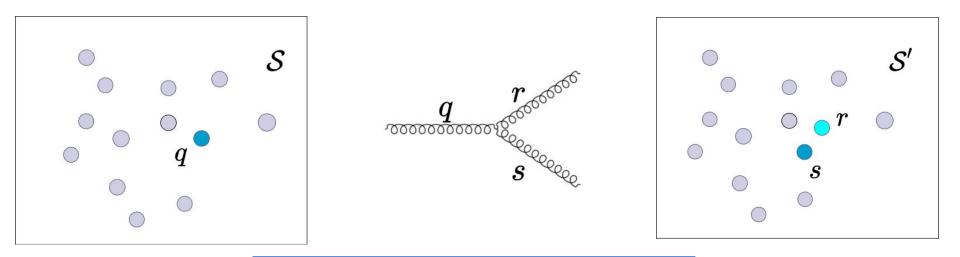




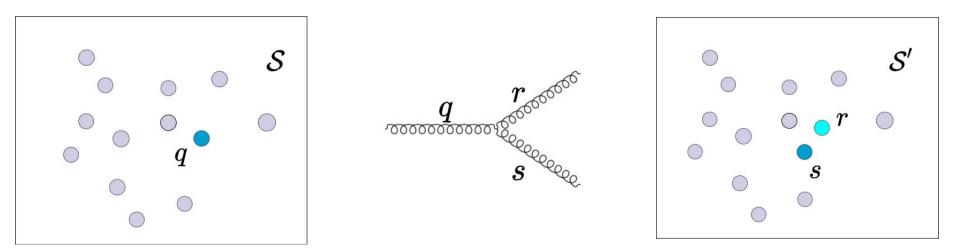




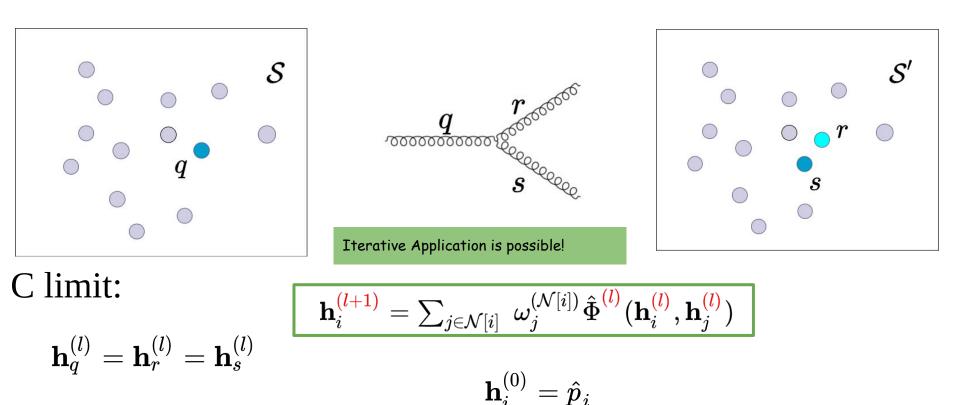


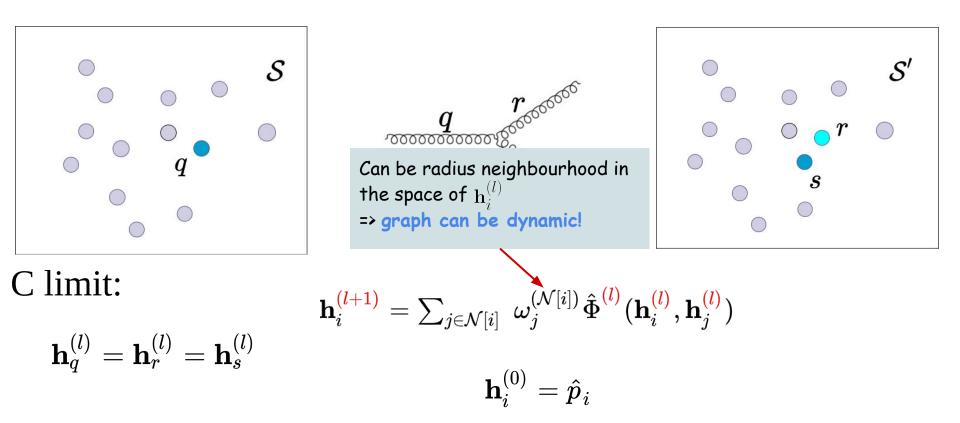


C limit:
$$\mathbf{h}_q^{(1)} = \mathbf{h}_r^{(1)} = \mathbf{h}_s^{(1)}$$

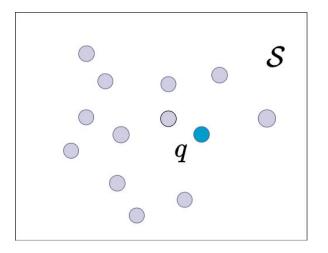


C limit: $\mathbf{h}_{q}^{(1)} = \mathbf{h}_{r}^{(1)} = \mathbf{h}_{s}^{(1)}$ $\mathbf{h}_{i}^{(2)} = \sum_{j \in \mathcal{N}[i]} \omega_{j}^{(\mathcal{N}[i])} \hat{\Phi}^{(1)}(\mathbf{h}_{i}^{(1)}, \mathbf{h}_{j}^{(1)})$

