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HEP challenges

LHC is still looking for BSM physics: 

Are we discarding interesting events?

Improving triggers/analysis

New physics may appear 

as unexpected jet events

Jet tagging
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A Machine Learning approach

Both problems drew attention of ML methods:

QCD input

bkg

top input

bkg

arXiv:1808.08979

arXiv:1902.09914

Jets classification: 
Train the network on jets representation


(images, graphs, hlf)

Anomaly detection: 
unsupervised and semi-supervised methods


(AE,  VAE, DVAE, CWOLA, …)

Triggering: 
CMS@40MHz challenge:

arXiv:2107.02157 

Luigi Favaro  - ML4Jets2022 02/11/2022 Heidelberg University



Building jet images
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QCD input

bkg

top input

bkg

benchmark test

Aac inputHei input

BSM signal

We build our representation starting from jet constituents:

• collect a major fraction of constituents;

• apply preprocessing    introduce symmetries

•pixelize the data in the  plane;

⟶
(η, ϕ)

New BSM signals may have a QCD-like structure:

• DM hidden valley scenario:

• invisible dark components (Aachen dataset)

• modified QCD structure (Heidelberg dataset)


• tagging after introducing an implicit bias:   pT → pn
T
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Autoencoders for AD

• MSE is not a fail-proof anomaly score

f(x) g( f(x))

Encoder Decoderℝdz

z

x′ 

ℝdx ℝdx

x

Building an AE:


• define an encoder - decoder network;


• encode features in a low-dimensional latent space;


• use the reconstruction error as anomaly score, ;MSE(x, x′ )
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Autoencoders for AD
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QCD vs top tagging

top AE

QCD AE

better

•Auto-Encoders can easily tag complex signals;


• the opposite is not generally true  ‘complexity bias’→

Robustness test: inverse training

• take a background and a signal signature


• train an AE on the direct and inverse task

QCD input

bkg

top input

bkg

Example: QCD tagging

• use top jets as background…


•… and tag QCD jets;


• usual AE-like approach don’t solve the problem;
arXiv:2104.08291
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Normalized Auto-Encoders

f(x) g( f(x))

Building a NAE:


• define two neural networks like an usual Auto-Encoder;


• encode features in a low-dimensional latent space;


• set the latent space to a spherical hyper-surface ;


• use the reconstruction error as anomaly score, .

𝕊dz

MSE(x, x′ )

Encoder Decoder𝕊dz

x x′ 

ℝdx ℝdx

arXiv:2105.05735
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Training a NAE

Define a Boltzmann probability distribution and use the MSE as energy function: pθ (x) =
e−Eθ(x)

Ω

Ω = ∫x
e−Eθ (x) dx Eθ (x, x′ ) = ∥x − x′ ∥2

ℒ = − log pθ (x) = Eθ (x) − log Ω

If we consider the reconstruction error as energy function, we can train by minimizing 
the negative log-likelihood of the probability distribution:

 high-dimensional space      intractable integralΩ →

We need to explore the anomaly score space during training  looking for a normalized distribution⟶
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Training a NAE

Minimizes the usual AE reconstruction error; Can be rewritten as: ∇θ Eθ (x) , x ∼ pθ (x)

Consider the gradients of the loss function:

∇θ ℒ = ∇θ Eθ (x) ∇θ log Ω−

    ∇θ ℒ = 𝔼 [ ∇Eθ (x) ] x∼pdata − 𝔼 [ ∇Eθ (x) ] x∼pθ

Rewriting the gradient of the loss function:

•positive energy: gradient descent step

• negative energy: gradient ascent step

at equilibrium:   pθ (x) = pdata (x)

Luigi Favaro  - ML4Jets2022 02/11/2022 Heidelberg University



zt+1 = zt + λt ∇z log qθ (z) + σt ϵ ϵ ∼ 𝒩(0,1)

Sampling from the model*

On-Manifold Initialization  use latent space information 

Latent space chains are defined by On-Manifold distribution and On-Manifold energy:

→

• Sampling is done via Metropolis-Adjusted Langevin* (MALA) Markov chains;

• given the dimensionality of the input space the initialization of the MCMC do matter:

*choices made to reduce the training time 

qθ (z) =
eHθ (z)

Ψ

Hθ (z) = Eθ (g(z))

On-manifold distribution:

On-manifold energy:
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zt+1 = zt + λt ∇z log qθ (z) + σt ϵ ϵ ∼ 𝒩(0,1)

