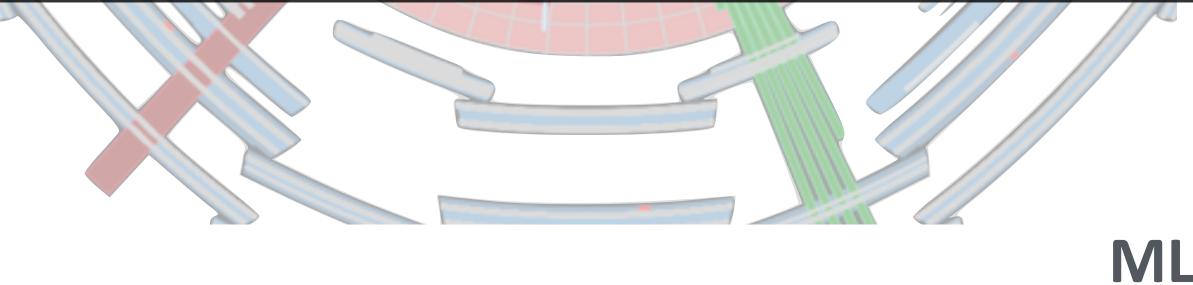


Generative Models for Resonant Anomaly Detection

<u>Elham E Khoda¹</u>, Ali Garabaglu¹, Hui-Chi Lin², Ben Nachman³, David Shih⁴, Shih-Chieh Hsu¹

¹ University of Washington ² University of Michigan ³ LBNL ⁴ Rutgers University



ML4Jets 2022 November 3, 2022

Accelerated Al Algorithms for Data-Driven Discovery

Search for Resonant Signal

Assumption:

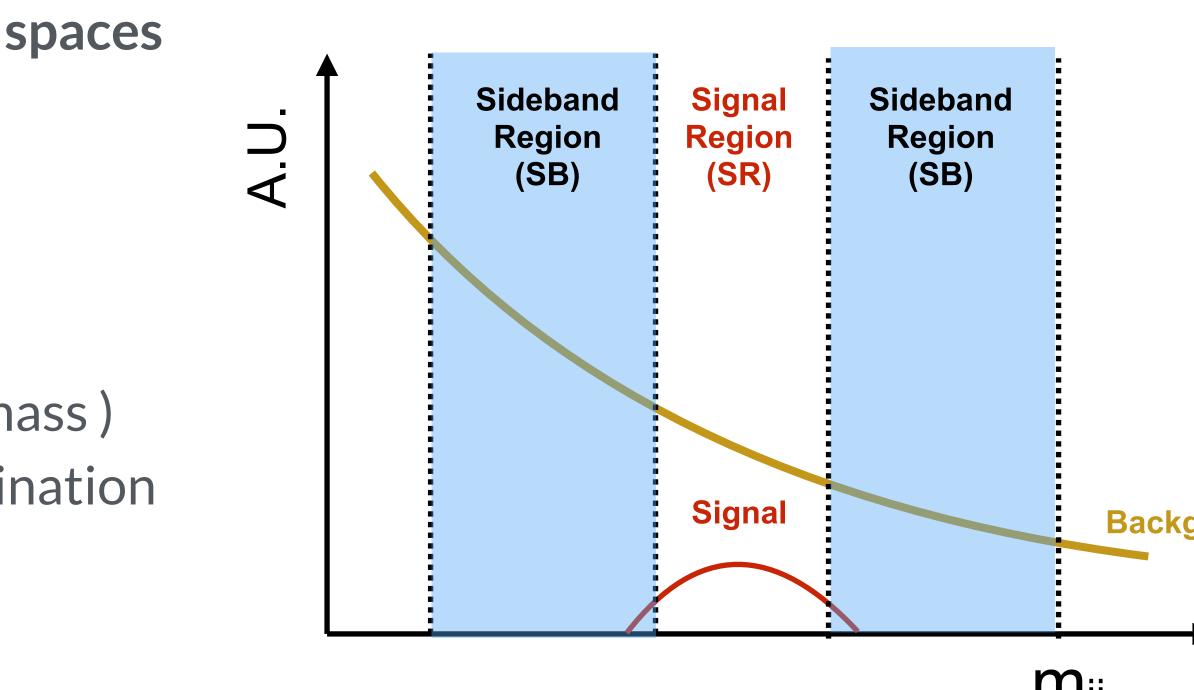
Signal is localized at least in one of the feature spaces

• Should appear as a bump

General search strategy (without ML):

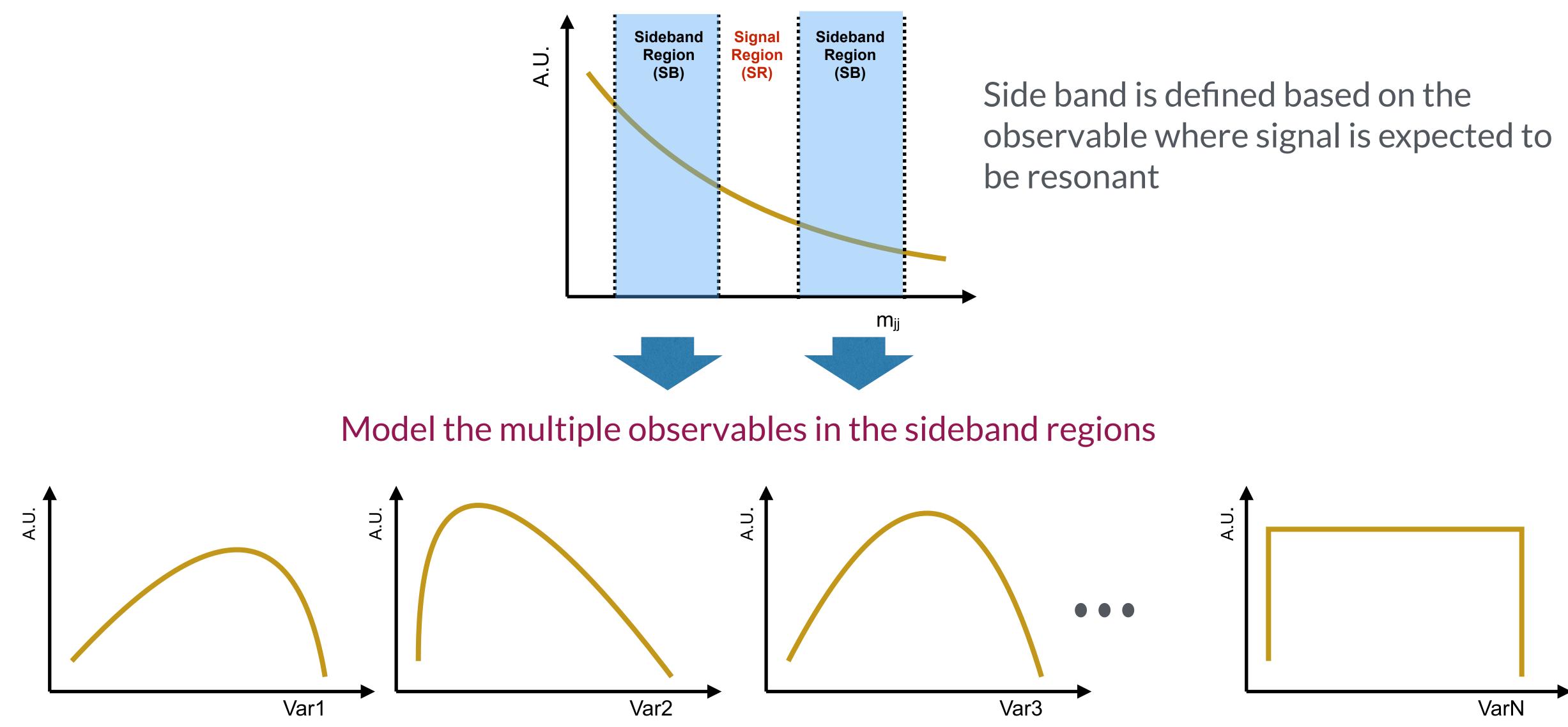
- Choose a discriminant observable (often the mass)
- Define sideband regions \rightarrow low signal contamination
- Fit background in the sidebands
- Interpolate the fit to the signal region

Relies only on one observable! • Increase sensitivity by taking a multi-variate approach



