A Normalized Autoencoder for LHC Triggers

Favaro Luigi

ML4Jets 2022 - Rutgers University

in collaboration with: Barry Dillon, Michael Krämer, Tilman Plehn, Peter Sorrenson

arXiv:2206.14225

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

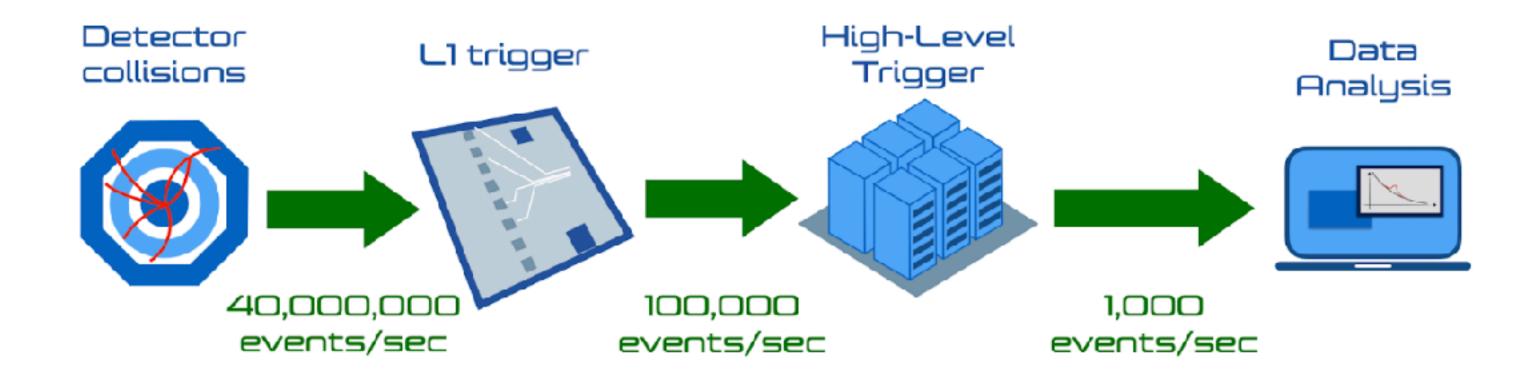


HEP challenges

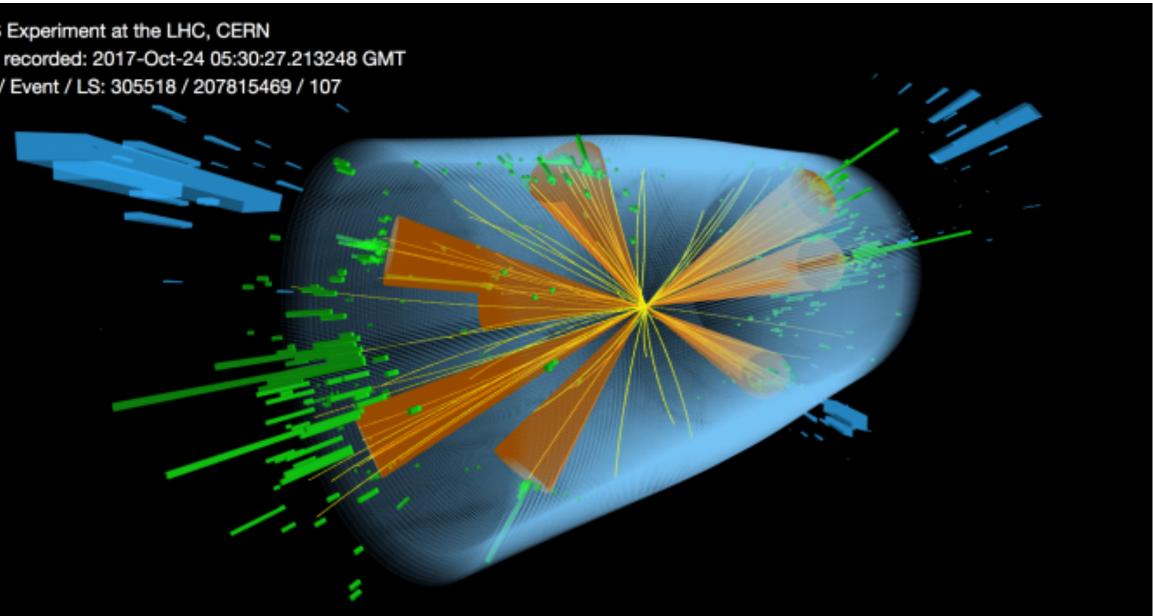
LHC is still looking for BSM physics:

New physics may appear as unexpected jet events

Jet tagging



CMS Experiment at the LHC, CERN Data recorded: 2017-Oct-24 05:30:27.213248 GMT Run / Event / LS: 305518 / 207815469 / 107



Are we discarding interesting events? **Improving triggers/analysis**

02/11/2022

A Machine Learning approach

Both problems drew attention of ML methods:

Jets classification:

Train the network on jets representation (images, graphs, hlf)

Anomaly detection:

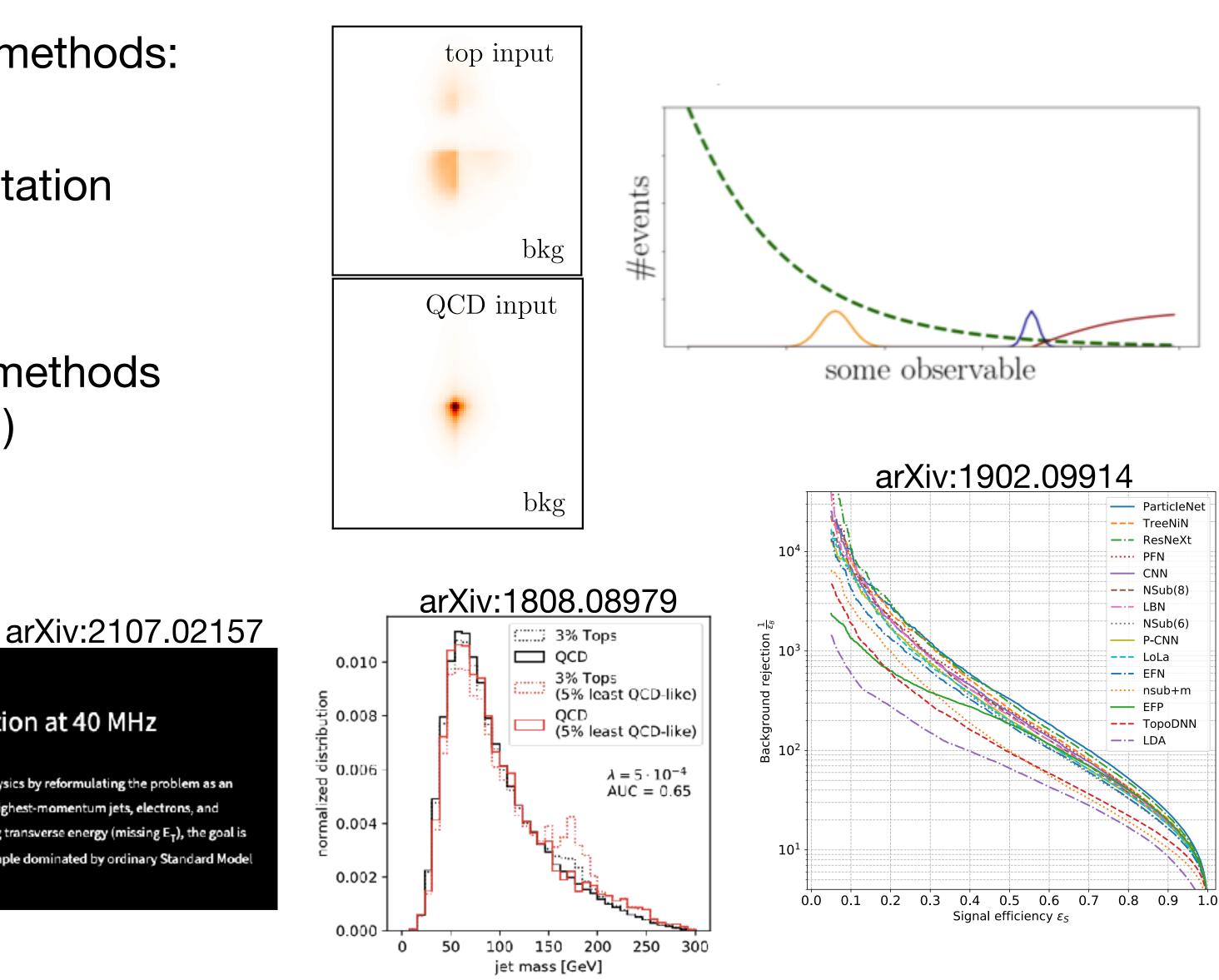
unsupervised and semi-supervised methods (AE, VAE, DVAE, CWOLA, ...)

Triggering: CMS@40MHz challenge:

Nelcome to the Anomaly Detection ata Challenge 2021!