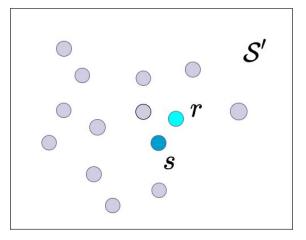




EMPN: Graph-readout







C limit:

$$\mathbf{h}_q^{(L)} = \mathbf{h}_r^{(L)} = \mathbf{h}_s^{(L)}$$

L = num. iterations

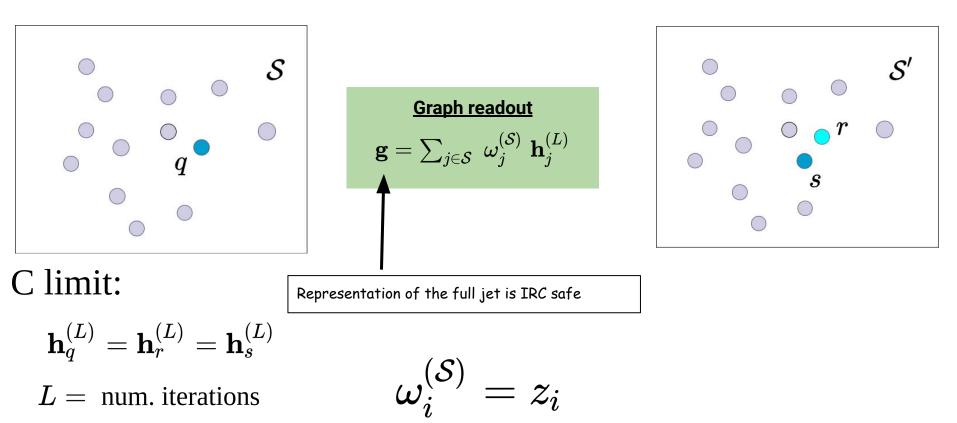
Soft or collinear nodes have a node representation even in the IRC limit!!!

=> IRC safety cannot be defined on a node representation!

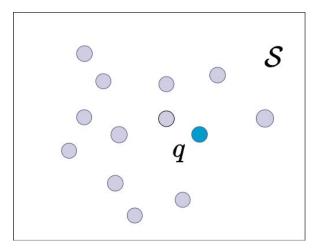
=> need to define an IRC safe graph representation

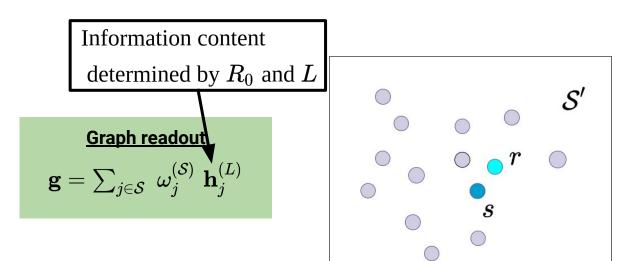
Graph on \mathcal{S}' contain $\mathbf{h}_r^{(L)}$ and $\mathbf{h}_s^{(L)}$