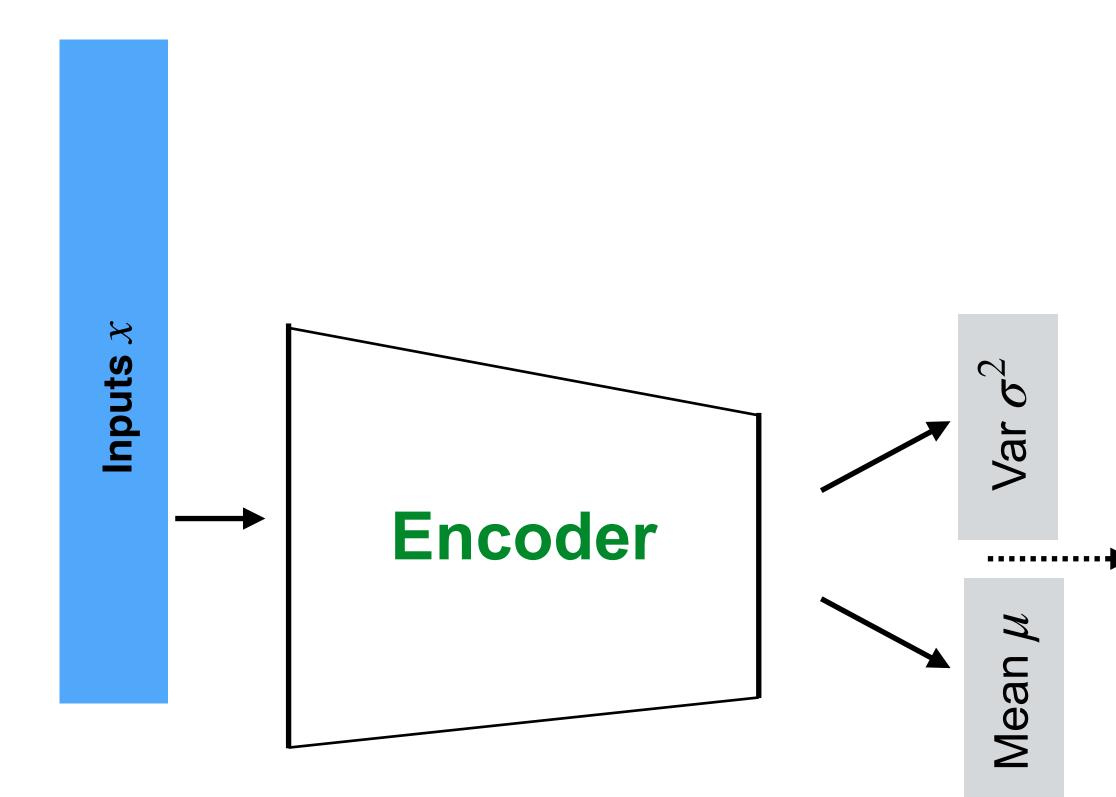
m_{ii}

Model background features in the SB

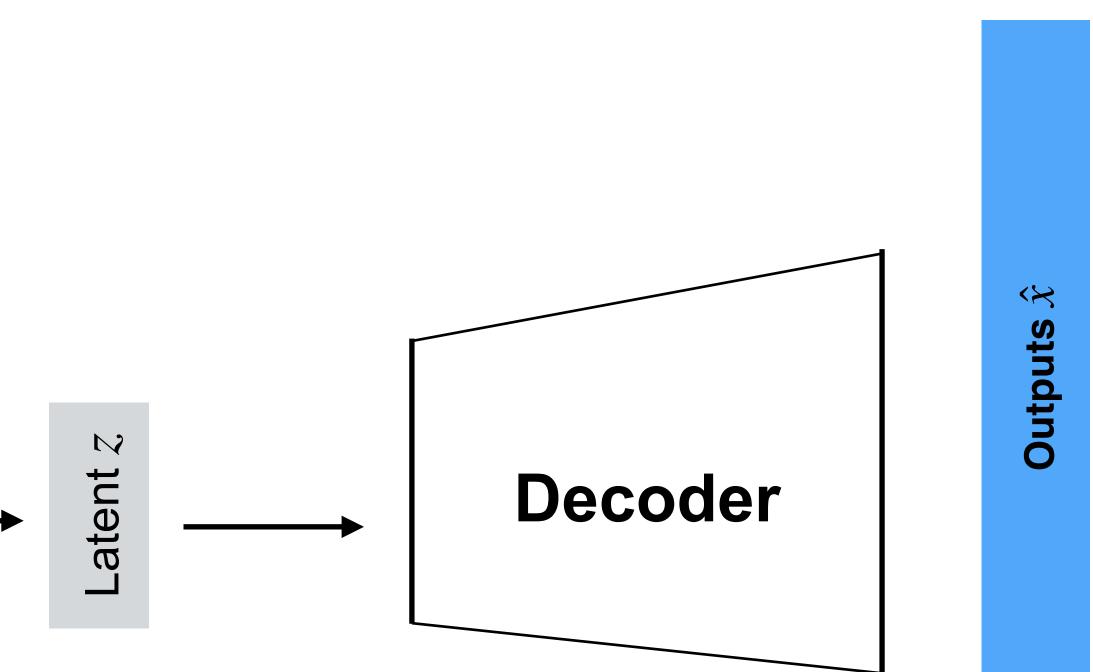


Feature modeling with VAE

VAE / GAN to estimate the distributions in the Sideband • But then how do we know the distributions in the SR?

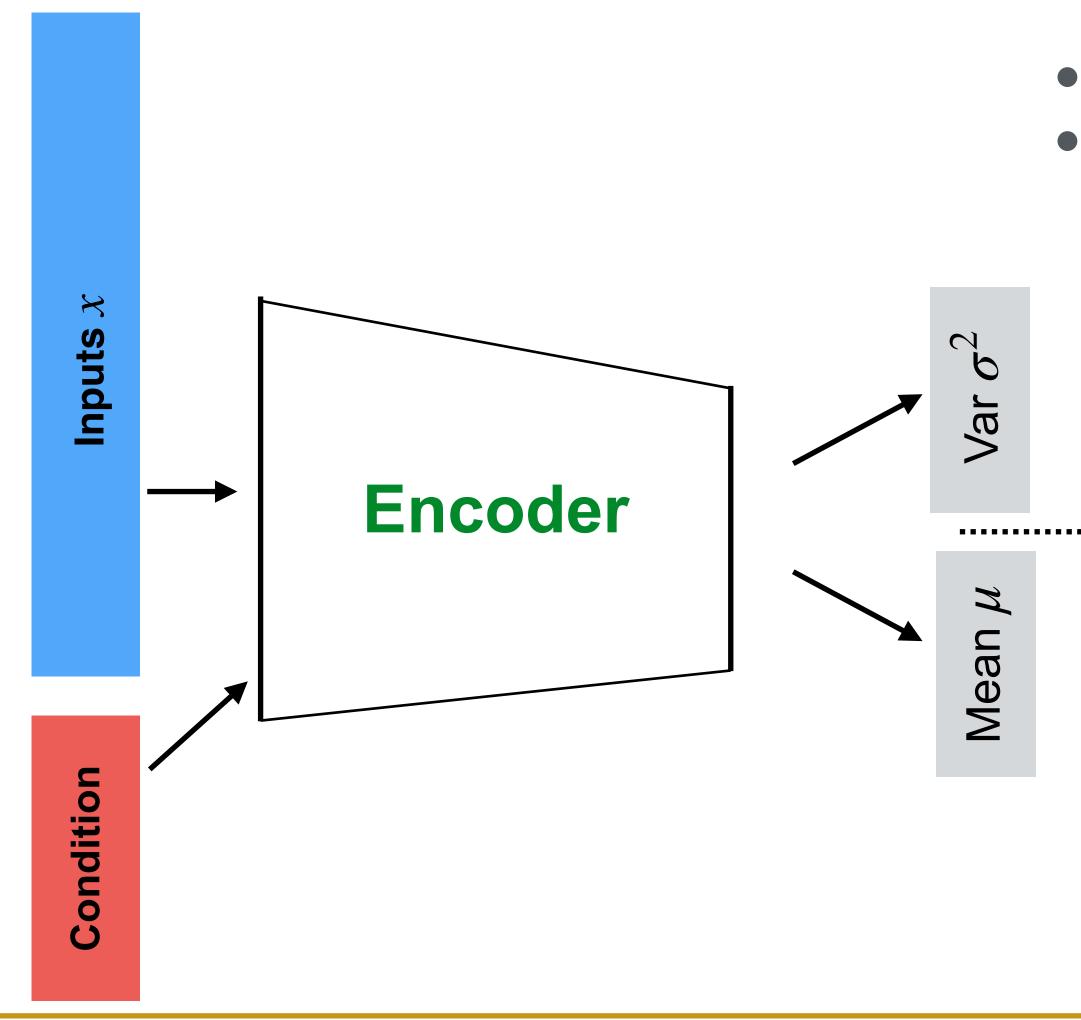


*In this talk I will focus on VAE

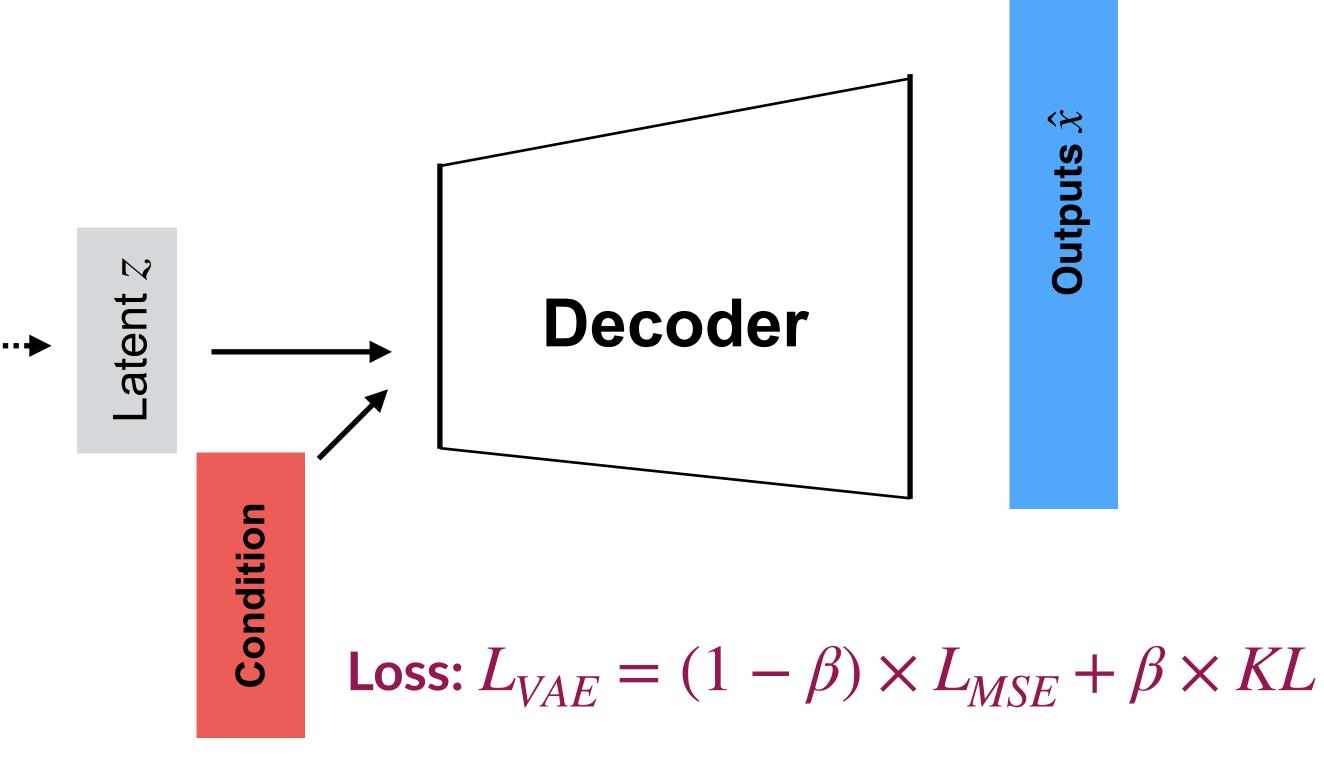


Feature modeling with cVAE

Conditional VAE (cVAE) to estimate the distributions in the Sideband • Conditioned on the observable where signal is localized



- Learn the modeling at the SB regions
- Interpolate it to the SR



Why another method?