Unsupervised New Physics detection at 40 MHz

In this challenge, you will develop algorithms for detecting New Physics by reformulating the problem as an out-of-distribution detection task. Armed with four-vectors of the highest-momentum jets, electrons, and muons produced in a LHC collision event, together with the missing transverse energy (missing E_{r}), the goa to find a-priori unknown and rare New Physics hidden in a data sample dominated by ordinary Standard Model processes, using anomaly detection approaches.



02/11/2022

Building jet images

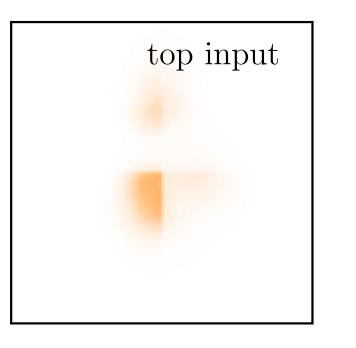
We build our representation starting from jet constituents:

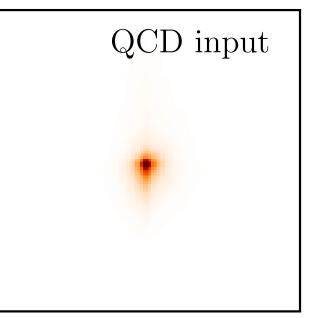
- collect a major fraction of constituents;
- apply preprocessing \longrightarrow introduce symmetries
- pixelize the data in the (η, ϕ) plane;

New BSM signals may have a QCD-like structure:

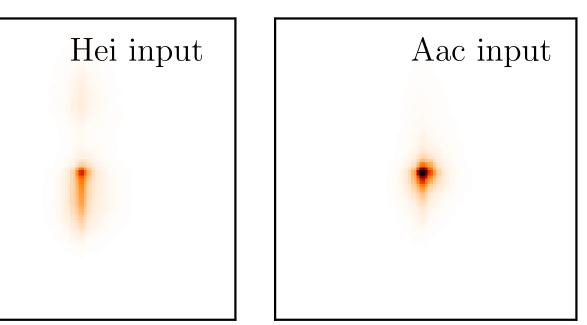
- DM hidden valley scenario:
 - invisible dark components (Aachen dataset)
 - modified QCD structure (Heidelberg dataset)
- tagging after introducing an implicit bias: $p_T \rightarrow p_T^n$

benchmark test

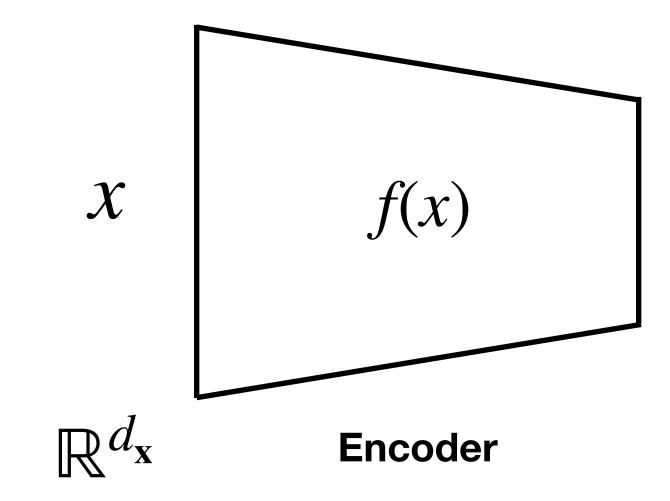




BSM signal

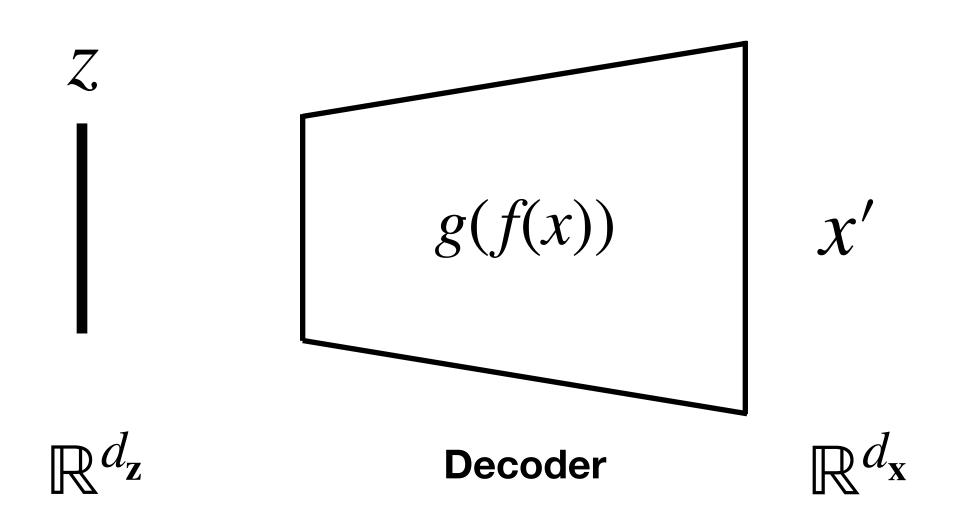


Autoencoders for AD



Building an AE:

- define an encoder decoder network;
- encode features in a low-dimensional latent space;
- use the reconstruction error as anomaly score, MSE(x, x');



02/11/2022

Autoencoders for AD

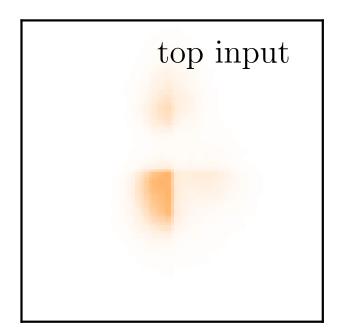
- Auto-Encoders can easily tag complex signals;
- the opposite is not generally true \rightarrow 'complexity bias'

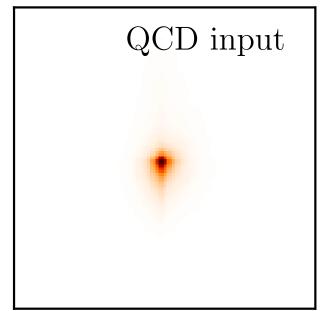
Robustness test: inverse training

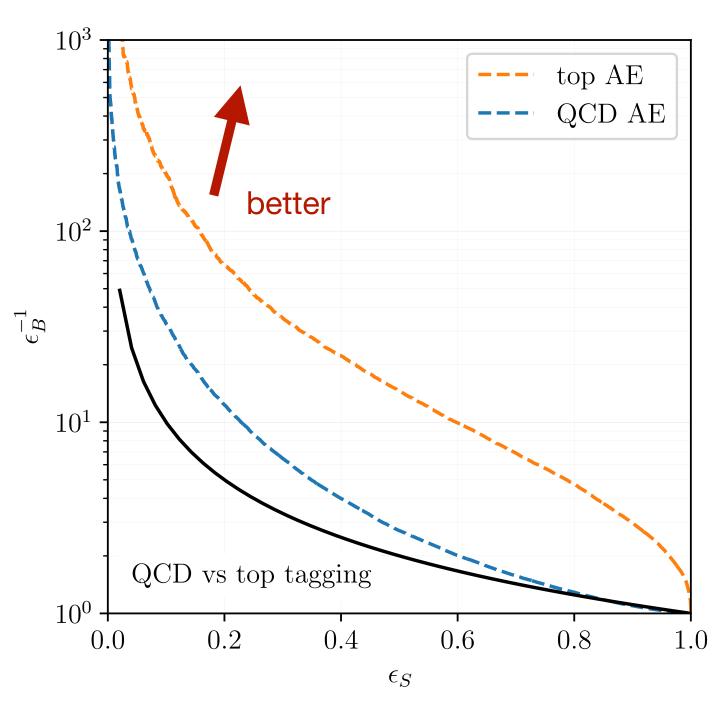
- take a background and a signal signature
- train an AE on the direct and inverse task

Example: QCD tagging

- use top jets as background...
- ... and tag QCD jets;
- usual AE-like approach don't solve the problem;





