ML4JETS RUTGERS UNIVERSITY

 μ

Ľ

SEARCH FOR RIDENT EVENTS WITH

Nakul Aggarwal

Department of Physics, University of Alberta, Edmonton, Alberta

NOV 3, 2022

SUPERVISOR: JUAN PABLO YÁÑEZ GARZA

dation

DOMs coherent

ROADMAP [1/4]

ROADMAP [2/4]

ROADMAP [3/4]

ROADMAP [4/4]

SHALL WE BEGIN?

NEUTRINO TRIDENT PRODUCTION

DEEP INELASTIC SCATTERING (DIS): MUONIC CHANNEL

- Lepton-hadron scattering: An incoming neutrino interacts with a nucleus N and produces a charged lepton.
- If the energy of the neutrino is very high, nucleus is shattered and emits many new particles, a process called hadronization.
- Single Muon Channel: If the incoming neutrino is muon neutrino, then the outgoing lepton is a muon.

Dominant Process.

Charged Current DIS (CC-DIS): If the exchange is via a W boson. Neutral Current DIS (NC-DIS): If the exchange is via a Z boson.

NEUTRINO TRIDENT EVENTS: MUONIC CHANNEL

- NTP: 3 leptons are produced (2 charged and 1 neutral). Hence, the name trident.
- If the incoming neutrino is a muon, and the outgoing leptons are 2 muons and a muon neutrino, then this channel is called muonic channel.
- Sub-dominant electroweak process due to addition of more vertices.

CHARM MUONS

- Charm decays into a secondary muon. This is also a 2 muon signature.
- This cross-section is higher than the trident cross-section as this is a subset of CC-DIS interaction.

WHY SHOULD WE LOOK FOR DIMUONS?

- The event rate of this process is a powerful probe to a well-motivated parameter space of new physics beyond the Standard Model.
- A deviation from the event rate predicted by the SM could be an indication of new interactions mediated by new gauge bosons
- EXTRA CONTRIBUTIONS: In particular, BSM (Beyond Standard Model) processes like supersymmetry can look for additional supersymmetric particles like Z' etc. in place of W/Z bosons.
- Thus, it serves as a powerful electroweak test for
 Standard Model and physics beyond Standard Model.

Fig: Z' boson parameter space. There are three regions here: grey contour with solid line is excluded by CCFR measurement of NTP model at 95% CL. The area between 4 {GeV} < mass of Z' < 60(GeV} is also excluded from the LHC measurement of Z boson decay to four leptons. The purple parameter space is the current favorable space for Z' boson search as highlighted by muon (g-2) discrepancy. This space is cutoff at 400 MeV mass. CCFR's measurement underscores the importance of looking for trident events in getting tighter constraints on the parameter space. Figure from *

^{*} W. Altmannshofer, S. Gori, M. Pospelov, and I. Yavin, "Neutrino trident production: A powerful probe of new physics with neutrino beams," Physical Review Letters, vol. 113, no. 9, p. 091 801, 2014.

WHERE TO LOOK FOR TRIDENTS?

- Dimuon events in the high energy regime (100 GeV ~ 10 PeV) [2] where increase in the cross-section can lead to the observation of trident events in neutrino telescope detectors like IceCube, Antares etc.
- The detections of TeV–PeV neutrinos by IceCube have already been a breakthrough.
- High instrumented volume of IceCube (1km^3)
- IceCube has 10 years of data.

ICECUBE DETECTOR

ICECUBE DETECTOR

- Neutrino Telescope at the geographical South Pole
 - Optical (Digital **Optical** sensors Modules: DOMs) deployed in a 3-D hexagonal lattice along cables ('strings'), starting from 1.5 km below Earth's surface to minimize atmospheric background from cosmic rays.

Figure from:

https://user-web.icecube.wisc.edu/~mda65/talks/thesis.pdf

CHERENKOV CONE: OPTICAL EQUIVALENT TO A SONIC BOOM

- A charged particle in ice can travel faster than speed of light and emit Cherenkov radiation.
- It is this light that is measured by DOMs and quantized into discrete hits. Hence the prefix: digital

CLASSIFICATION

SEARCH FOR TRIDENT EVENTS

FEATURES: NUMBER OF HIT DOMs

FEATURES: NUMBER OF HIT STRINGs

FEATURES: SHORTEST DISTANCE MEAN

- N : Number of hit DOMS
- $Q\,$: Total charge (light) of all hit DOMs
- d_i : Distance of closest approach of the ith hit DOM from the track.
- q_i : Total light seen by ith hit DOM.
- $ar{d}\,$: Average separation of hit DOMs from the track.

FEATURES: WEIGHTED SHORTEST DISTANCE DEVIATION

FEATURES: CLUSTERING [1/2]

FEATURES: CLUSTERING [2/2]

MACHINE-LEARNING ANALYSIS

BOOSTed decision tree

- Together we learn from the mistakes of our past.
- Start with a decision tree and get its output
- Compare this output with the actual output.
- If they are not the same, those events are assigned incorrectly.
- Correct for these mistakes in the next tree.
- Repeat until the stopping condition.

Ensemble Learning

RESULTS: TRAINING AND VALIDATION [1/3]

- BDT Score: 1 means signal and
 0 is background.
- Train on only Class-A events.
- Split the training sample into training and validation (80-20).

RESULTS: TRAINING AND VALIDATION [2/3]

Fig: Training and Validation results using BDT. The optimized values for number of trees and tree depth are 663 and 12 respectively.