There are similar existing methods like

• ANODE

• Learns conditional density of data and background and classifies them

• <u>CATHODE</u>

- Estimates the conditional density at the SB and extrapolate it to SR \rightarrow generates events
- Classify data from generated bkg in the SR

Both are flow-based density estimators

While Generative algorithms like cGAN and cVAE cannot estimate the explicit density

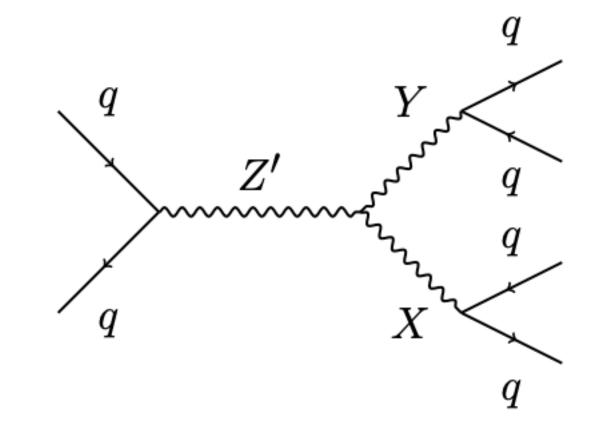
- Learns the approximate density quite well
- More flexible than Normalizing Flows
- Easy to scale to many variable

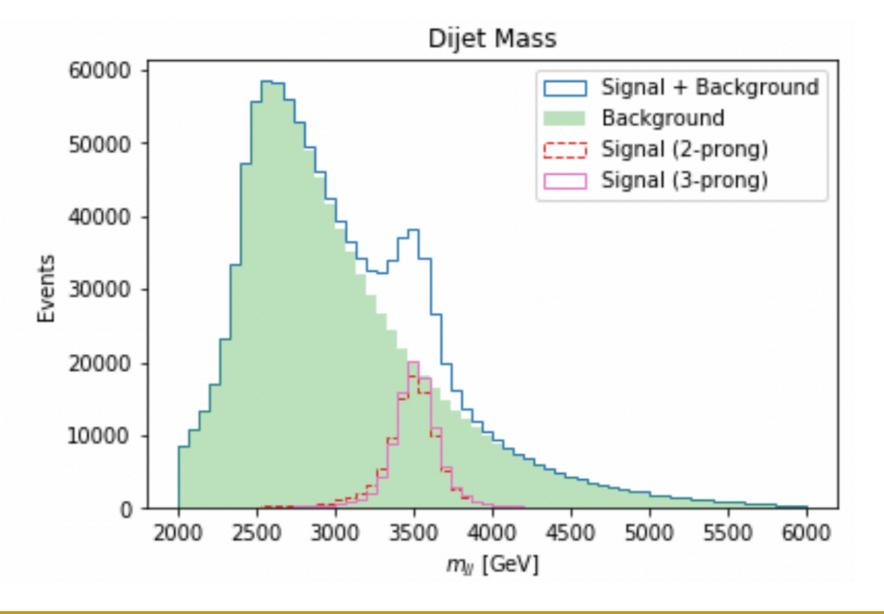
Complementarity:

- Learn different features of the anomaly
- Fail differently in the absence of signal
 - Pick different anomalies (false signal detection) in bkg-only dataset
- Serve as a good complementary-check
- Help mitigate the overall bias uncertainty

Overview of the Problem

- We are working with the <u>LHC Olympics 2020</u> anomaly detection challenge dataset
- **Target signature**: Final states with multiple jets
- **Background:** QCD multijet process • No particular structure inside the jets
- Signal: Heavy new particle decaying into quarks → forming large-R jets
 - with 2-prong or 3-prong structure inside (depending on the origin)

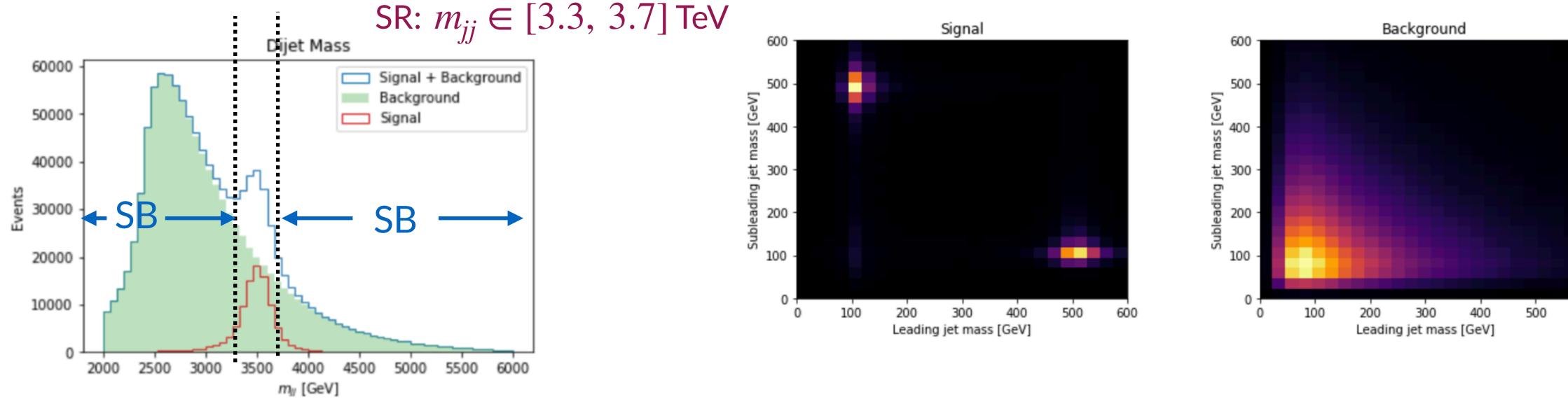




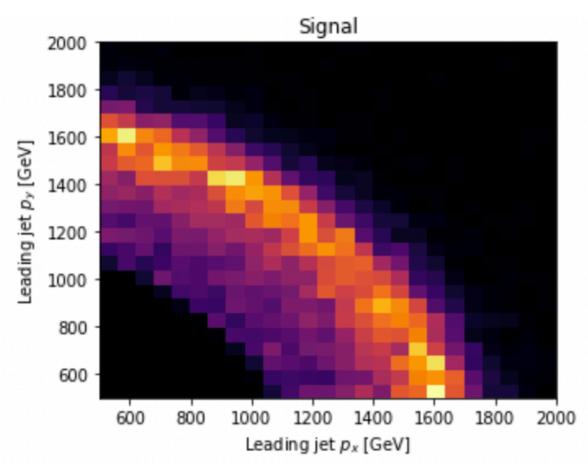
LHCO 2020 Dataset

Dataset Summary:

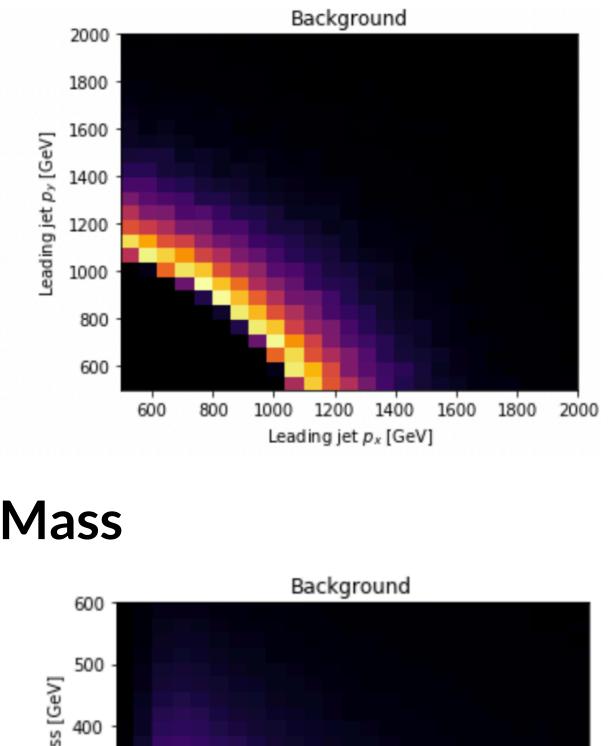
- Background: 1M QCD dijet events
- Signal: 100k W' (3.5 TeV) \rightarrow X (500 GeV) + Y (100 GeV), with $X \rightarrow qq/qqq$ and $Y \rightarrow$ qq/qqq
- Both 2-prong and 3-prong signals are used



Elham E Khoda (UW)

