### A Normalized Autoencoder for LHC Triggers

Favaro Luigi

**ML4Jets 2022 - Rutgers University** 

in collaboration with: Barry Dillon, Michael Krämer, Tilman Plehn, Peter Sorrenson

arXiv:2206.14225



### **UNIVERSITÄT HEIDELBERG** ZUKUNFT SEIT 1386

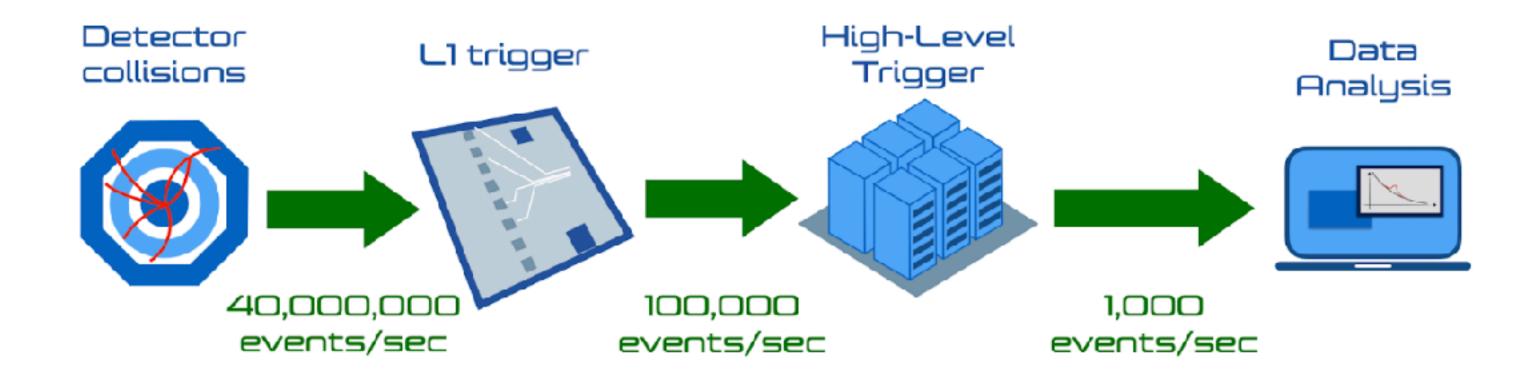


## **HEP challenges**

LHC is still looking for BSM physics:

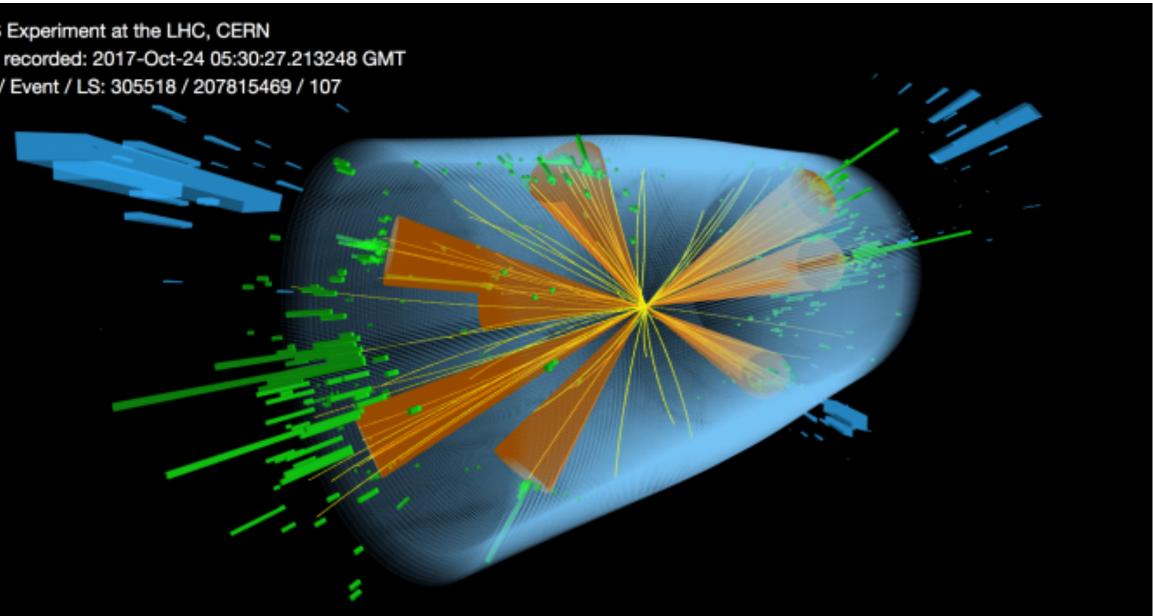
New physics may appear as unexpected jet events