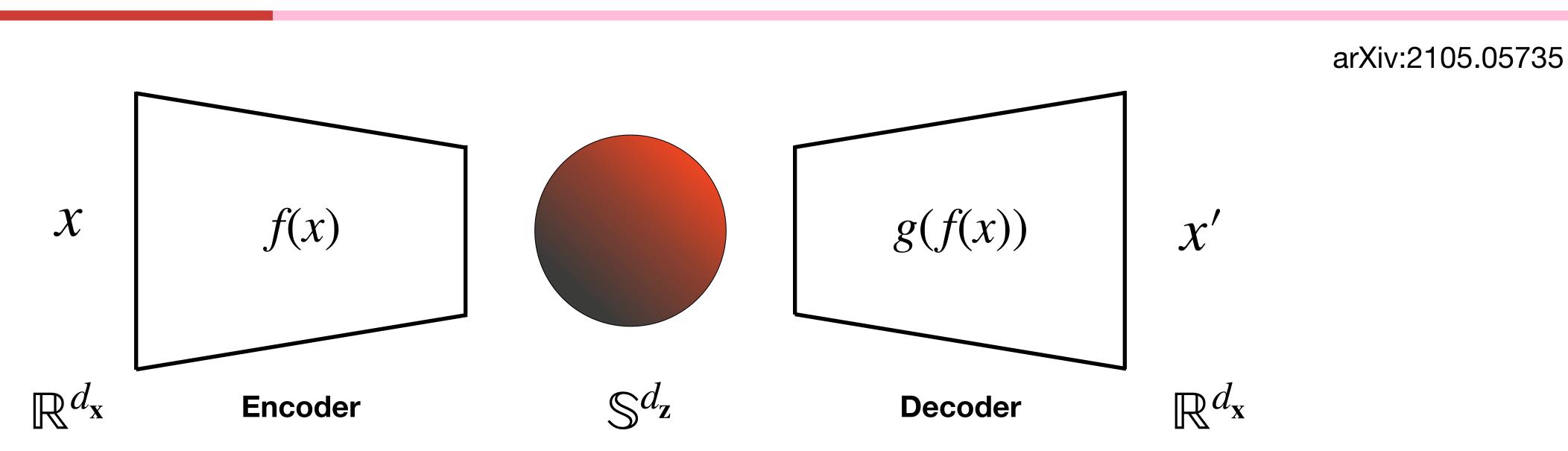


arXiv:2104.08291

Heidelberg University

02/11/2022

Normalized Auto-Encoders



Building a NAE:

- define two neural networks like an usual Auto-Encoder;
- encode features in a low-dimensional latent space;
- set the latent space to a spherical hyper-surface \mathbb{S}^{d_z} ;
- use the reconstruction error as anomaly score, MSE(x, x').

We need to explore the anomaly score space during training \longrightarrow looking for a normalized distribution

 $p_{\theta}(x) = \frac{e^{-E_{\theta}(x)}}{\Omega}$ Define a Boltzmann probability distribution and use the MSE as energy function:

$$\Omega = \int_{x} e^{-E_{\theta}(x)} dx$$

If we consider the reconstruction error as energy function, we can train by minimizing the negative log-likelihood of the probability distribution:

$$\mathscr{L} = -\log p_{\theta}(x)$$

$$E_{\theta}(x, x') = ||x - x'||_2$$

 $= E_{\theta}(x) - \log \Omega$

Ω high-dimensional space \rightarrow intractable integral

02/11/2022

Consider the gradients of the loss function:

$$\nabla_{\theta} \mathscr{L} = \nabla_{\theta} E_{\theta}(x)$$

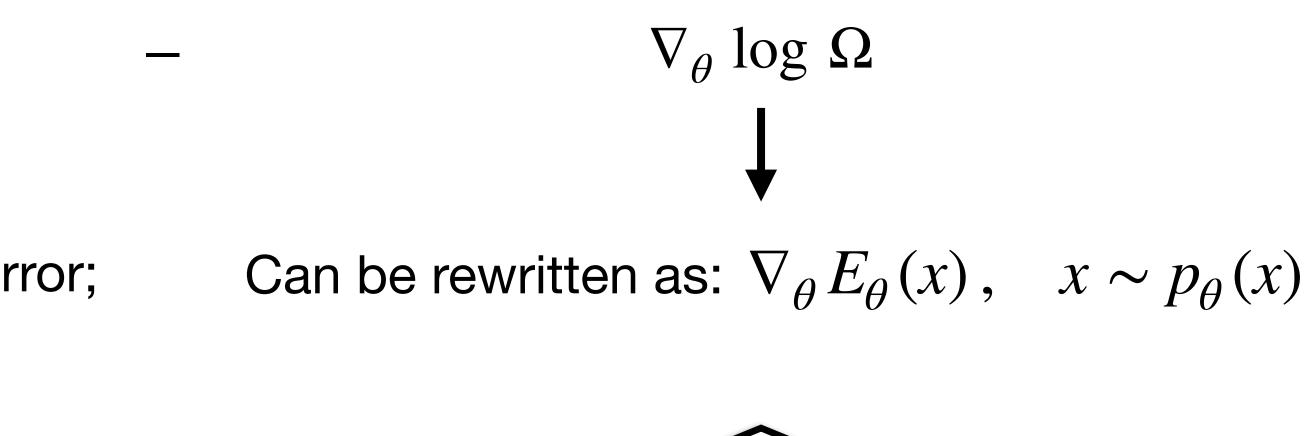
Minimizes the usual AE reconstruction error;

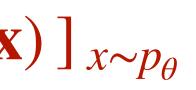
Rewriting the gradient of the loss function:

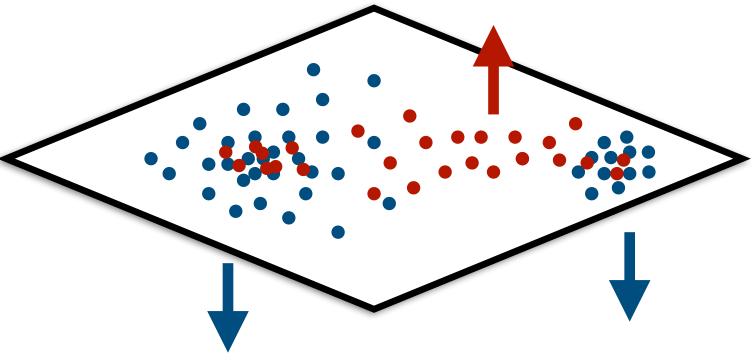
 $\nabla_{\theta} \mathscr{L} = \mathbb{E} \left[\nabla E_{\theta}(\mathbf{x}) \right]_{x \sim p_{data}} - \mathbb{E} \left[\nabla E_{\theta}(\mathbf{x}) \right]_{x \sim p_{\theta}}$

• positive energy: gradient descent step

• negative energy: gradient ascent step

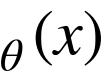






at equilibrium: $p_{\theta}(x) = p_{data}(x)$

02/11/2022



Sampling from the model*

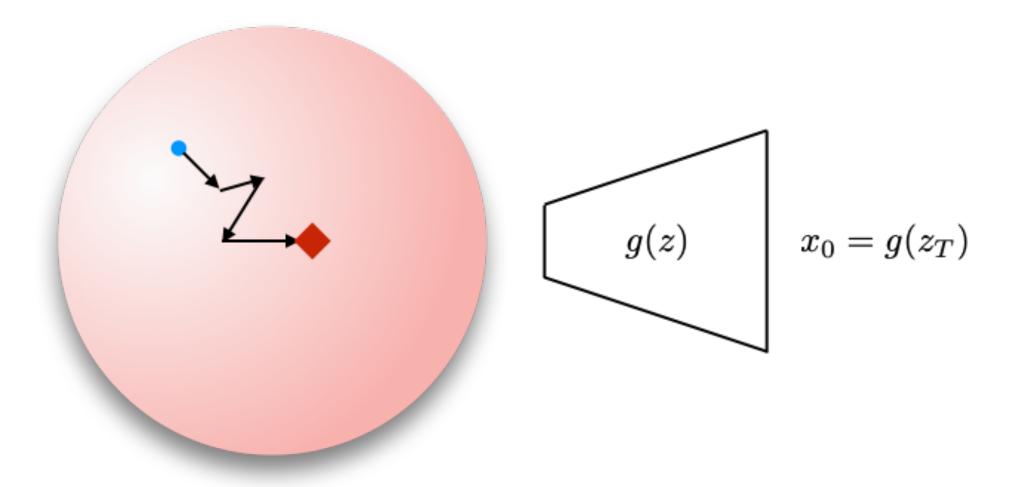
arXiv:2105.05735

- Sampling is done via Metropolis-Adjusted Langevin* (MALA) Markov chains; • given the dimensionality of the input space the initialization of the MCMC do matter:

On-Manifold Initialization \rightarrow use latent space information

Latent space chains are defined by On-Manifold distribution and On-Manifold energy:

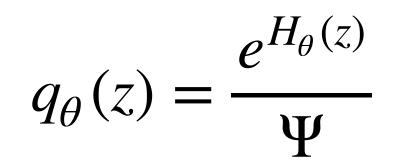
$$z_{t+1} = z_t + \lambda_t \nabla_z \log q_\theta(z)$$



*choices made to reduce the training time

- $\epsilon \sim \mathcal{N}(0,1)$ $(z) + \sigma_t \epsilon$

On-manifold distribution:



On-manifold energy:

 $H_{\theta}(z) = E_{\theta}(g(z))$

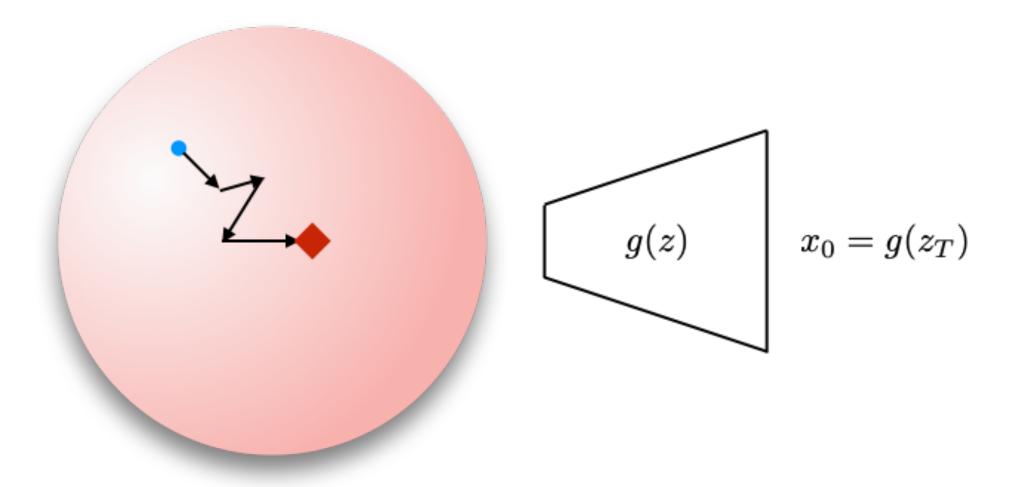
Sampling from the model*

arXiv:2105.05735

- Sampling is done via Metropolis-Adjusted Langevin* (MALA) Markov chains; • given the dimensionality of the input space the initialization of the MCMC do matter:

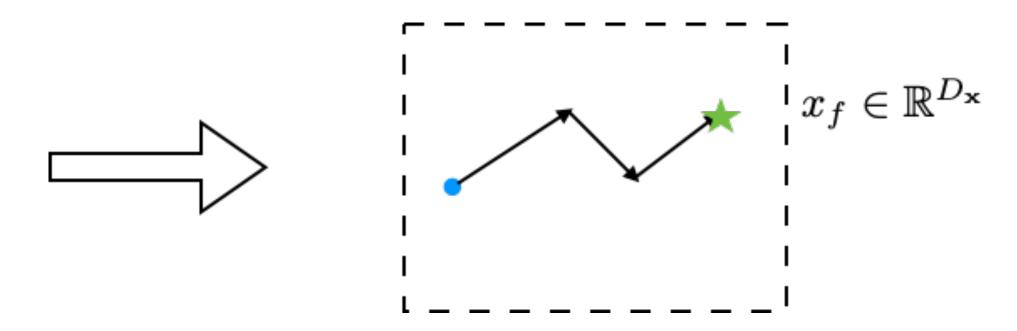
On-Manifold Initialization \rightarrow use latent space information

$$z_{t+1} = z_t + \lambda_t \nabla_z \log q_\theta(z)$$



*choices made to reduce the training time

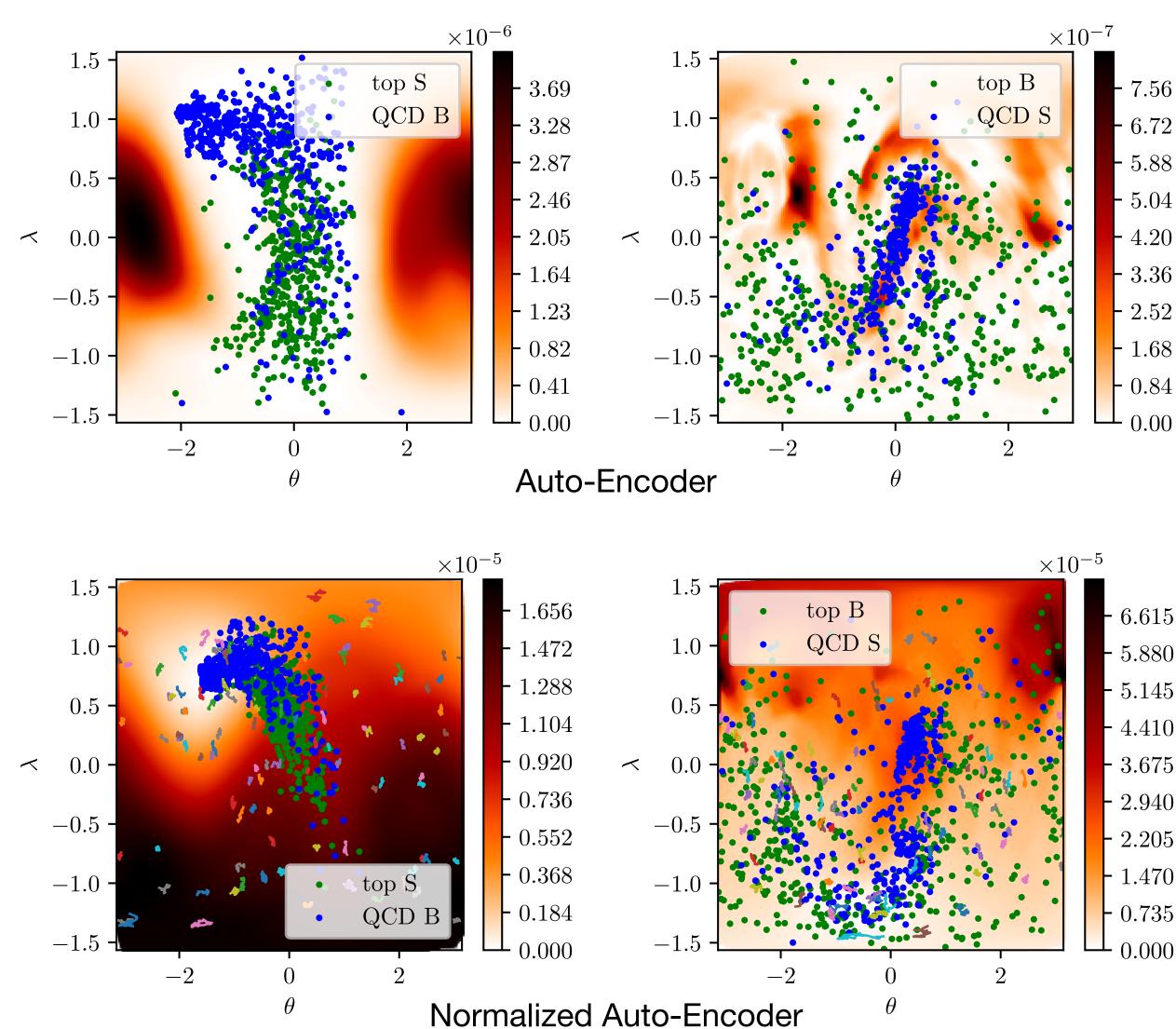
- Latent space chains are defined by On-Manifold distribution and On-Manifold energy:
 - $\epsilon \sim \mathcal{N}(0,1)$ $(t) + \sigma_t \epsilon$



Let's have a look at some results

We can study what happens during training:

- 2D projection of the latent space;
- decoder manifold for tops is more complex
- inducing an underlying metric via $\log \Omega$;
- after training both QCD and top jets are mapped in high reconstruction regions of the decoder manifold;