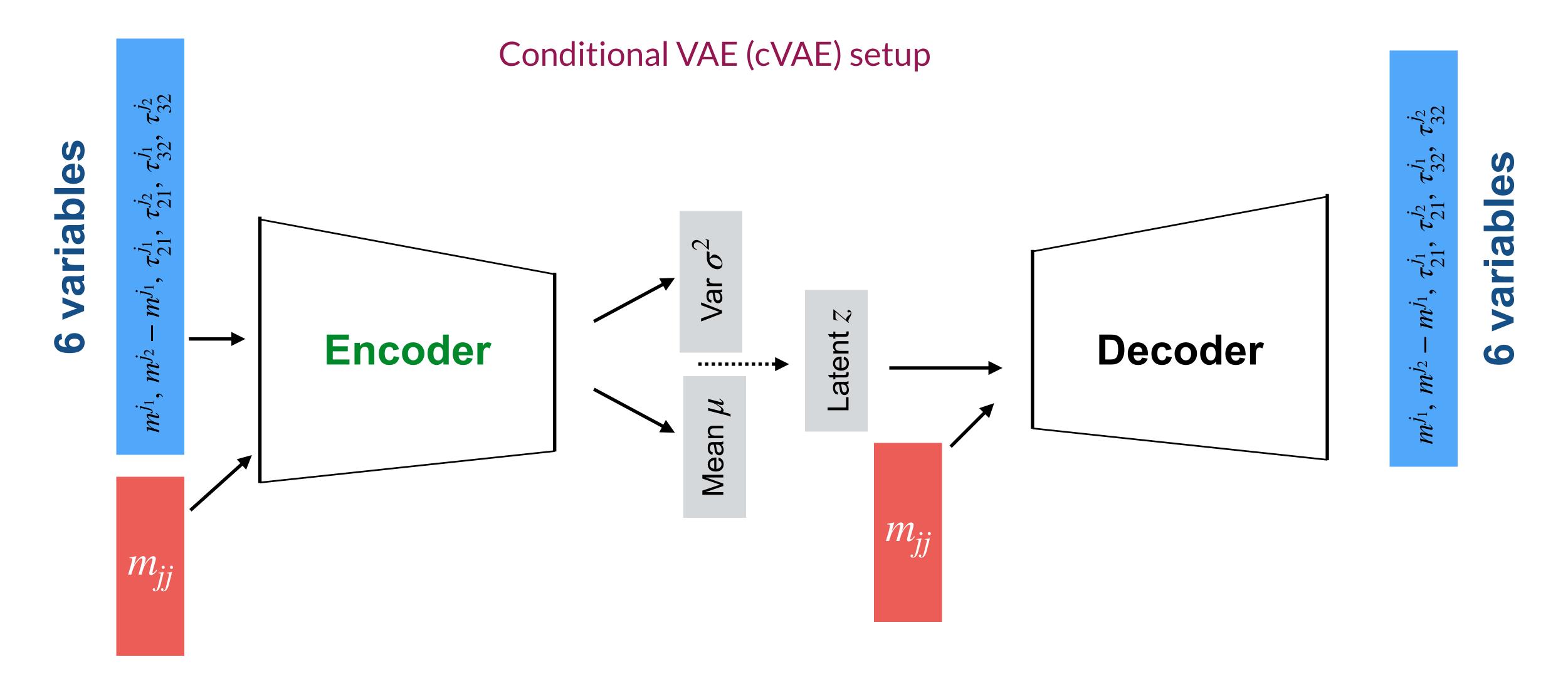


Jet Momentum

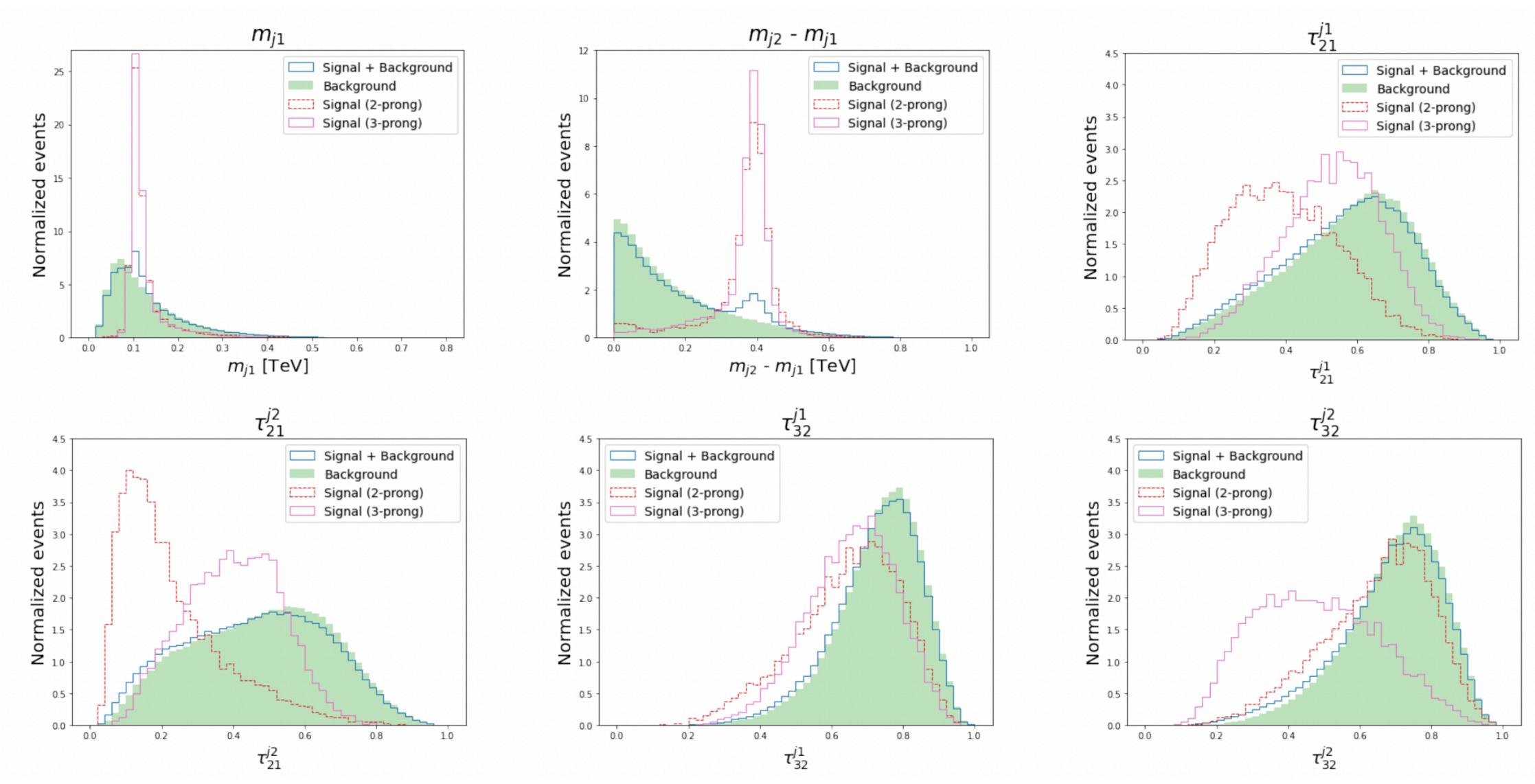


Jet Mass

cVAE with 6 features



Features in the SR



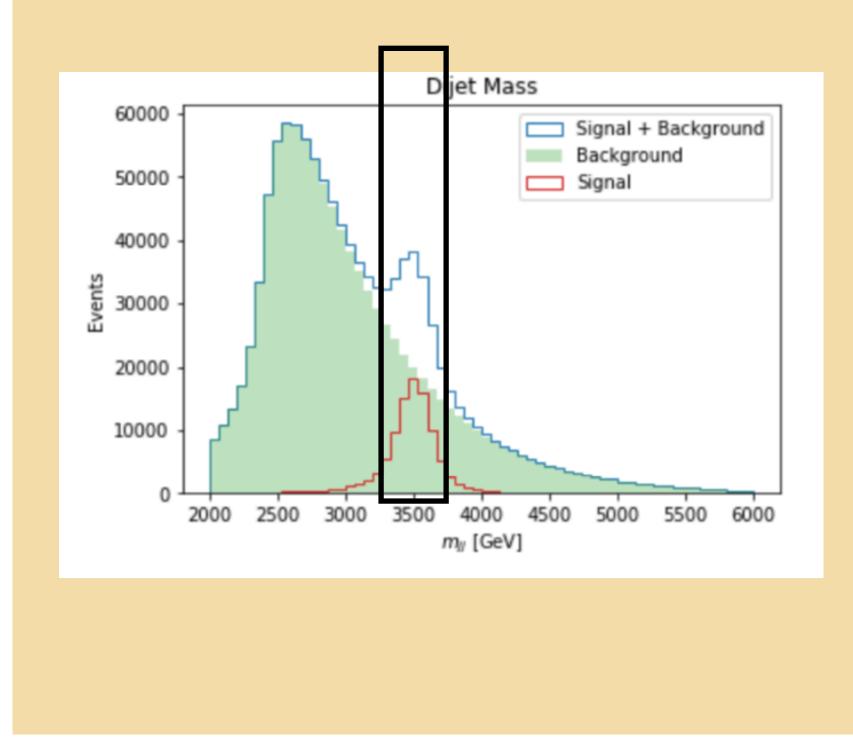
Elham E Khoda (UW)

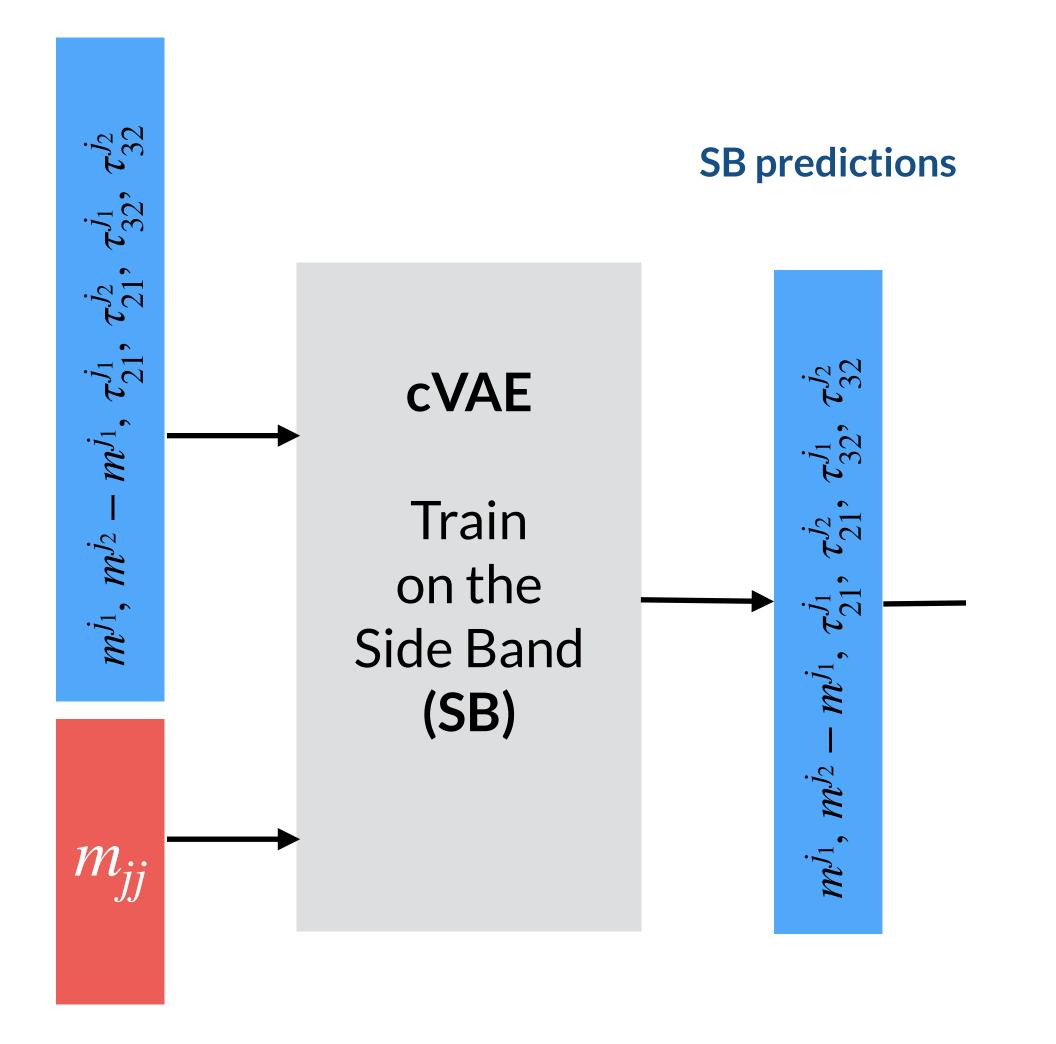
Workflow

$$m^{j_1}, m^{j_2} - m^{j_1}, \tau^{j_1}_{21}, \tau^{j_2}, \tau^{j_1}_{32}, \tau^{j_2}_{32}$$

Elham E Khoda (UW)