Jet tagging





CMS Experiment at the LHC, CERN Data recorded: 2017-Oct-24 05:30:27.213248 GMT Run / Event / LS: 305518 / 207815469 / 107



# Are we discarding interesting events? **Improving triggers/analysis**

02/11/2022



## A Machine Learning approach

Both problems drew attention of ML methods:

### Jets classification:

Train the network on jets representation (images, graphs, hlf)

### **Anomaly detection:**

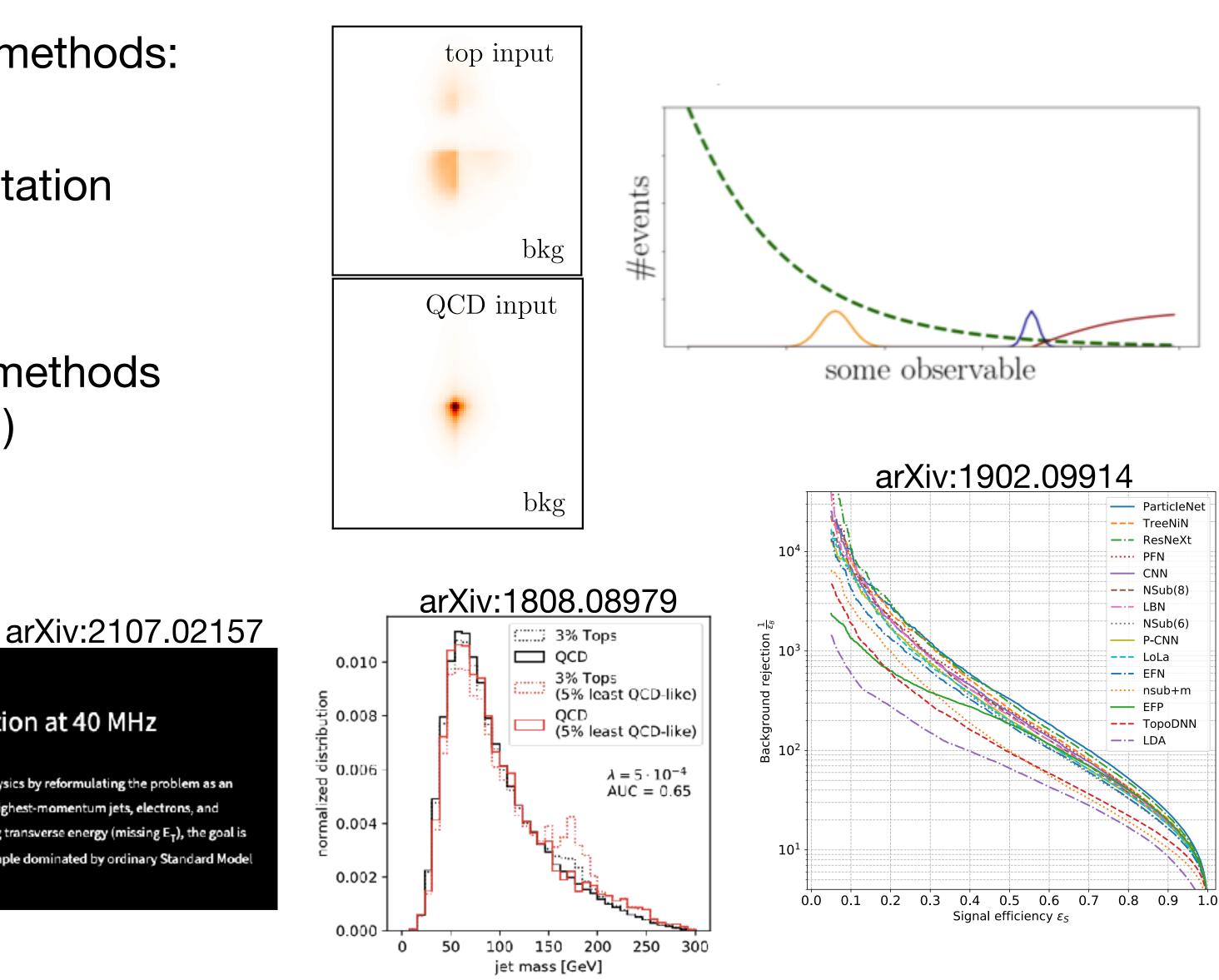
unsupervised and semi-supervised methods (AE, VAE, DVAE, CWOLA, ...)