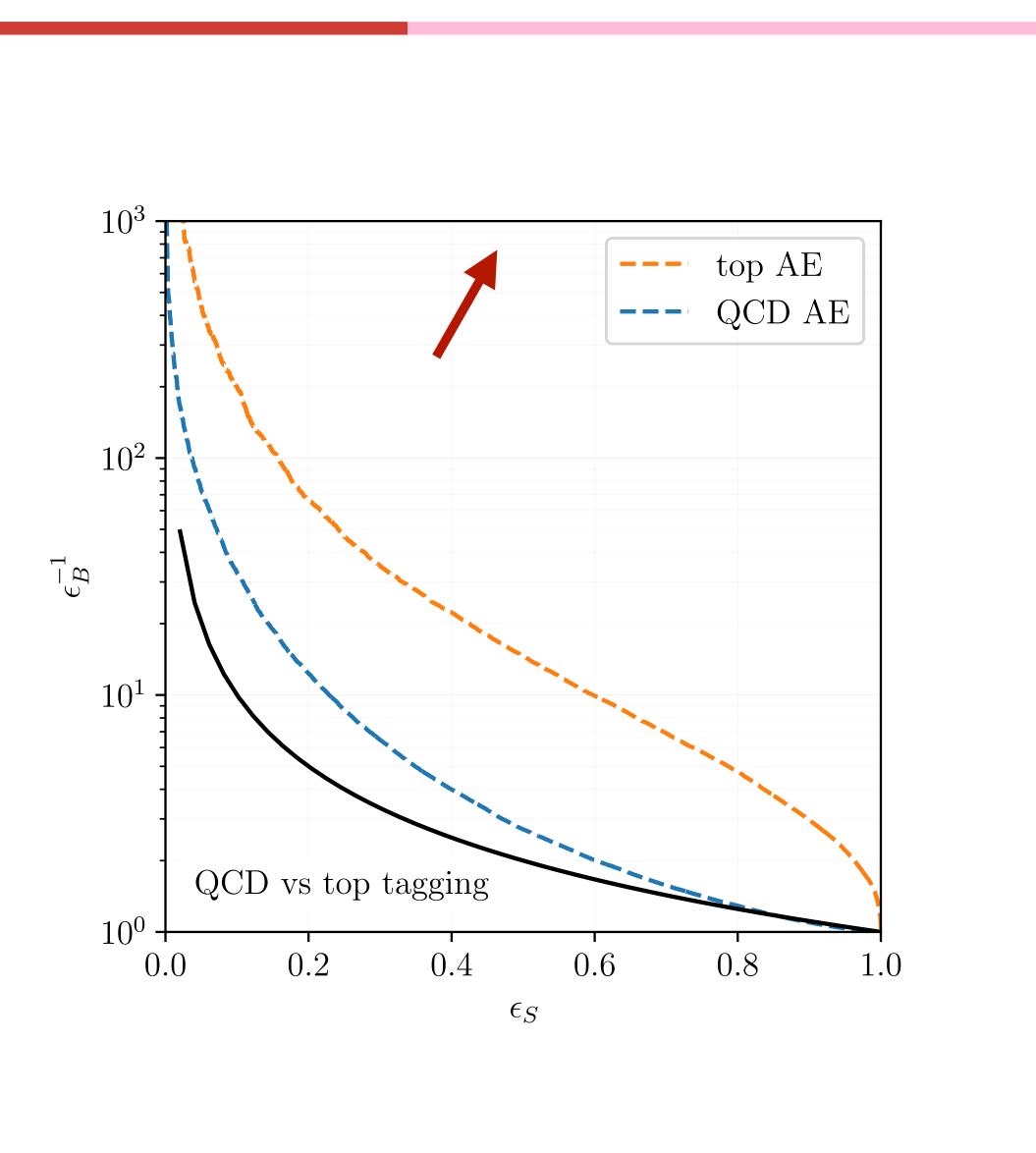


02/11/2022

- 4.4102.2051.470

Results: QCD vs top tagging

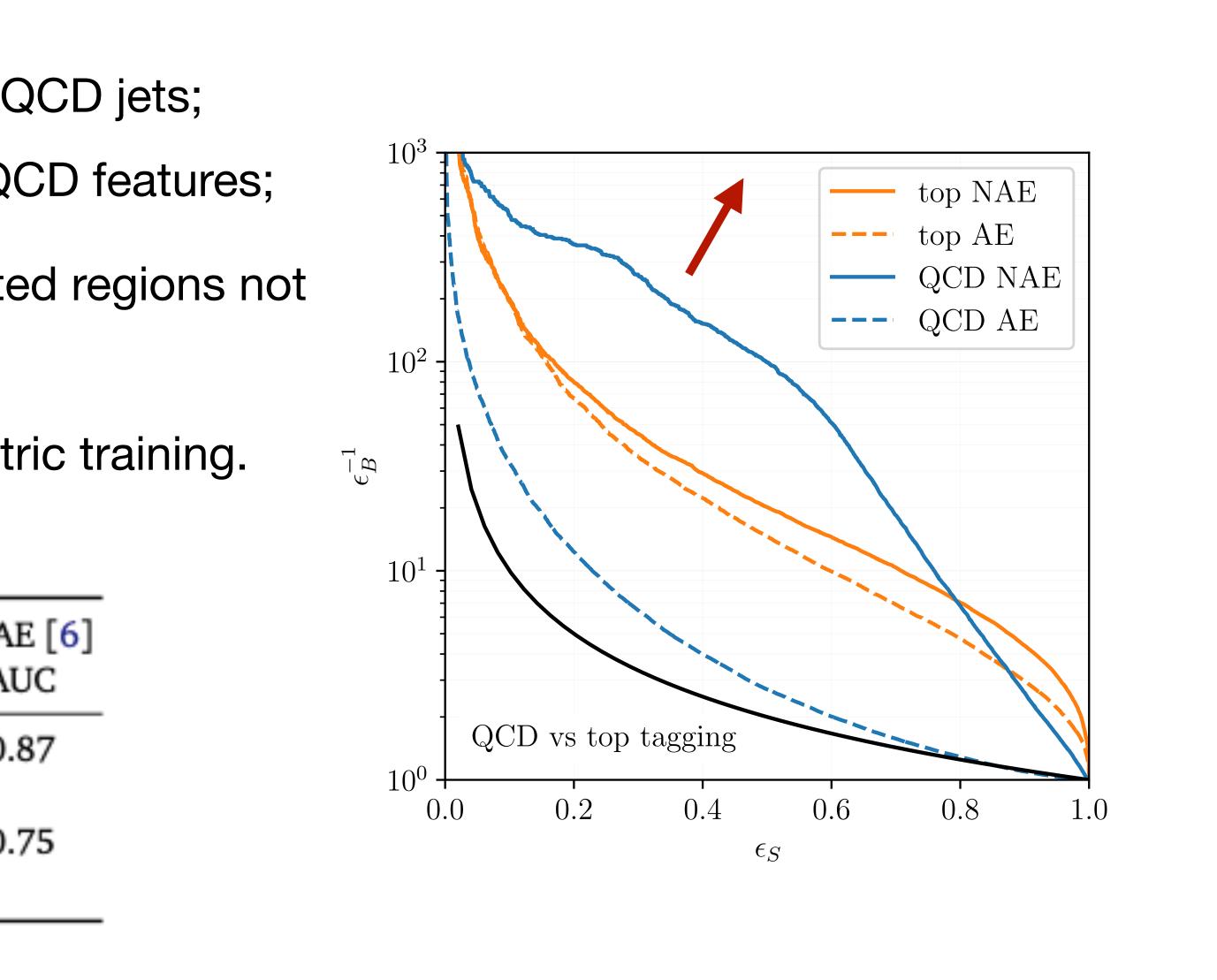
- AE trained on jet images fails at tagging QCD jets;
- an AE is able to interpolate the simpler QCD features;



Results: QCD vs top tagging

- AE trained on jet images fails at tagging QCD jets;
- an AE is able to interpolate the simpler QCD features;
- NAE explicitly penalizes well-reconstructed regions not in the training dataset;
- nice performance on both tasks, symmetric training.

Signal		NAE	AE [1]	DVAE [
	AUC	$\epsilon_{\scriptscriptstyle B}^{-1}(\epsilon_{\scriptscriptstyle S}=0.2)$	AUC	AUC
top (AE)	0.875	68	0.89	0.87
top (NAE)	0.91	80		
QCD (AE)	0.579	12	-	0.75
QCD (NAE)	0.89	350		



NAE on events (preliminary)

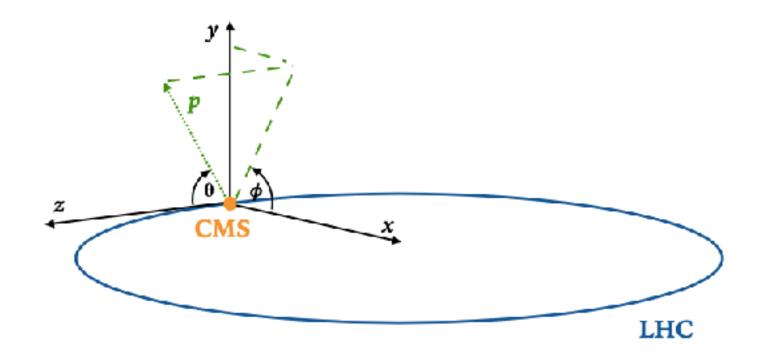
training on SM cocktail events:

 $W \rightarrow l \nu$ (59.2%) $Z \rightarrow ll$ (6.7%) $t\bar{t}$ production (0.3%) QCD multijet (33.8 %)

- The events are represented in the typical L1 format: (19, 3) entries • 19 particles: MET, 4 electrons, 4 muons, and 10 jets
 - 3 observables: p_T , η , ϕ
 - lepton cut $p_T > 23 \text{ GeV}$