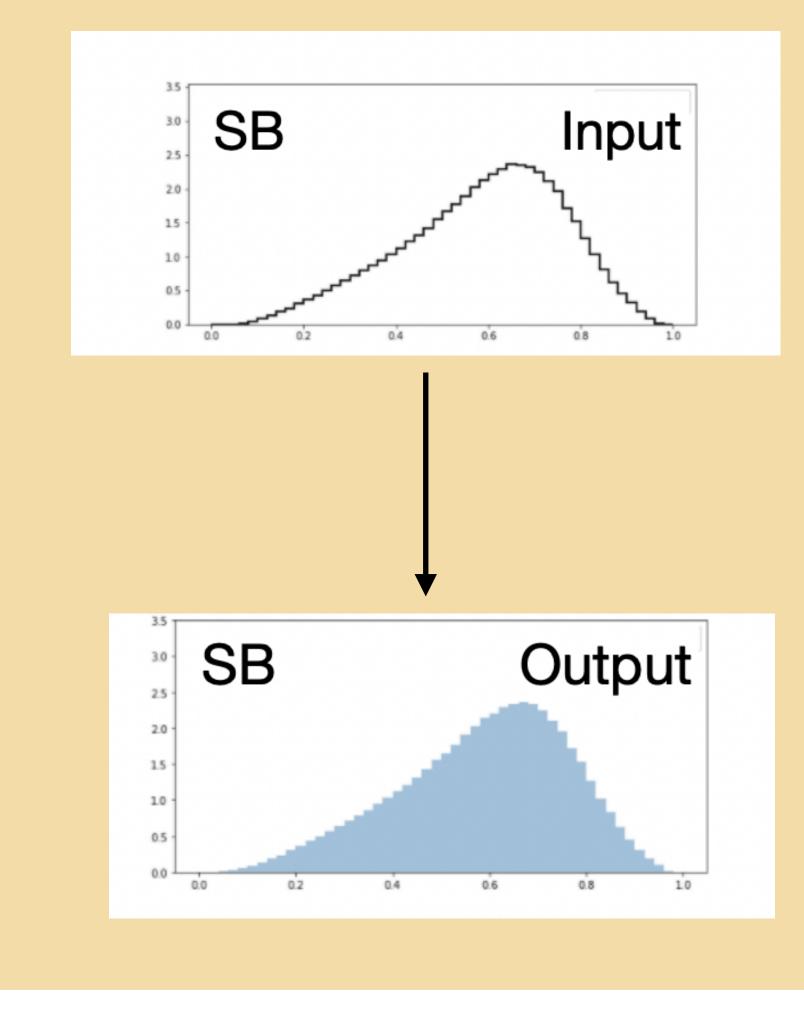
Define SR and SB regions SR: $m_{jj} \in [3.3, 3.7]$ TeV SB: $m_{jj} \notin [3.3, 3.7]$ TeV

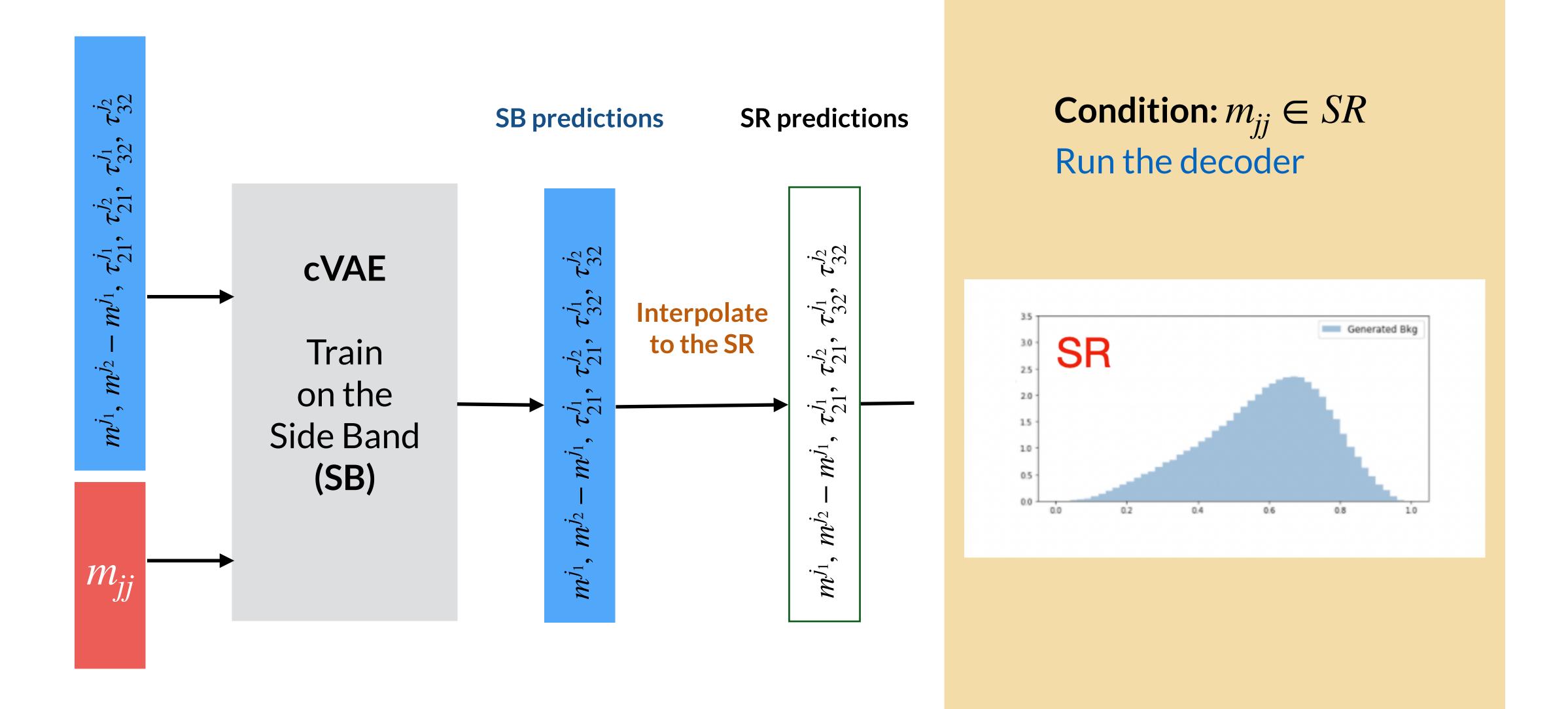




Elham E Khoda (UW)

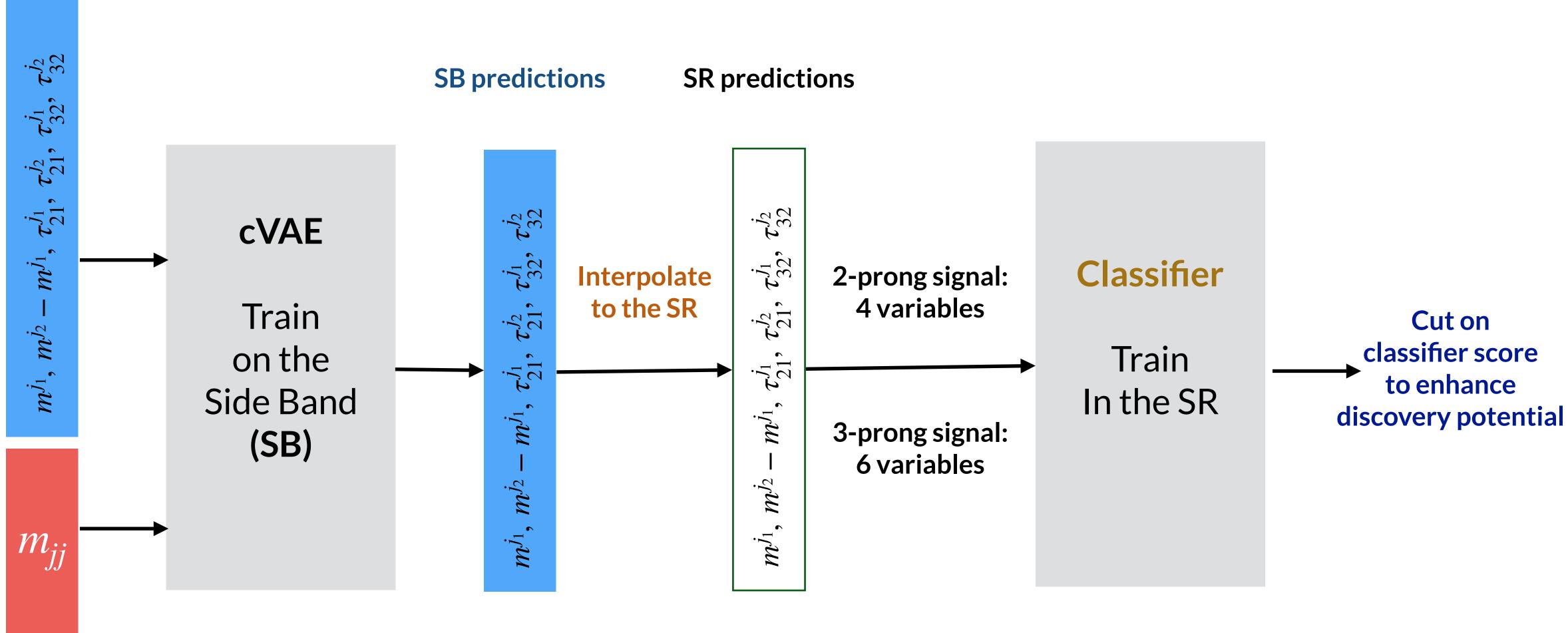
Workflow





Elham E Khoda (UW)

Workflow



Elham E Khoda (UW)

Workflow

14 /19

Significance Improvement: 2-prong signal

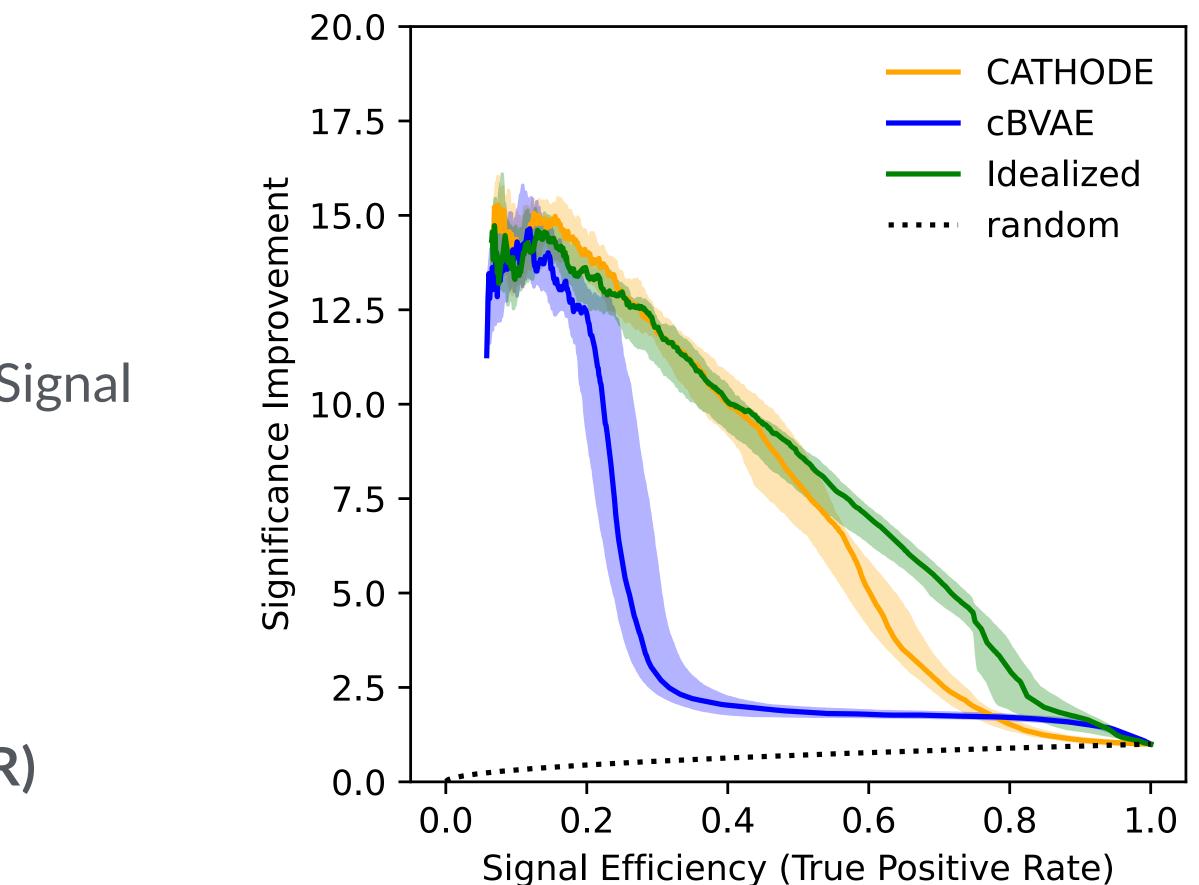
Classifier trained with 4 variables

- The VAE is trained with 6 variables
- Classifier is also trained with 4 variables