Sampling from the model*

On-Manifold Initialization  use latent space information 

Latent space chains are defined by On-Manifold distribution and On-Manifold energy:

→

• Sampling is done via Metropolis-Adjusted Langevin* (MALA) Markov chains;

• given the dimensionality of the input space the initialization of the MCMC do matter:

*choices made to reduce the training time 
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Let’s have a look at some results



Results: decoder manifold

We can study what happens during training:

•decoder manifold for tops is more complex;
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• 2D projection of the latent space;

Auto-Encoder
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• after training both QCD and top jets are 
mapped in high reconstruction regions of 
the decoder manifold;

• inducing an underlying metric via ;
log Ω

Normalized Auto-Encoder
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Results: QCD vs top tagging
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QCD vs top tagging

top AE

QCD AE

•AE trained on jet images fails at tagging QCD jets;


• an AE is able to interpolate the simpler QCD features;
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Results: QCD vs top tagging
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QCD vs top tagging

top NAE

top AE

QCD NAE

QCD AE

•AE trained on jet images fails at tagging QCD jets;


• an AE is able to interpolate the simpler QCD features;

•NAE explicitly penalizes well-reconstructed regions not 
in the training dataset;


• nice performance on both tasks, symmetric training.
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NAE on events (preliminary)

training on SM cocktail events: 

   (59.2%)

     (6.7%)


 production  (0.3%)

QCD multijet (33.8 %)

W → lν
Z → ll

tt̄

look for various BSM signals:








A → 4l
LQ → bν
h0 → ττ
h+ → τν

The events are represented in the typical L1 format: (19, 3) entries

• 19 particles: MET, 4 electrons, 4 muons, and 10 jets

• 3 observables: , , 

• lepton cut 

pT η ϕ
pT > 23 GeV
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Tagging performances
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• focusing on  (output data rate available);ϵB ∼ 10−5
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Tagging performances
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• focusing on  (output data rate available);ϵB ∼ 10−5
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light Z decaying into two muons:

Z′ → μμ



Conclusions

QCD

top

Normalized Auto-Encoders allow for:

• an energy-based description of an Auto-Encoder

• penalization of regions not covered by the training distribution:

	    no complexity bias

• the code will be available on GitHub:


luigifvr/normalized-autoencoders

Example results: tagging QCD vs top and NAE on events


Next steps: 

• Detailed study and comparison between AE and NAE on events

• study implementation of NAE on FPGA

• paper on arXiv soon…

→
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Thanks for you attention!



Sampling from the model*

xt+1 = xt + λt ∇x log pθ (x) + σt ϵ ϵ ∼ 𝒩(0,1)

The second chain is performed in the input space using the distribution :pθ (x)

* both chains run for a small number of steps , and they are constrained into low 
energy regions by taking 

𝒪(100)
λ > σ
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Backup

MSE histograms for QCD and top tagging
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Backup
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✏�1
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Figure 9: ROC curve for dark jets tagging with different reweightings n, shown for
the Aachen signal (left) and the Heidelberg signal (right). The table is based on the
same information and shows the mean and the standard deviation of five different
runs.

different reweightings in Fig. 9. First, we see that the AUCs for the Aachen and Heidelberg
datasets are roughly similar. For the sparse Aachen jets we already know that smaller values
of n benefit the tagging performance, but we also see that for n< 0.3 the AUC reaches values
above 0.72, and for n = 0.2 ... 0.01 the performance essentially plateaus at a high level. In
contrast, for the Heidelberg signal we expect a better tagging performance around ✏S ⇠ 0.2 for
larger n-values. However, already looking at the AUC as a performance measure this changes,
because the performance ordering as a function of n changes towards larger signal efficiencies.

From Fig.7 we know that the different reweightings mostly change the ordering of the
two signal tails at high energies and leave the bulks of the distributions unchanged. The
corresponding ROC curves in Fig. 9 confirm that the remaining n-dependence is connected
to a behavioral change in the model in the region n ⇠ 0.2. While the choice n = 0.2 is not
optimal for each of the signals, it can be used as a working compromise between sparse dark
jets and dark jets related to a mass drop.

5 Outlook

Autoencoders are ML-analysis tools which ideally represent the idea behind LHC searches.
Unsupervised training can conceptually enrich many aspects of LHC physics, from trigger to
analysis techniques. Standard autoencoders identify out-of-distribution jets or events based

16

small dependence 

on the implicit bias!
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Backup
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