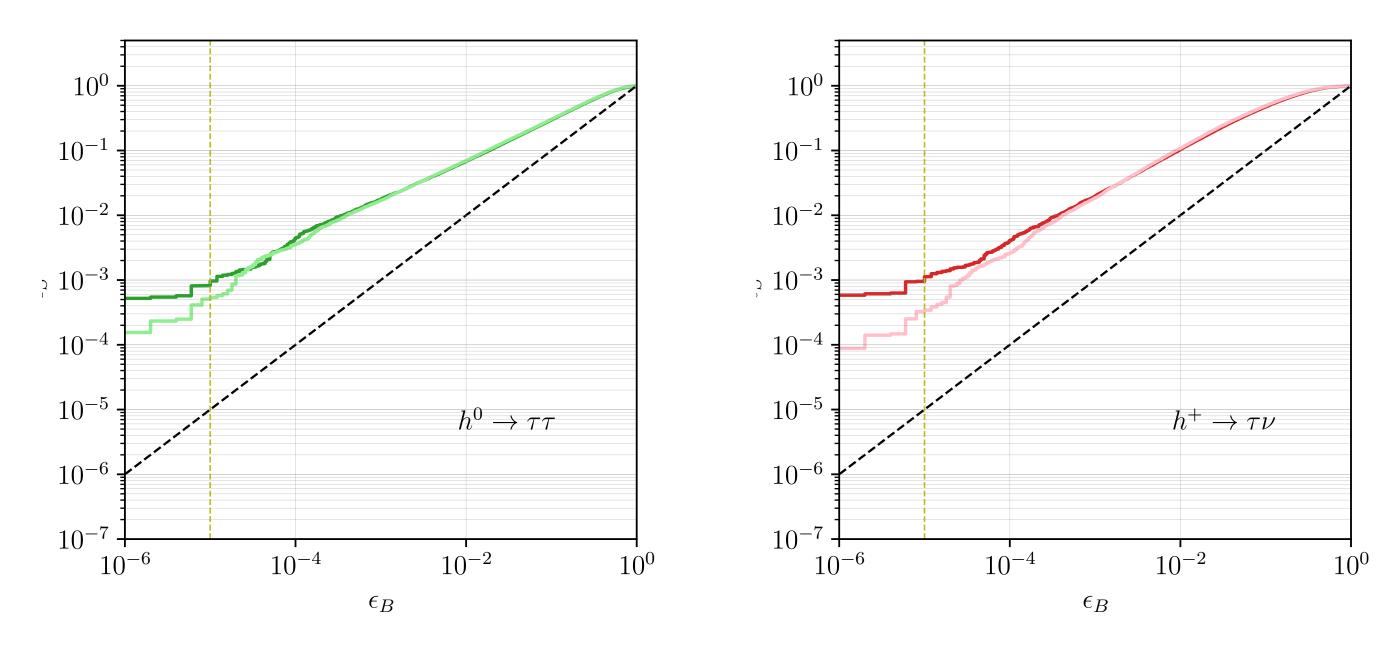
look for various BSM signals:

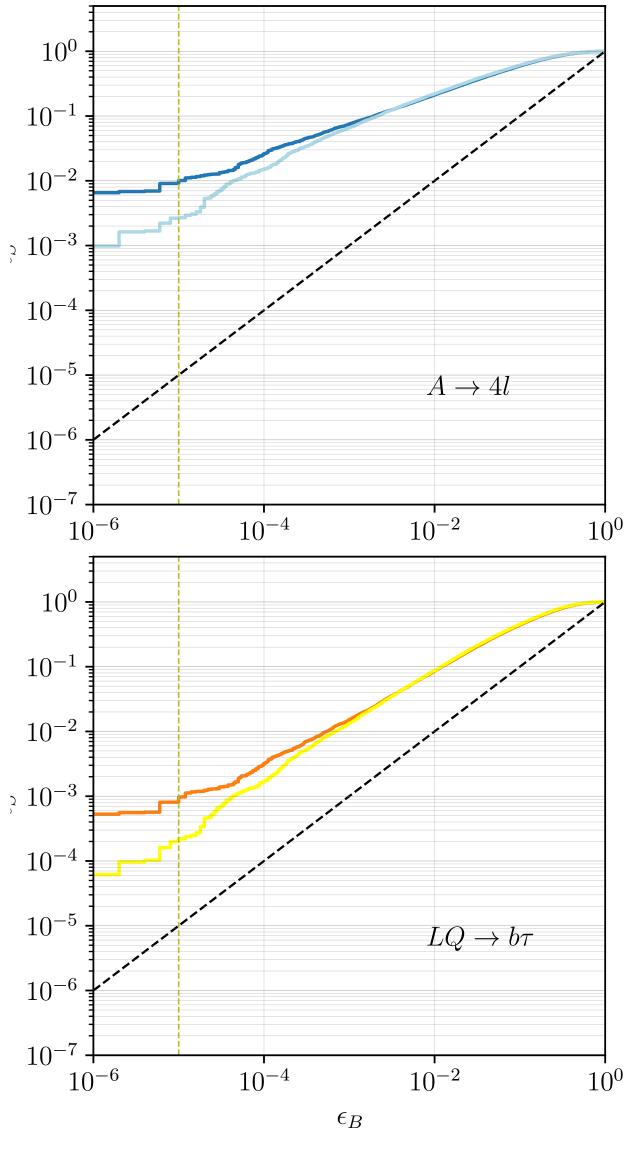
$$\begin{array}{l} A \rightarrow 4l \\ LQ \rightarrow b\nu \\ h_0 \rightarrow \tau\tau \\ h_+ \rightarrow \tau\nu \end{array}$$



Tagging performances

• focusing on $\epsilon_B \sim 10^{-5}$ (output data rate available);