Max SIC matches CATHODE and Idealized

Currently it does not perform that well for high Signal Efficiency

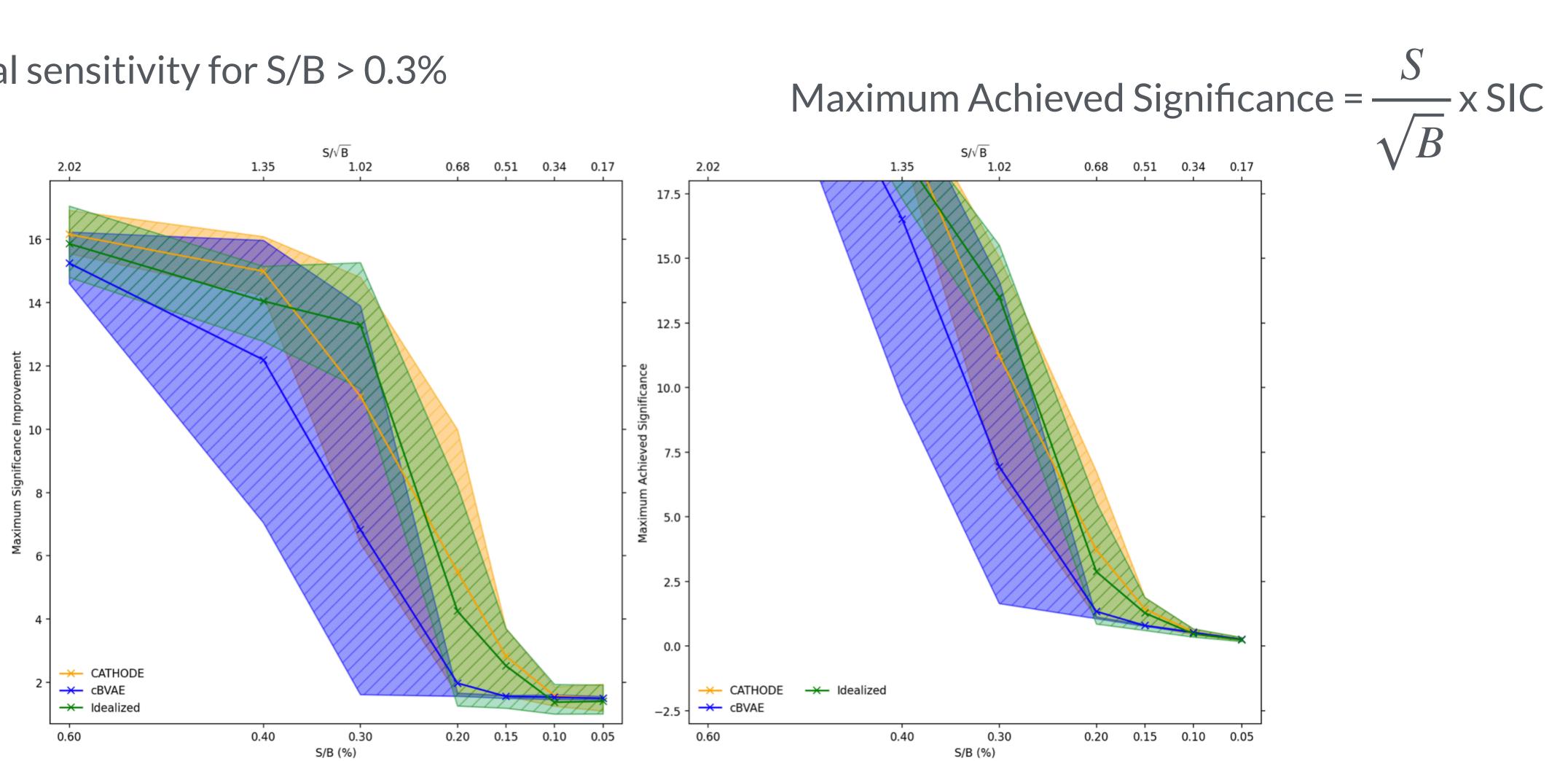
Significance Improvement (SIC) = TPR/ sqrt(FPR)



S/B scans: 2-prong signal

Classifier trained with 4 variables

• Similar signal sensitivity for S/B > 0.3%

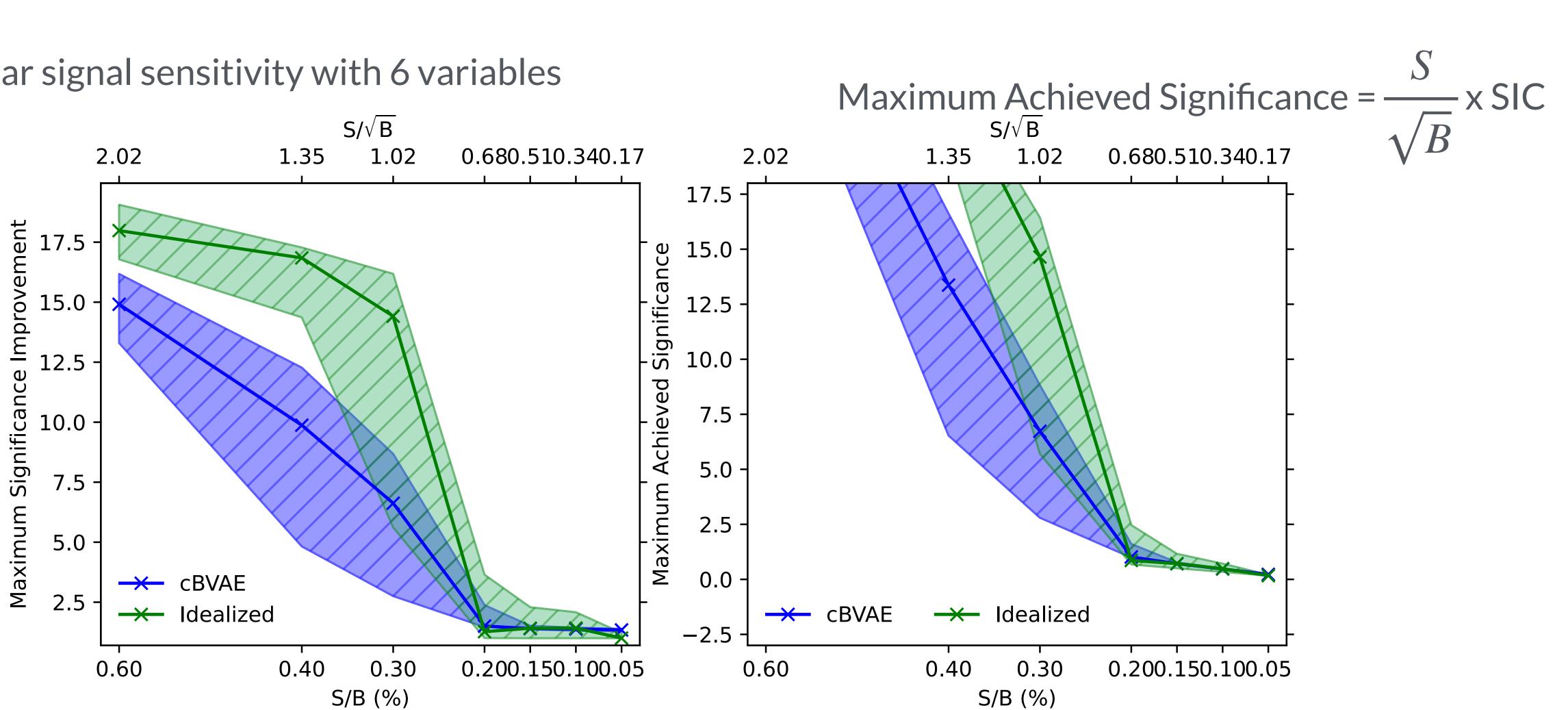


Generative Models for Resonant Anomaly Detection

S/B scans: 2-prong signal

Classifier trained with 6 variables

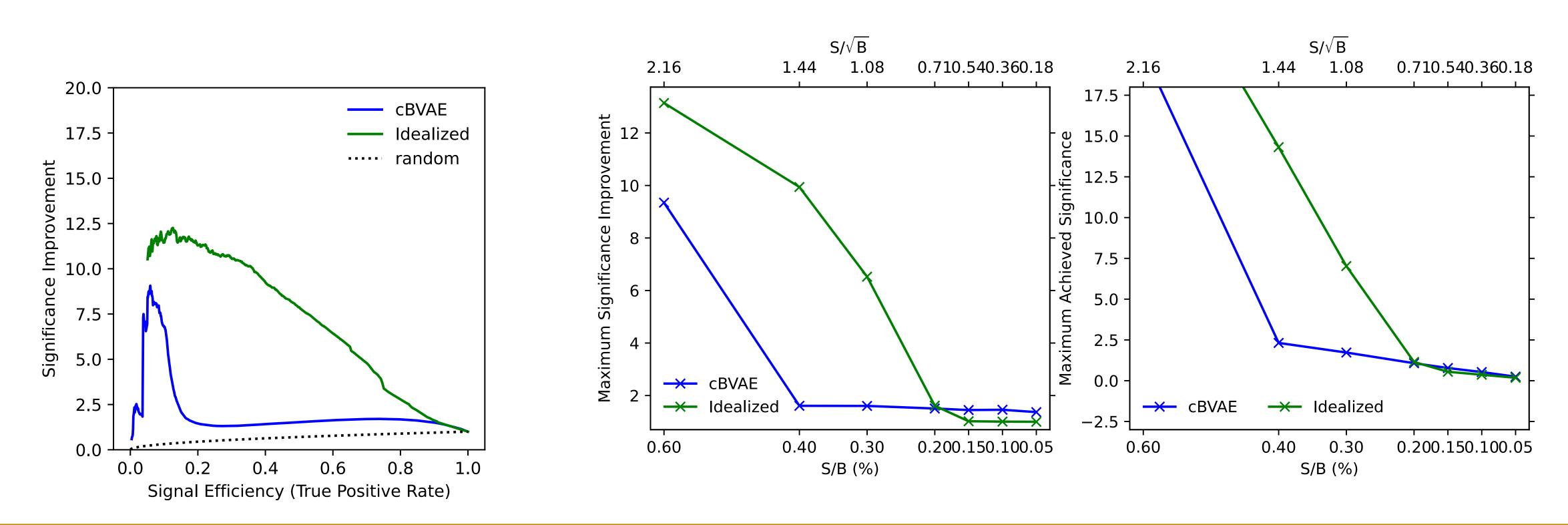
• Similar signal sensitivity with 6 variables