EMPN: Graph-readout



EMPN: Graph-readout

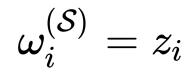


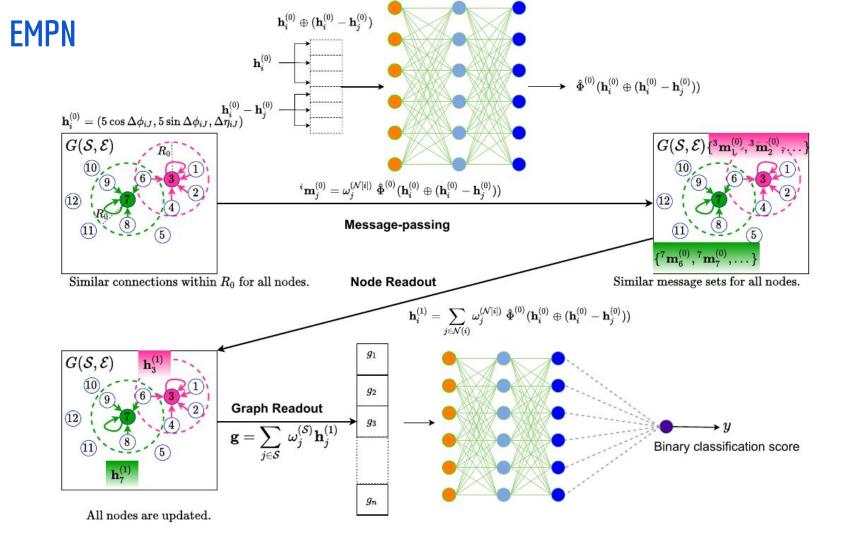


C limit:

$$\mathbf{h}_q^{(L)} = \mathbf{h}_r^{(L)} = \mathbf{h}_s^{(L)}$$

L = num. iterations



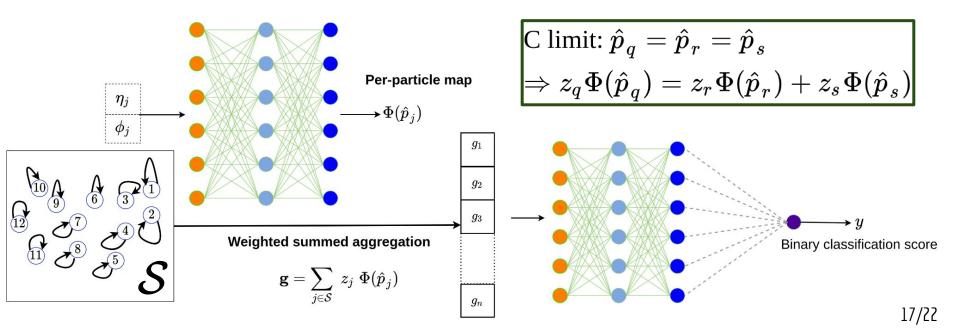


Generalising Energy Flow Networks (EFNs)

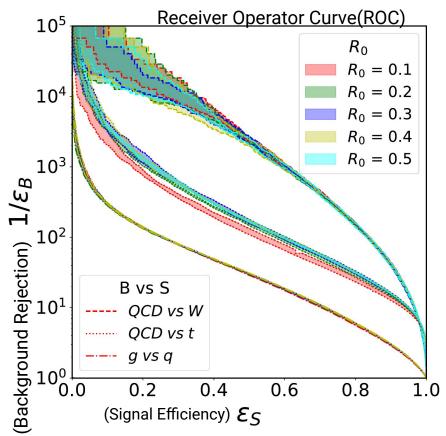
Per-particle map is a special message function constant for the second argument!

JHEP 01 (2019) 121, Komiske, Metodiev, Thaler

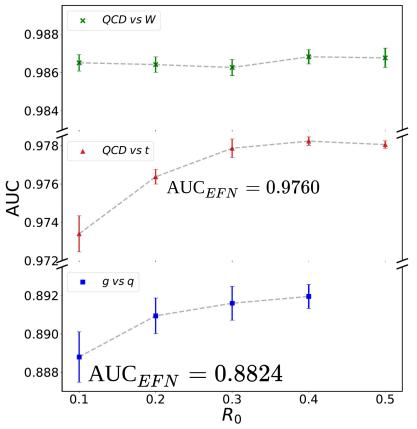
IR limit:
$$z_r=0 \Rightarrow z_r \; \Phi({\hat p}_r)=0$$