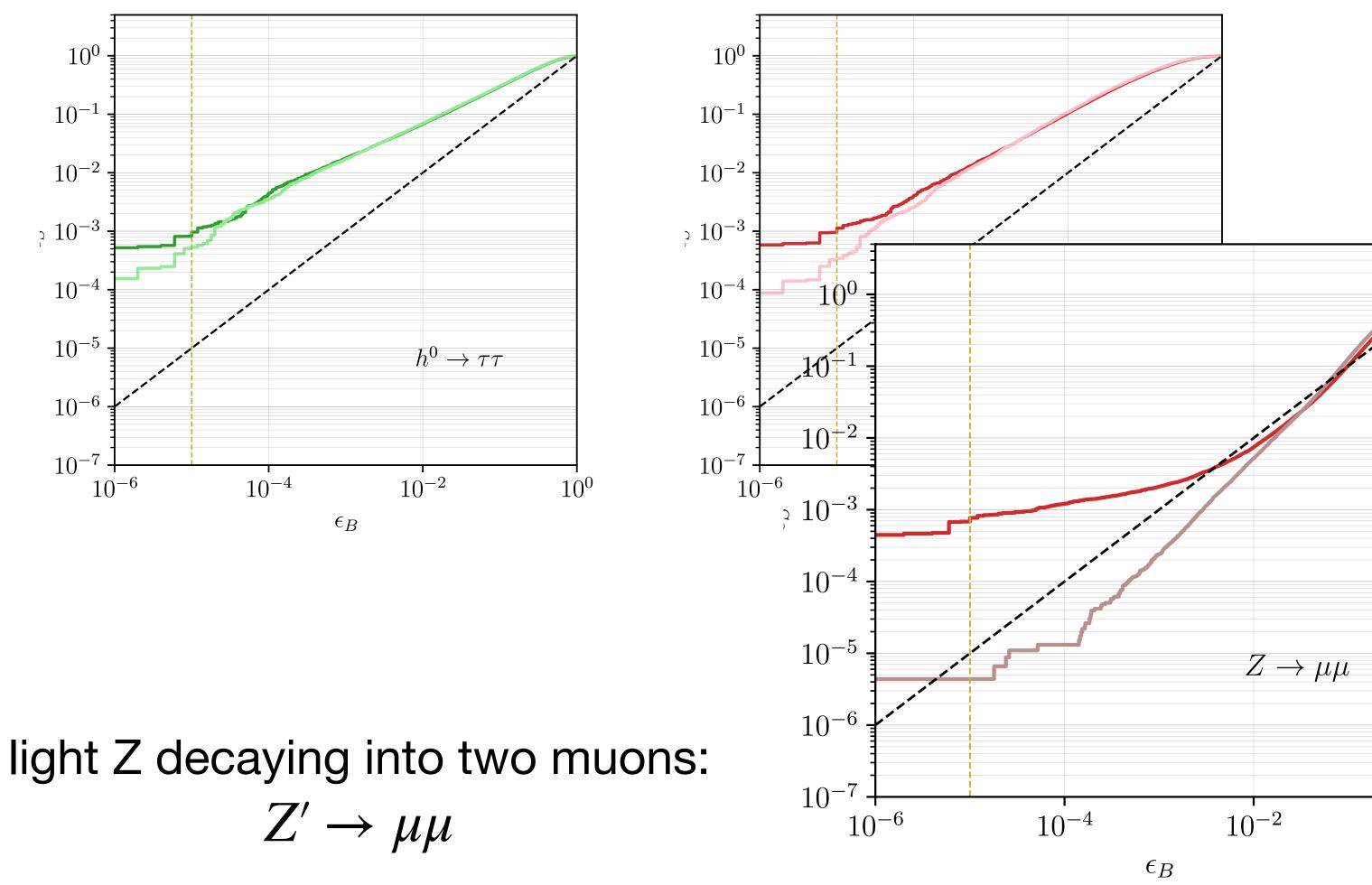


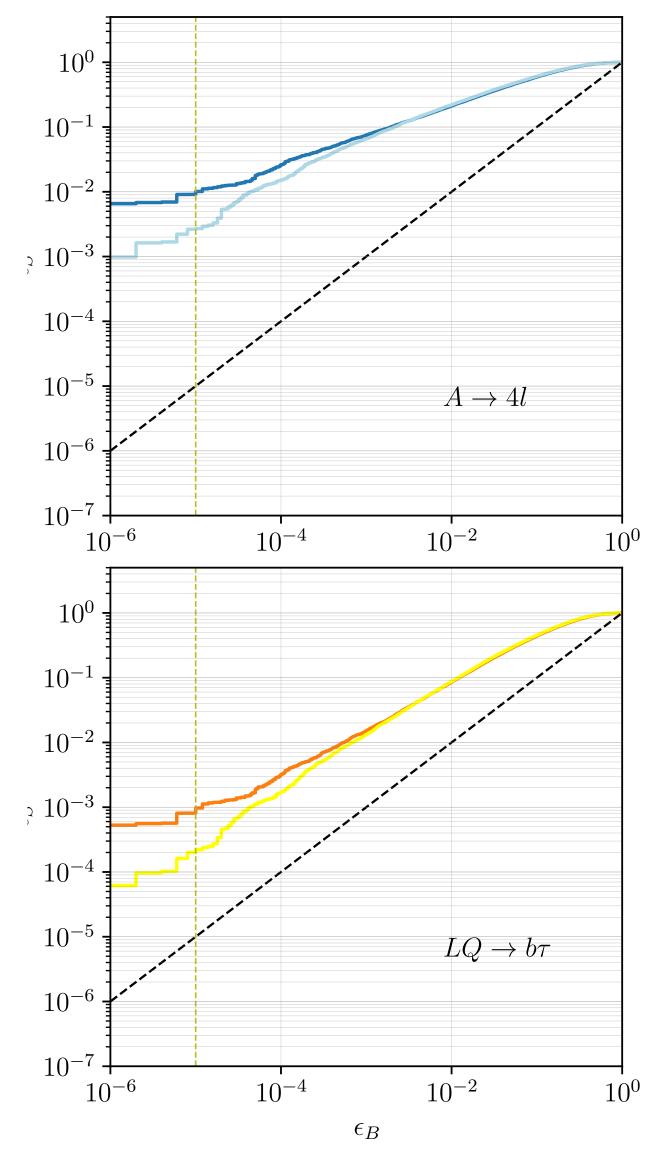
Heidelberg University

02/11/2022

Tagging performances

• focusing on $\epsilon_B \sim 10^{-5}$ (output data rate available);





02/11/2022

 10^{0}



Conclusions

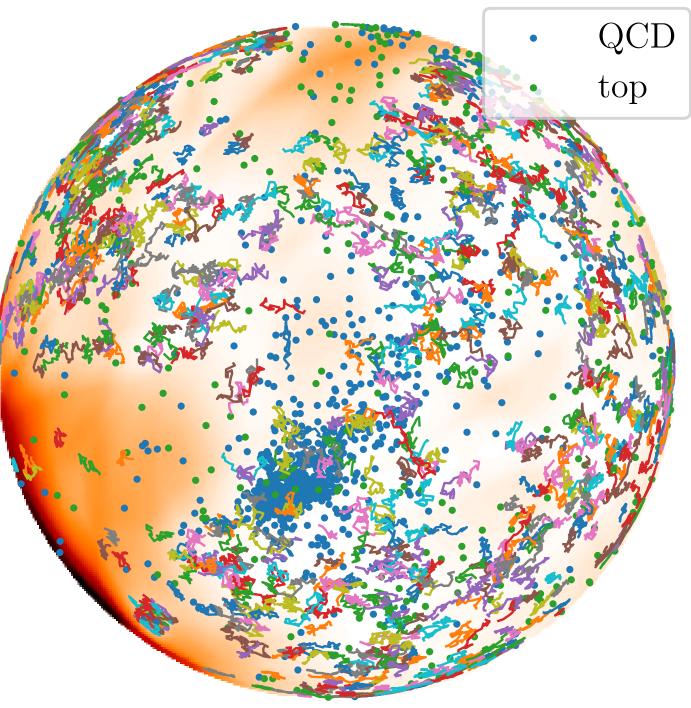
Normalized Auto-Encoders allow for:

- an energy-based description of an Auto-Encoder
- penalization of regions not covered by the training distribution: \rightarrow no complexity bias
- the code will be available on GitHub: luigifvr/normalized-autoencoders

Example results: tagging QCD vs top and NAE on events

Next steps:

- Detailed study and comparison between AE and NAE on events
- study implementation of NAE on FPGA
- paper on arXiv soon...



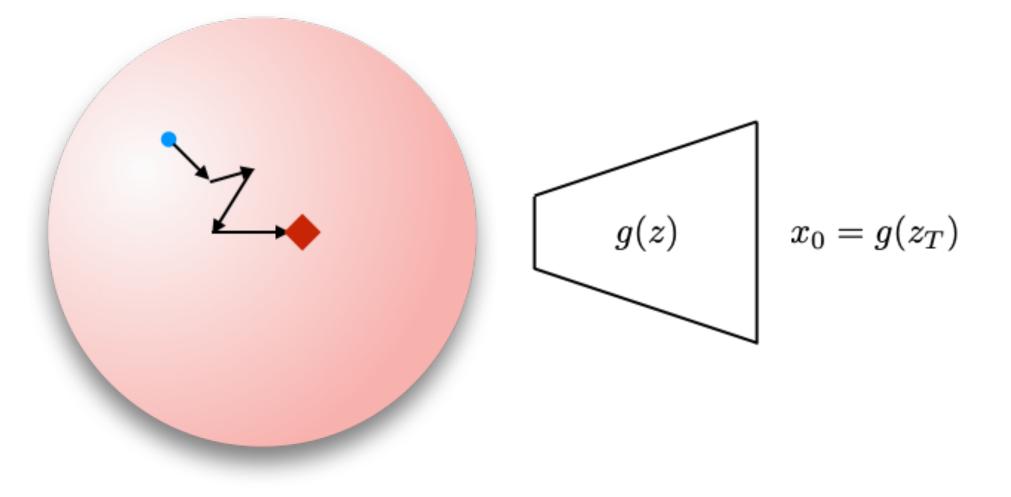
Thanks for you attention!

Sampling from the model*

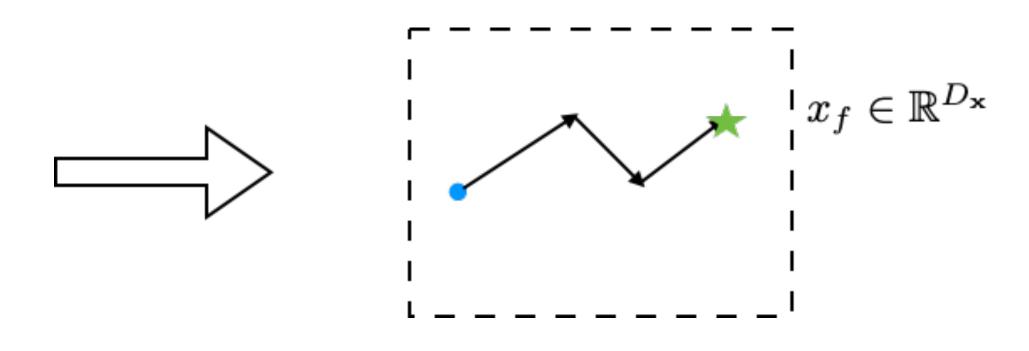
The second chain is performed in the input space using the distribution $p_{\theta}(x)$:

$$x_{t+1} = x_t + \lambda_t \nabla_x \log p_{\theta}(x) + \sigma_t \epsilon \qquad \epsilon \sim \mathcal{N}(0, 1)$$

* both chains run for a small number of steps $\mathcal{O}(100)$, and they are constrained into low energy regions by taking $\lambda > \sigma$