3-prong signal

Classifier trained with 6 variables

- Sensitive to the 3-prong signal as well!
- The sensitivity goes down as we start decreasing the injected signals
- Currently studying it to find an optimal setup



Elham E Khoda (UW)

Summary and Outlook

Conditional VAE based approach looks promising

- Complementary to the density estimation methods (ANODE, CATHODE, e.t.c.)
- More flexible than Flows
- Max SIC is comparable to CATHODE

Easy to scale

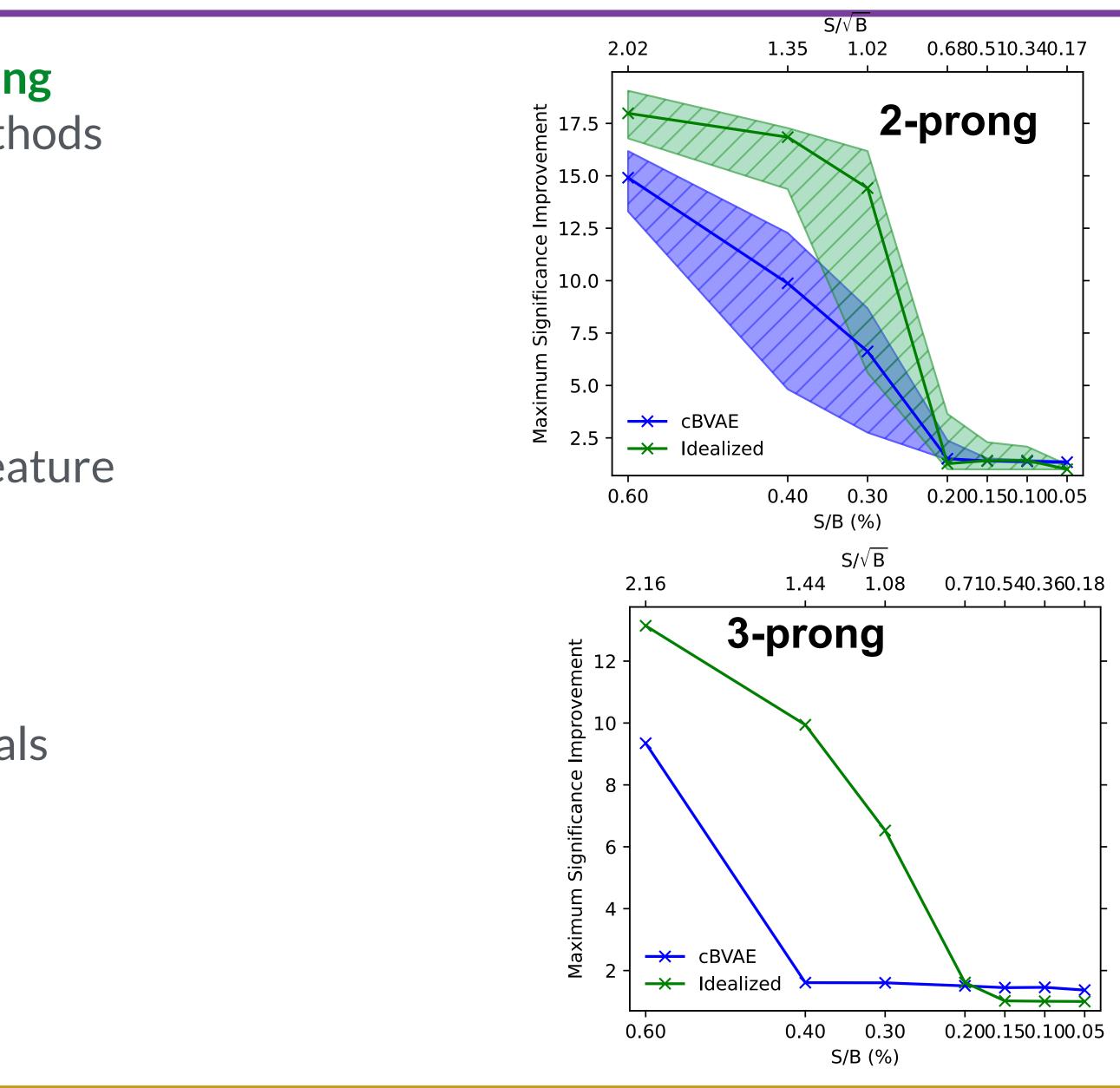
• Results with 6 variables, higher dimensional feature space is also studied

Sensitivity to different signatures

• Studying both 2-prong and 3-prong di-jet signals

Thanks!

Let me know if you have any suggestions



BACKUP

Significance Improvement: 2-prong signal

Classifier trained with 6 variables

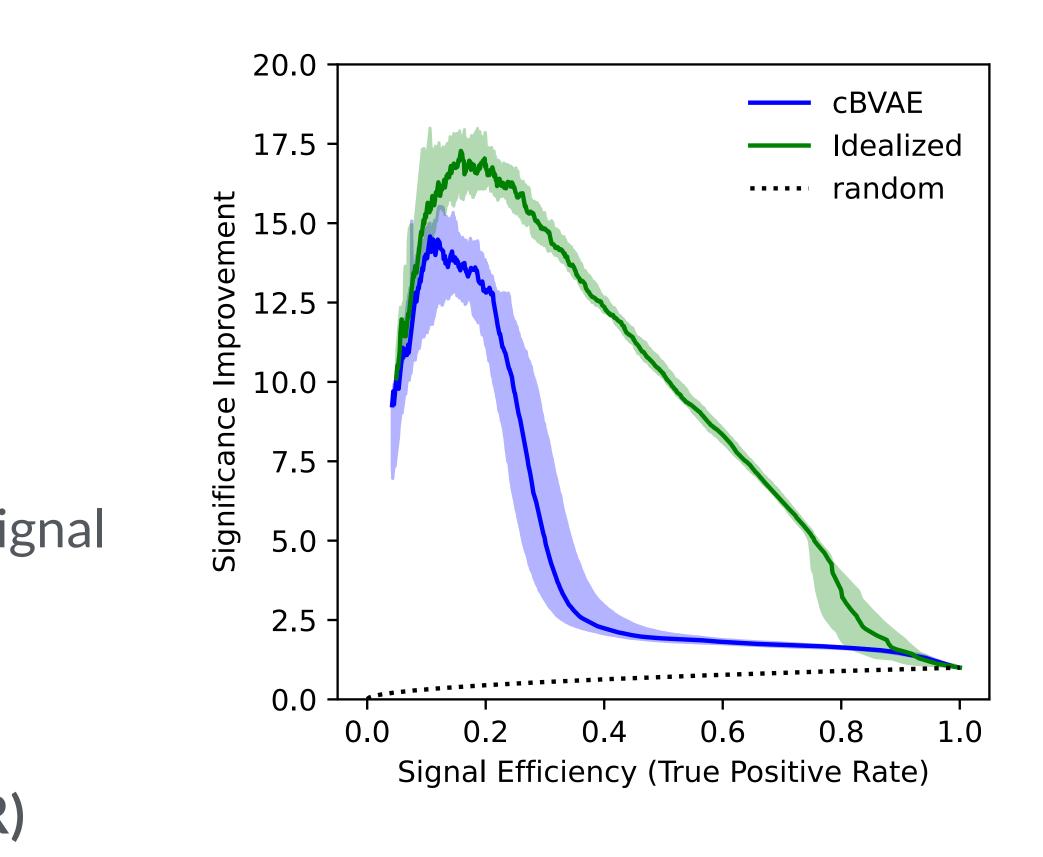
- The VAE is trained with 6 variables
- Classifier is trained with 6 variables

Still Sensitive to the signal!

• Max SIC is more than 10

Currently it does not perform that well for high Signal Efficiency

Significance Improvement (SIC) = TPR/ sqrt(FPR)

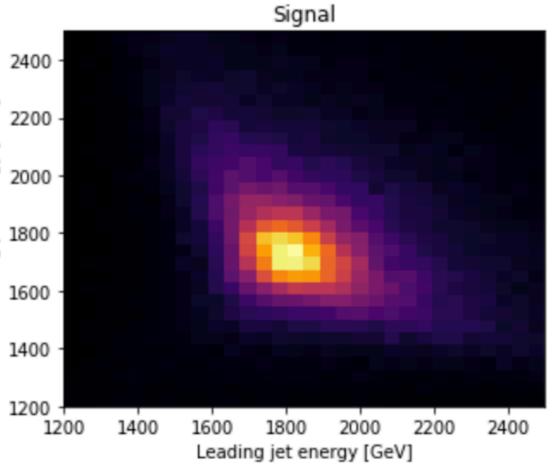


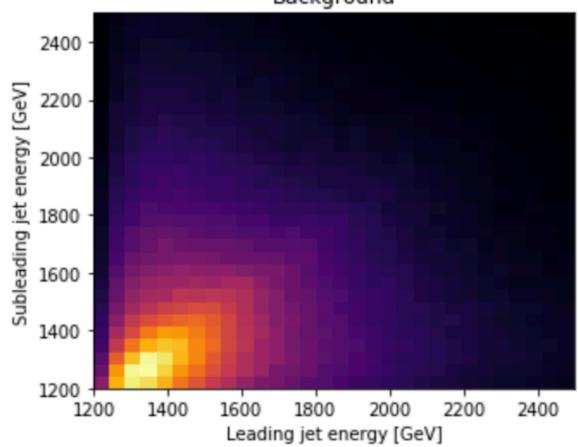
Dataset Features

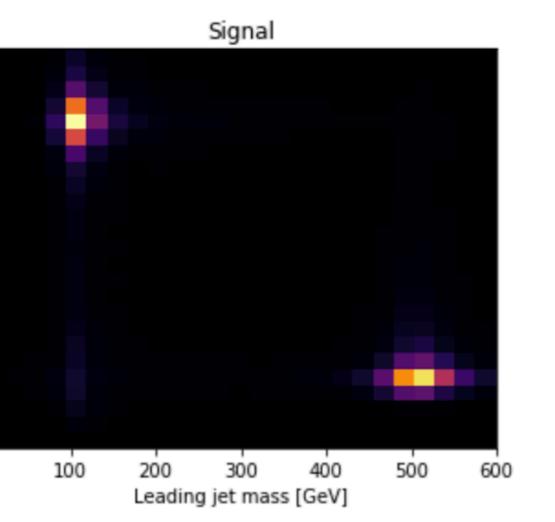
600 500 Subleading jet mass [GeV] 100 0 0