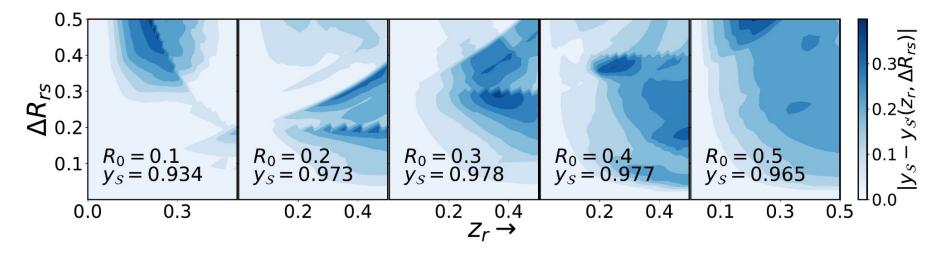
Network Performance (L=1)



Area-under(ROC)-curve(AUC) (ϵ_B, ϵ_S)



Examining IRC Safety (L=1)



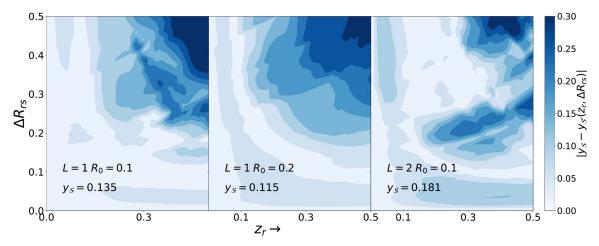
Split the hardest constituent in a jet and vary $\, z_r \,$ and $\, \Delta R_{rs} \,$

Network Output: $y_{\mathcal{S}} y_{\mathcal{S}'}(z_r, \Delta R_{rs})$

Increasing R_0 decreases stability of network output to additional emissions

Iterative application (L=1 vs L=2) (Quark vs Gluon)

R_0	No. message passing (L)	AUC	
0.1	1	0.8888 ± 0.0013	
0.2	1	0.8909 ± 0.0009	
0.4	1	0.8919 ± 0.0006	
0.1	2	0.8932 ± 0.0006	



Conclusions

- Generalised Energy Flow Networks (EFNs) to extract local correlations via message-passing operations
- Iterative application does not spoil IRC safety, performs better with reduced (?) sensitivity to soft and collinear emissions
- Devised generic graph construction algorithms which give invariant graph structure in the <u>deletion</u> of a soft or collinear vertex
- Possibility to structure graphs and networks with highly intuitive physics input
- General enough to study event shapes
- Can we understand the extracted features within pQCD?
- Higher point correlations with IRC safe hypergraphs?

Conclusions

- Generalised Energy Flow Networks (EFNs) to extract local correlations via message-passing operations
- Iterative application does not spoil IRC safety, performs better with reduced (?) sensitivity to soft and collinear emissions
- Devised generic graph construction algorithms which give invariant graph structure in the <u>deletion</u> of a soft or collinear vertex
- Possibility to structure graphs and networks with highly intuitive physics input
- General enough to study event shapes
- Can we understand the extracted features within pQCD?
- Higher point correlations with IRC safe hypergraphs?

THANK YOU

Dataset Details

SI. No	Jet Class	Parton-level	MPI	Detector Simulation (Delphes3)	Jet Radius (anti-kT)	Transverse momentum [GeV]	Classification Scenario
1.	Gluon	Pythia8	Yes	No	0.4	[500,550]	Gluon vs Quark
2.	Quark	Pythia8	Yes	No	0.4	[500,550]	Gluon vs Quark
3.	QCD	Pythia8	No	Yes	0.8	[550,650]	QCD vs Top/W
4.	Тор	Pythia8	No	Yes	0.8	[550,650]	QCD vs Top
5.	W	Madgraph5	No	Yes	0.8	[550,650]	QCD vs W

[1-2] Publicly available q/g dataset [Komiske et.al] (used in EFNs) [3,4] Publicly available top tagging dataset <u>[Kasieczka *et.al*]</u> (used in EFNs)

[5] Generated with same specifications as [3,4]