### **Triggering:** CMS@40MHz challenge:

Nelcome to the Anomaly Detection ata Challenge 2021!

### Unsupervised New Physics detection at 40 MHz

In this challenge, you will develop algorithms for detecting New Physics by reformulating the problem as an out-of-distribution detection task. Armed with four-vectors of the highest-momentum jets, electrons, and muons produced in a LHC collision event, together with the missing transverse energy (missing  $E_{r}$ ), the goa to find a-priori unknown and rare New Physics hidden in a data sample dominated by ordinary Standard Model processes, using anomaly detection approaches.



### 02/11/2022



## **Building jet images**

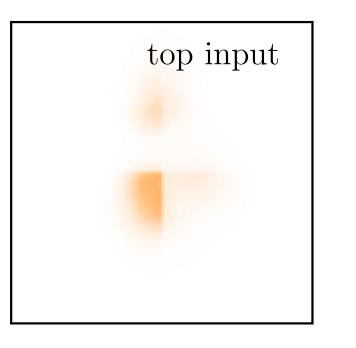
We build our representation starting from jet constituents:

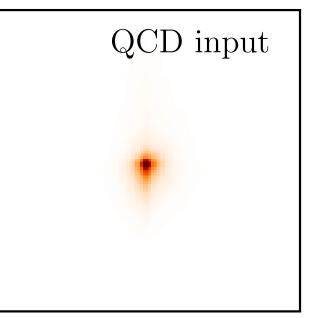
- collect a major fraction of constituents;
- apply preprocessing  $\longrightarrow$  introduce symmetries
- pixelize the data in the  $(\eta, \phi)$  plane;

New BSM signals may have a QCD-like structure:

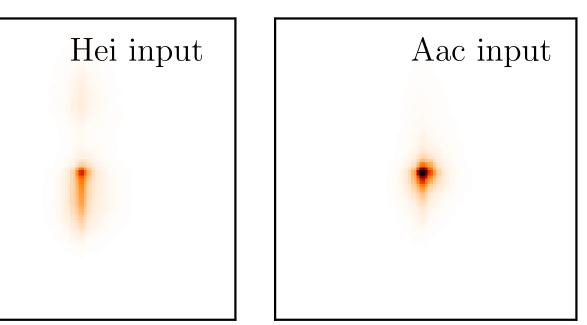
- DM hidden valley scenario:
  - invisible dark components (Aachen dataset)
  - modified QCD structure (Heidelberg dataset)
- tagging after introducing an implicit bias:  $p_T \rightarrow p_T^n$