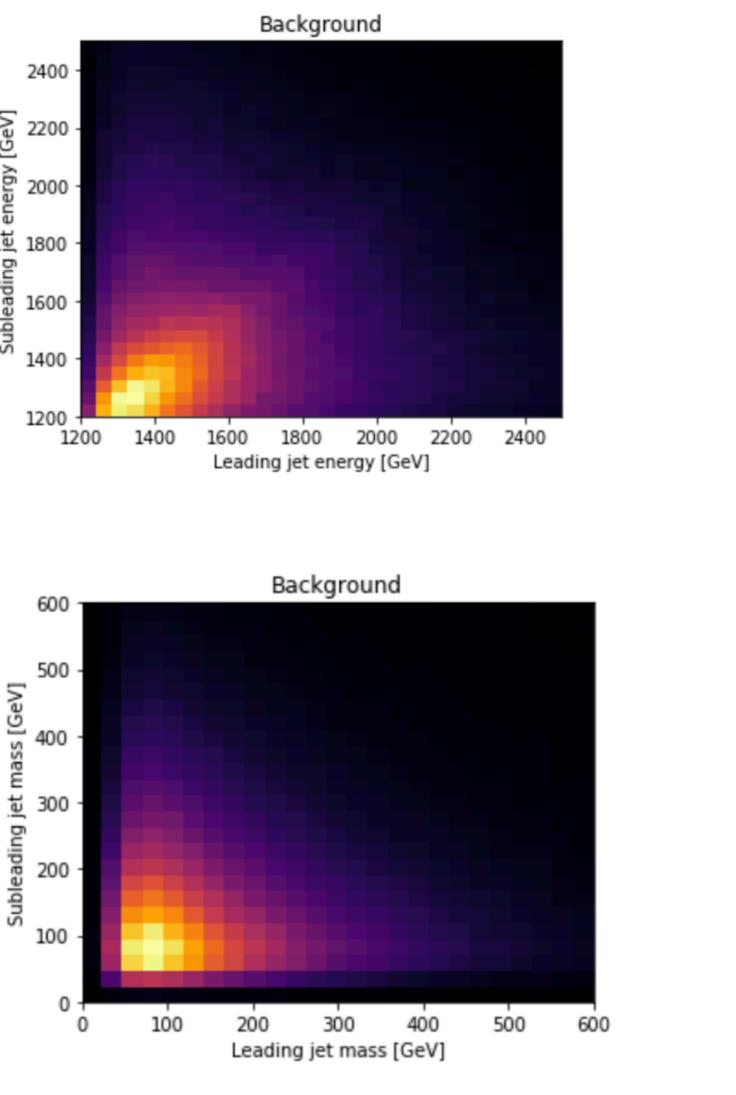
Jet Energy

Jet Mass



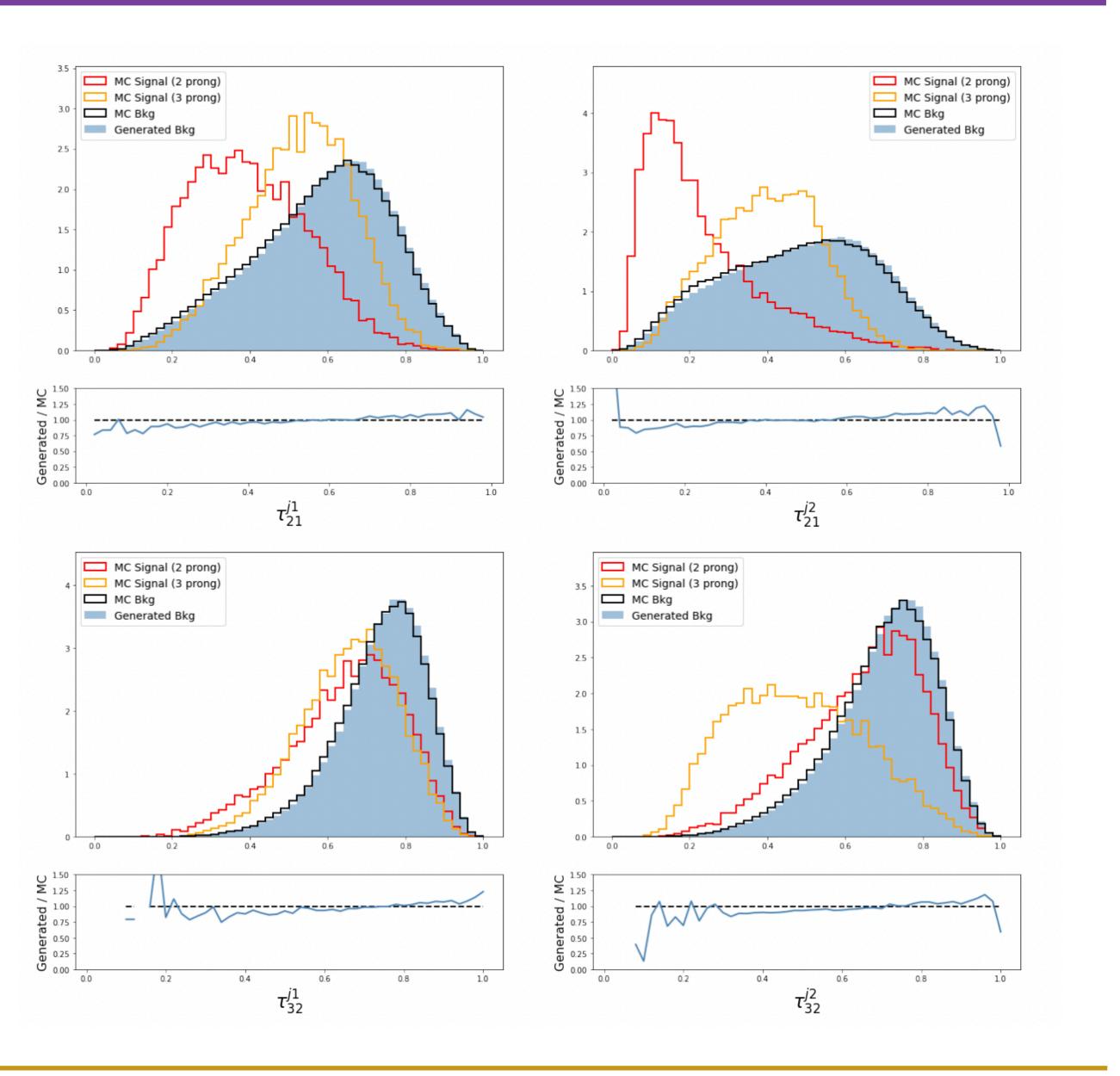






Generated events in the SR

Generated events in the signal region



Currently working with the <u>R&D dataset</u> It contains:

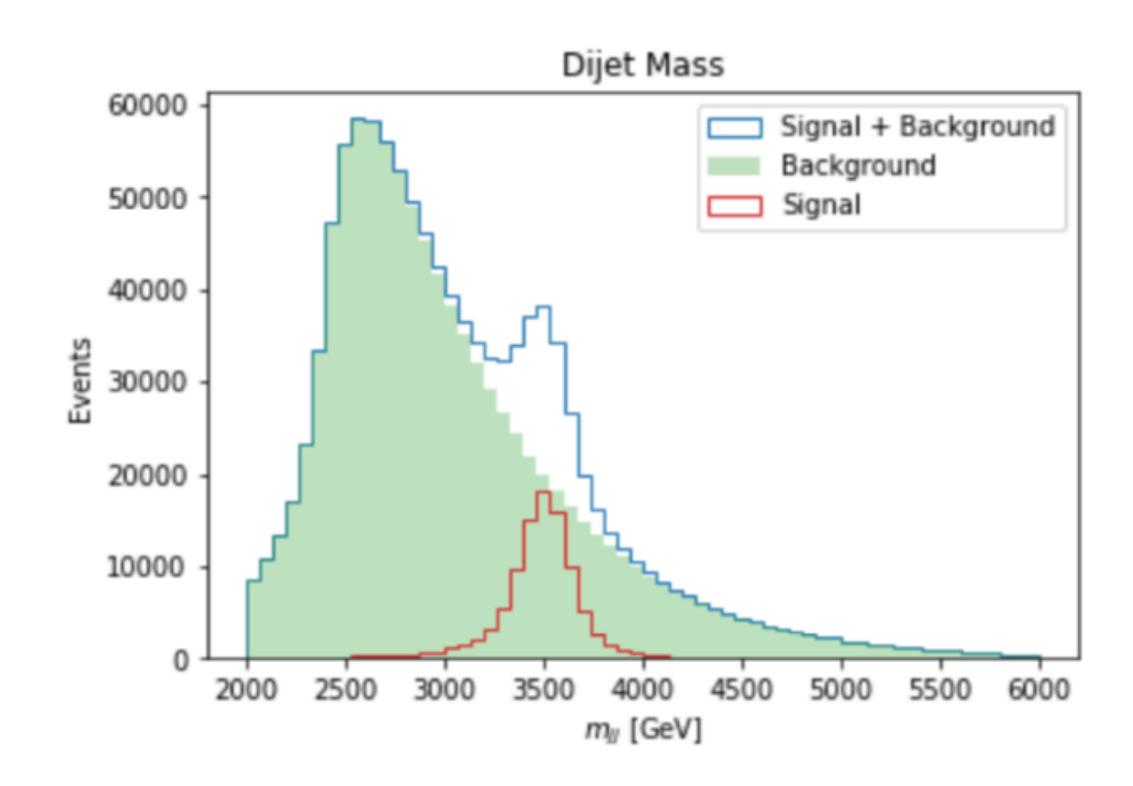
- **Background:** 1M QCD dijet events
- Signal: 100k W' (3.5 TeV) \rightarrow X (500 GeV) + Y (100 GeV), with X \rightarrow qq and Y \rightarrow qq

Events are produced with Pythia8 and Delphes 3.4.1, with no pileup or MPI included **Event Selection:**

- Single fat-jet (R=1) trigger with $p_T > 1.2$ TeV
- |η| < 2.5

Dataset contains the kinematic variables of the leading and subleading jet (anti $k_T R = 1.0$) Currently working with 2-prong signals only

Signal and Sideband Regions



VAE Structure

