Generative Models for Resonant Anomaly Detection

Elham E Khoda!, Ali Garabaglu! , Hui-Chi LinZ, Ben Nachman3, David Shih4, Shih-Chieh Hsul

I University of Washington 2 University of Michigan 3 LBNL 4 Rutgers University

ML4lets 2022

November 3, 2022 32 s W
UNIVERSITY of

WASHINGTON



Search for Resonant Signal

Assumption:
Signal is localized at least in one of the feature spaces
e Should appear as a bump

: Sideband : Signal { Sideband
Region : Region : Region
(SB) : (SR) :  (SB)

A.U.

General search strategy (without ML):
e Choose a discriminant observable (often the mass)

¢ Define sideband regions — low signal contamination
e Fit background in the sidebands
e [nterpolate the fit to the signal region

Background

Relies only on one observable!
e [ncrease sensitivity by taking a multi-variate approach
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Model background features in the SB

: Sideband : Signal : Sideband :
: Region : Region : Region :
(SB) : (SR) : (SB)

A.U.

Side band is defined based on the
observable where signal is expected to
be resonant

Model the multiple observables in the sideband regions
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Feature modeling with VAE

VAE / GAN to estimate the distributions in the Sideband *In this talk | will
e But then how do we know the distributions in the SR? focus on VAE
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Feature modeling with cVAE

Conditional VAE (cVAE) to estimate the distributions in the Sideband
e Conditioned on the observable where signal is localized

e | earn the modeling at the SB regions
e Interpolate it to the SR

Encoder | ... . Decoder
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/

Latent 7

/

Loss: Lyap = (1 — ) X Ly, + f X KL
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Why another method?

There are similar existing methods like

e ANODE

e | earns conditional density of data and background

and classifies them

e CATHODE

e Estimates the conditional density at the SB and

extrapolate it to SR — generates events

e Classify data from generated bkg in the SR

Both are flow-based density estimators

While Generative algorithms like cGAN and
cVAE cannot estimate the explicit density

e | earns the approximate density quite well

e More flexible than Normalizing Flows
e Easy to scale to many variable

Complementarity:
e Learn different features of the anomaly
e Fail differently in the absence of signal
e Pick different anomalies (false signal
detection) in bkg-only dataset
e Serve as a good complementary-check
e Help mitigate the overall bias uncertainty
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https://arxiv.org/abs/2001.04990
https://arxiv.org/abs/2109.00546

Overview of the Problem

* We are working with the LHC Olympics 2020 anomaly
detection challenge dataset

* Target signature: Final states with multiple jets

* Background: QCD multijet process
> No particular structure inside the jets

* Signal: Heavy new particle decaying into quarks — forming Dijet Mass__
arge-R jets =T
» with 2-prong or 3-prong structure inside (depending on the = Signal (3 ron)
origin )

1 Signal (3-prong)
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https://lhco2020.github.io/homepage/

LHCO 2020 Dataset

Dataset Summary:
* Background: 1M QCD dijet events

* Signal: 100k W’ (3.5 TeV) = X (500 GeV)
+Y (100 GeV) , with X— qg/qqg and Y —

da/qqq

* Both 2-prong and 3-prong signals are

used
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Jet Momentum
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cVAE with 6 features

Conditional VAE (cVAE) setup
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Normalized events
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Features in the SR
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Normalized events

12

ot
o
'

45

4.0 A

35 1

30 1

25 1

20 1

15 1

10 1

05 A

00

mjz - m,-l

] Signal + Background
Background

L} Signal (2-prong)
P ' Signal (3-prong)

00 05 Oh 06 08 lb
mj; - mj; [TeV]

i1
03,

(1 Signal + Background
Background

| Signal (3-prong)

00 02 04 06 08 10

Generative Models for Resonant Anomaly Detection

Normalized events

Normalized events
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Workflow

Define SR and SB regions

SR: m;; € [3.3, 3.7] TeV
SB: my; & (3.3, 3.7] TeV

jet Mass

1 Signal + Background
Background
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Workflow

Simulation —> Generated data

SB predictions

SB Input
cVAE
Train
on the
Side Band
(SB) © SB Output
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Workflow

SB predictions SR predictions

<&
cVAE &
Interpolate | - Lﬁ 2-prong signal: Classifier
: to the SR o 4 variables
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Significance Improvement: 2-prong signal

Classifier trained with 4 variables

20.0
e The VAE is trained with 6 variables CATHODE
e Classifier is also trained with 4 variables 17.5 - — CBVAE
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S/B scans: 2-prong signal
Classifier trained with 4 variables

Similar signal sensitivity for S/B > 0.3% >
e Similar signal sensitivity for 5/ 7 Maximum Achieved Significance = x SIC
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S/B scans: 2-prong signal

Classifier trained with 6 variables

Similar signal sensitivity with 6 variabl . - o S
e Similar signal sensitivity with 6 variables Maximum Achieved Significance = % S|C
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3-prong signal

Classifier trained with 6 variables

e Sensitive to the 3-prong signal as well!
e The sensitivity goes down as we start decreasing the injected signals
e Currently studying it to find an optimal setup
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Summary and Outlook

S/VB
2.02 1.35 1.02 0.680.510.340.17

Conditional VAE based approach looks promising

e Complementary to the density estimation methods 17.5-
(ANODE, CATHODE, e.t.c.) 15.0-
e More flexible than Flows 125-

e Max SIC is comparable to CATHODE
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Significance Improvement: 2-prong signal

Classifier trained with 6 variables

e The VAE is trained with 6 variables 209 e
e Classifier is trained with 6 variables 17.5 -

—— ldealized
------ random
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Significance Improvement (SIC) = TPR/ sqrt(FPR)
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Dataset Features

Signal Background
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Generated events in the signal region
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Generated events in the SR
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Currently working with the R&D dataset

It contains:
* Background: 1M QCD dijet events

* Signal: 100k W’ (3.5 TeV) = X (500 GeV) +Y (100 GeV) , with X— qgand Y — qq

Events are produced with Pythia8 and Delphes 3.4.1, with no pileup or MPI included

Event Selection:

* Single fat-jet (R=1) trigger with pt > 1.2 TeV
* Inl< 2.5

Dataset contains the kinematic variables of the leading and subleading jet (anti ktR=1.0)

Currently working with 2-prong signals only
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https://zenodo.org/record/4536377#.YQCAZ1NKit-

Signal and Sideband Regions

Dijet Mass
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VAE Structure

Input Encoder Latent Decoder Output

Input 6 features Dense z=pu+e"*xe Dense Output
dim=(nEvent, 6) dim=128 dim=128| | dim=(nEvent, 6)

¢ = rand.normal(0,1)
_ ELU tanh

Condition: m; Condition: &

dim=(nEvent, 1)

Lpyagp=(1-BYLysg + FLgy  ,p=107°
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