### benchmark test





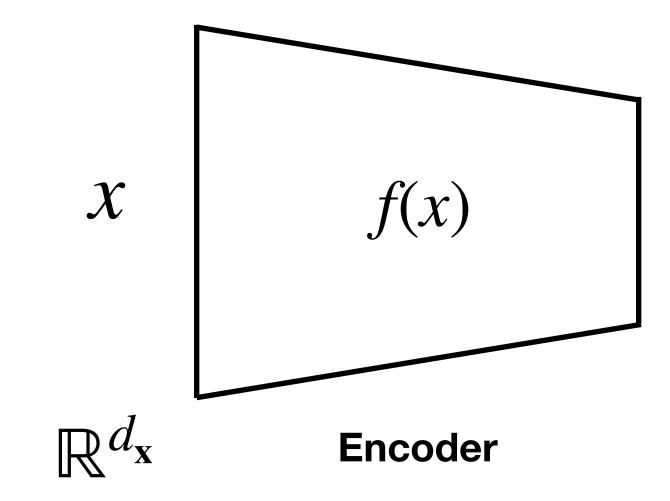
### **BSM** signal







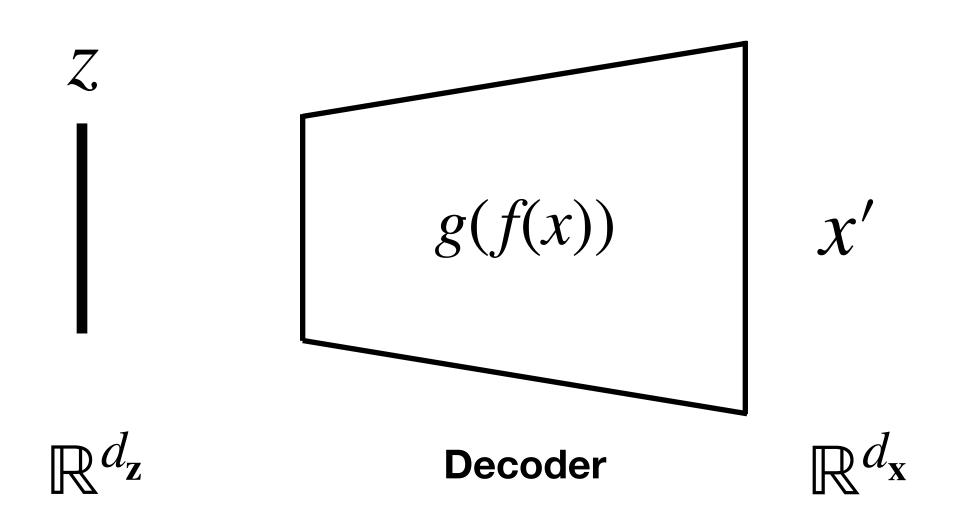
### **Autoencoders for AD**



Building an AE:

- define an encoder decoder network;
- encode features in a low-dimensional latent space;
- use the reconstruction error as anomaly score, MSE(x, x');





02/11/2022





### **Autoencoders for AD**

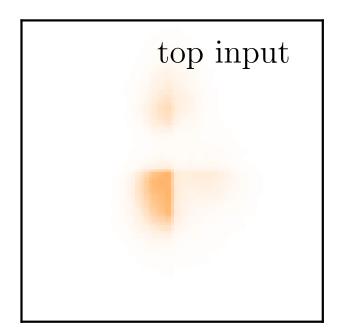
- Auto-Encoders can easily tag complex signals;
- the opposite is not generally true  $\rightarrow$  'complexity bias'