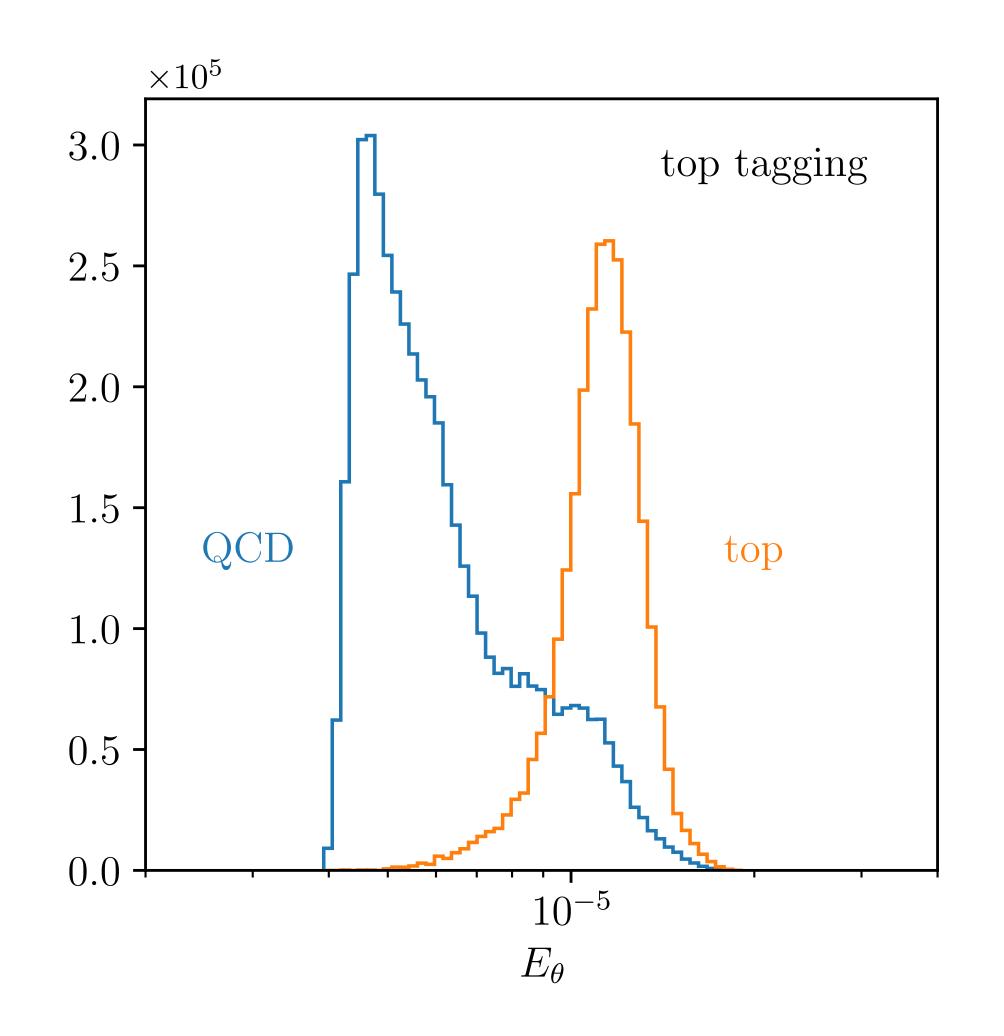


Let's have a look at some results!

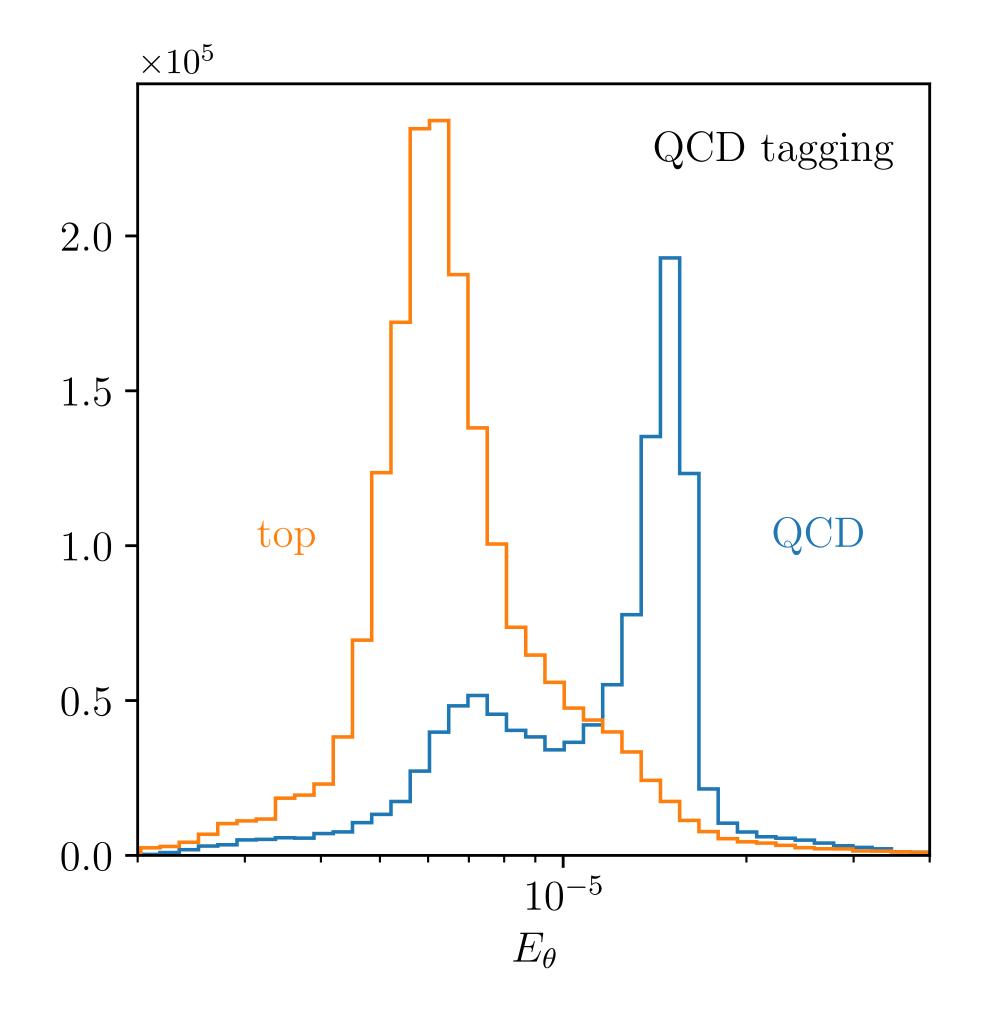


02/11/2022

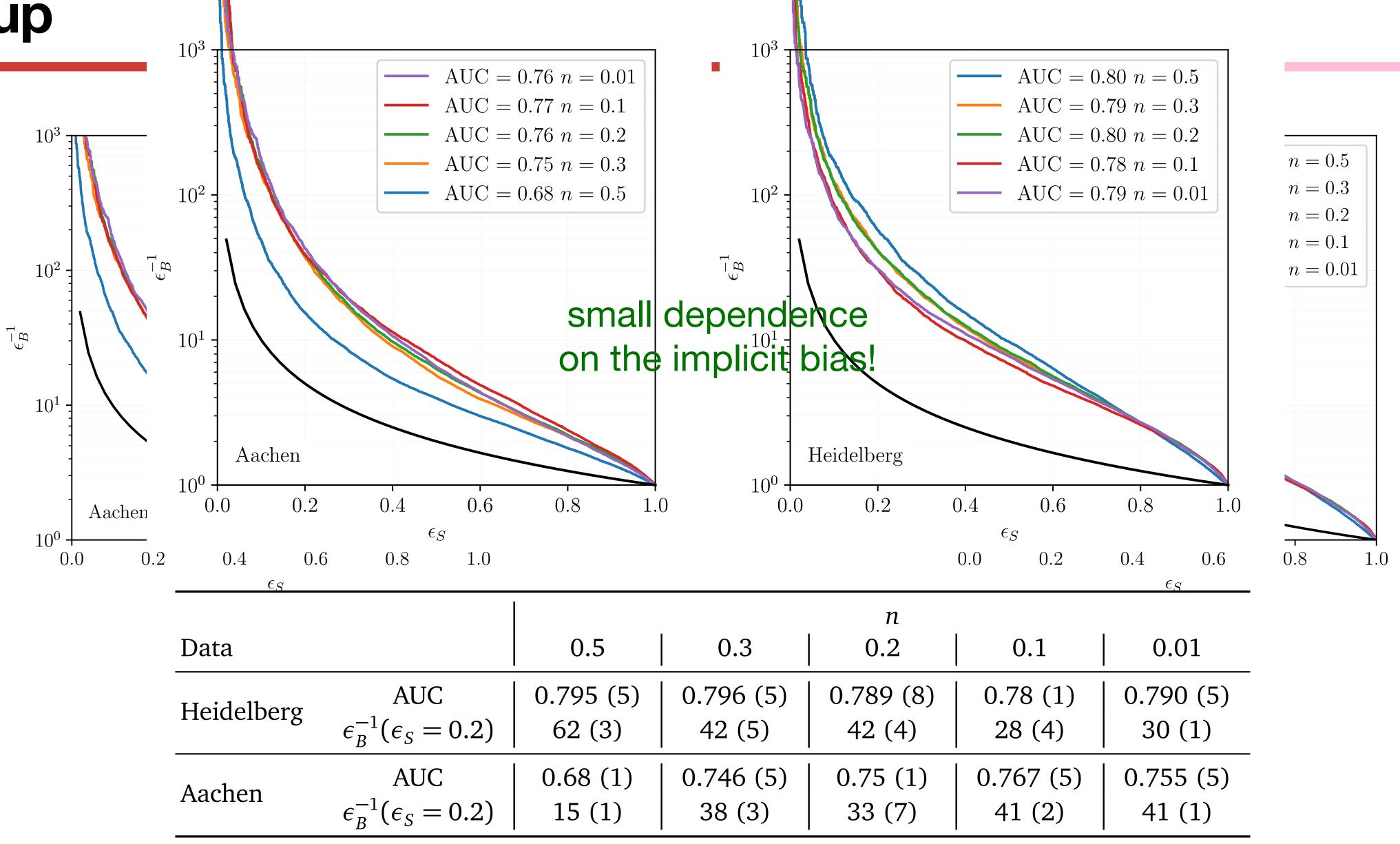
Backup



MSE histograms for QCD and top tagging



Backup



Backup