- Train on only Class-A events.
- Split the training sample into training and validation (80-20).
- Optimize the hyperparameter values like tree depth, number of trees etc.
- **Test the validation.**
- Use Kolomogorov-Smirnov
 Test (KS) to check if the two-distributions are identical.
- If not, there is overtraining.
- By decreasing the tree depth and the number of trees, reduce overtraining.

RESULTS: TRAINING AND VALIDATION [3/3]

Fig: Training and Validation results using BDT. The optimized values for number of trees and tree depth are 200 and 5 respectively.

- This is the final selection. The KS-values for both signal background are more than 0.001 (decided cut).
- Cannot get rid of overtraining completely.
- Accept some.

Fig: Testing Results. There is significant improvement over singal to background separation using XGBOOST.

Fig: Testing Results. Non-normalized actual Event Rate in log scale.

31

Fig: ROC-AUC Curve. Class-A with background has the maximum area in this curve (Around 0.86).

	Actual Positive	Actual Negative
Predicted Positive	True Positive (TP)	False Positive (FP)
Predicted Negative	False Negative (FN)	True Negative (TN)
True Positive Rate = $\frac{TP}{TP+FN}$		
False Positive Rate = $\frac{FP}{P}$		

FP+TN

RESULTS: Approximate Median Significance (AMS)

$$\mathrm{AMS}=\sqrt{2(N_s+N_b)\log(1+rac{N_s}{N_b})-N_s}$$

- $N_s\,$: Number of signal events
- $N_b\,$: Number of background events
- In case of high background, AMS is asymptotically equal to

QUANTUM MACHINE LEARNING ARCHITECTURES

CONCLUSIONS

CONCLUSIONS

NEXT STEPS

THANK-YOU

BACKUP-SLIDES

DECISION TREES: CLASSIFY FOR US [1/9]

Feature_2

Can you use a line to separate one class events from the other?

Feature_1

DECISION TREES: CLASSIFY FOR US [2/9]

Root Node 000000000000000 000000000000000

DECISION TREES: CLASSIFY FOR US [3/9]

DECISION TREES: CLASSIFY FOR US [4/9]

DECISION TREES: CLASSIFY FOR US [5/9]

.

DECISION TREES: CLASSIFY FOR US [6/9]

 $p_i\,$: probability of each class (signal and bkg.)

DECISION TREES: CLASSIFY FOR US [7/9]

Clearly entropy of root node is 1 (max. value).

DECISION TREES: CLASSIFY FOR US [8/9]

Clearly entropy of root node is 1 (max. value).

Entropy for is 0 (Pure leaf node).

DECISION TREES: CLASSIFY FOR US [9/9]

NEUTRINO TRIDENT EVENTS: MUONIC CHANNEL

Diagrams d and e: W-Bosons are ON-SHELL. High energy neutrinos (above ~ 3TeV) [1] can produce on-shell W boson via these diagrams and enhance the eventrate at the detectors.

1. https://indico.fnal.gov/event/44492/contributions/214325/attachments/143935/182431/WIN_2021_Poster

CROSS-SECTION

Fig: Total cross-section for simuons and dimuons against incoming neutrino energy. Figure from [1]

- In the energy range [10 GeV - 3 TeV], the ordinary CC-DIS cross-section is roughly 10000 orders of magnitude higher than the trident cross section.
- At roughly 3 TeV range, trident cross-section jumps due to the resonance effect from the on-shell W-boson channels.
- Beyond 100 TeV, the trident cross-section starts to decrease.

1. https://arxiv.org/abs/1910.08090

DIGITAL OPTICAL MODULE (DOM): DATA ACQUISITION MODULES

13 mm thick glass sphere containing a Photo-Multiplier Tube (PMT) to measure light.

Figure from: https://iucss.sitehost.iu.edu/sme2021/lectures

Topic: Search for Trident Events with Cherenkov Detectors Nakul Aggarwal

PARTICLE SIGNATURES IN ICECUBE

EXTENSIVE AIR SHOWERS

FLUX SOURCES

TRACK RECONSTRUCTION

- Track reconstruction problem: Given a set of observations, the goal is to recover the track of a muon
- Challenges: Light propagating through the ice is affected by scattering and absorption. As a result, the Cherenkov light radiated by a muon can arrive early or late than the expected time on a DOM due to ice scattering. Therefore, we measure the quantity called time residual= geometric time-arrival time.
- Hypothesis: Single Muon

TRACK RECONSTRUCTION

Selection

Criteria:

- 1. Neutrino sources: Atmospheric showers and astrophysical neutrino flux.
- 2. Highest track separation (white line) of the dimuons inside the IceCube detector is greater than 20m.

Event Rate Prediction: A total of 41 events is predicted to satisfy the selection criterion as double-track trident events in 10 years of IceCube data.

[3] D. E. Groom, N. V. Mokhov and S. I. Striganov, Atom. Data Nucl. Data Tabl. 78, 183-356 (2001) doi:10.1006/adnd.2001.0861

SEARCH CHALLENGES WITH ICECUBE [1/2]

- Typical separation between the muons ~ O(30-50 m).
- Inter-string distance is 125 m.
- The two muons pass between two strings.

SEARCH CHALLENGES WITH ICECUBE [2/2]

- Typical separation between the muons ~ O(30-50 m).
- Inter-string distance is 125 m.
- The two muons pass between two strings.
- They almost mimic the behavior of a single muon.
- Since IceCube's medium is ice, there is light scattering.

DETECTOR TOP VIEW: GEOMETRY OPTIMIZATION