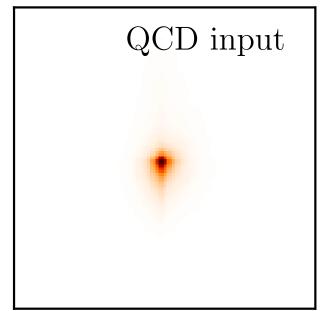
Robustness test: inverse training

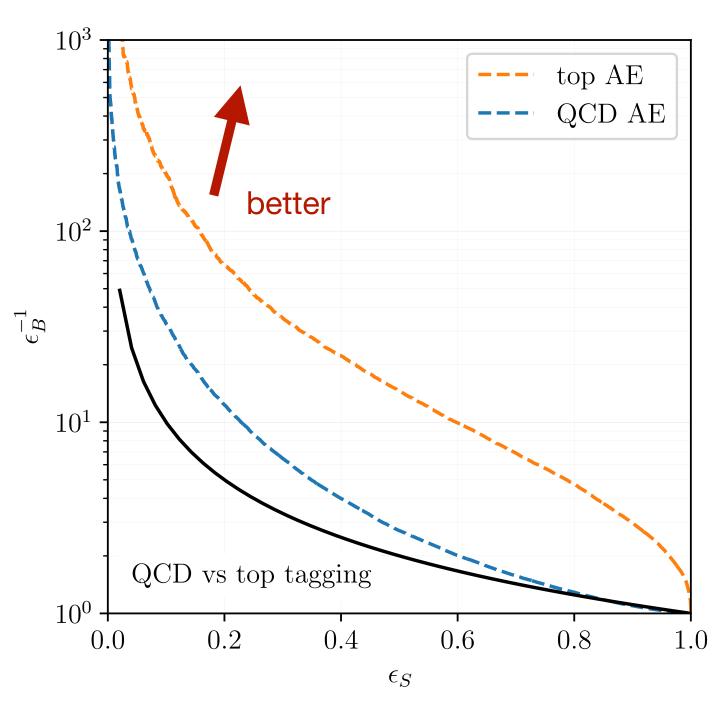
- take a background and a signal signature
- train an AE on the direct and inverse task

Example: QCD tagging

- use top jets as background...
- ... and tag QCD jets;
- usual AE-like approach don't solve the problem;







arXiv:2104.08291

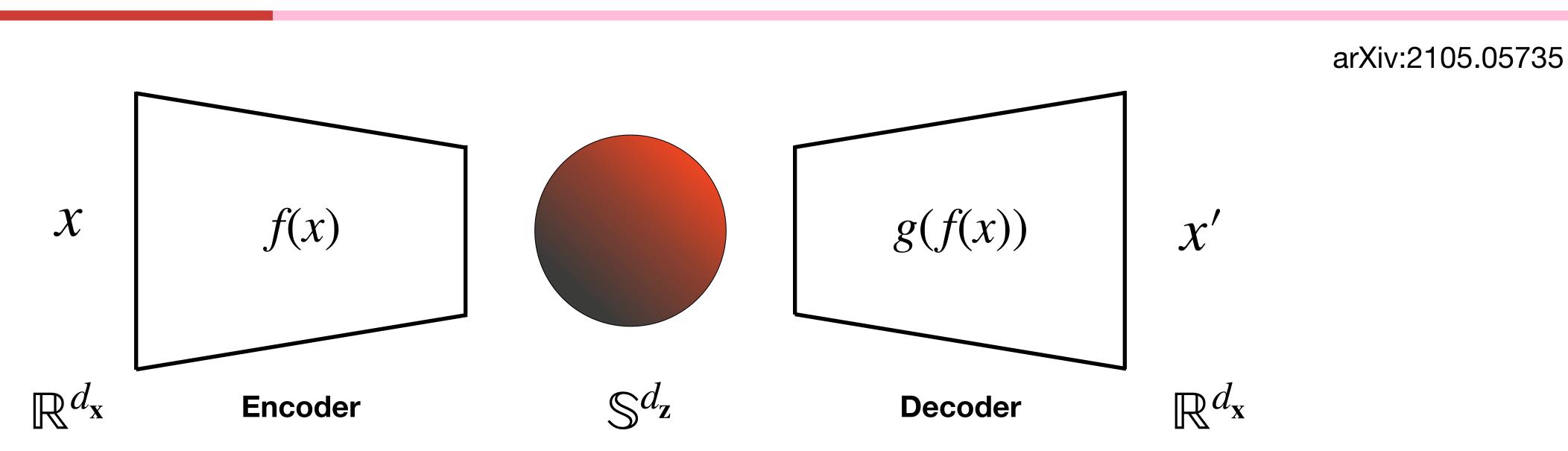
### Heidelberg University

02/11/2022





## **Normalized Auto-Encoders**



Building a NAE:

- define two neural networks like an usual Auto-Encoder;
- encode features in a low-dimensional latent space;
- set the latent space to a spherical hyper-surface  $\mathbb{S}^{d_z}$ ;
- use the reconstruction error as anomaly score, MSE(x, x').

We need to explore the anomaly score space during training  $\longrightarrow$  looking for a normalized distribution

 $p_{\theta}(x) = \frac{e^{-E_{\theta}(x)}}{\Omega}$ Define a Boltzmann probability distribution and use the MSE as energy function:

$$\Omega = \int_{x} e^{-E_{\theta}(x)} dx$$

If we consider the reconstruction error as energy function, we can train by minimizing the negative log-likelihood of the probability distribution:

$$\mathscr{L} = -\log p_{\theta}(x)$$



$$E_{\theta}(x, x') = ||x - x'||_2$$

 $= E_{\theta}(x) - \log \Omega$ 

### $\Omega$ high-dimensional space $\rightarrow$ intractable integral

02/11/2022





Consider the gradients of the loss function:

$$\nabla_{\theta} \mathscr{L} = \nabla_{\theta} E_{\theta}(x)$$

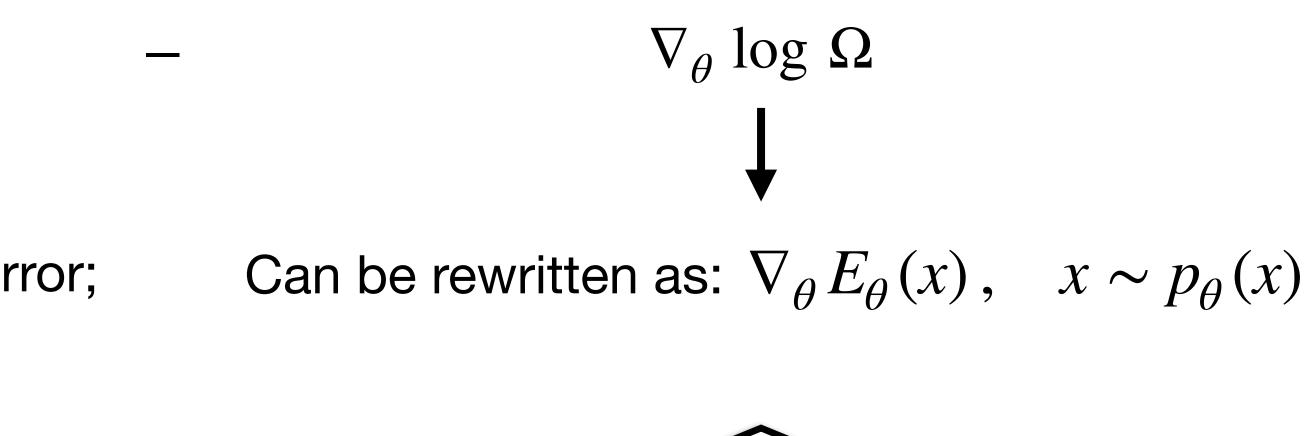
Minimizes the usual AE reconstruction error;

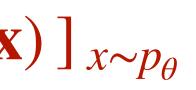
Rewriting the gradient of the loss function:

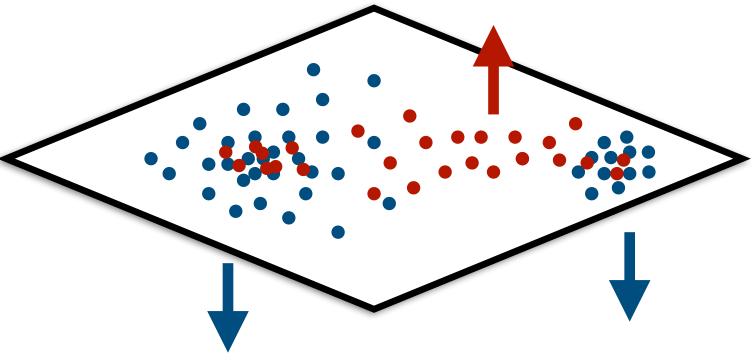
 $\nabla_{\theta} \mathscr{L} = \mathbb{E} \left[ \nabla E_{\theta}(\mathbf{x}) \right]_{x \sim p_{data}} - \mathbb{E} \left[ \nabla E_{\theta}(\mathbf{x}) \right]_{x \sim p_{\theta}}$ 

• positive energy: gradient descent step

• negative energy: gradient ascent step

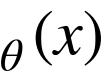






at equilibrium:  $p_{\theta}(x) = p_{data}(x)$ 

02/11/2022





## **Sampling from the model\***

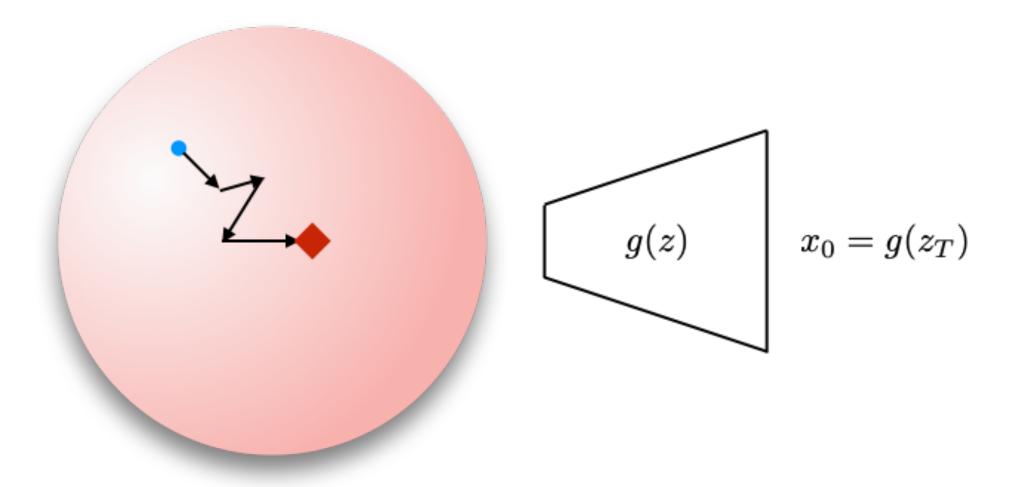
arXiv:2105.05735

- Sampling is done via Metropolis-Adjusted Langevin\* (MALA) Markov chains; • given the dimensionality of the input space the initialization of the MCMC do matter:

### **On-Manifold Initialization** $\rightarrow$ use latent space information

Latent space chains are defined by On-Manifold distribution and On-Manifold energy:

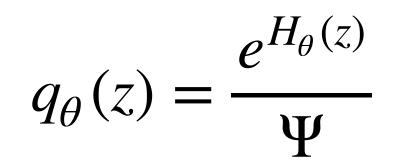
$$z_{t+1} = z_t + \lambda_t \nabla_z \log q_\theta(z)$$



\*choices made to reduce the training time

- $\epsilon \sim \mathcal{N}(0,1)$  $(z) + \sigma_t \epsilon$

On-manifold distribution:



On-manifold energy:

 $H_{\theta}(z) = E_{\theta}(g(z))$ 





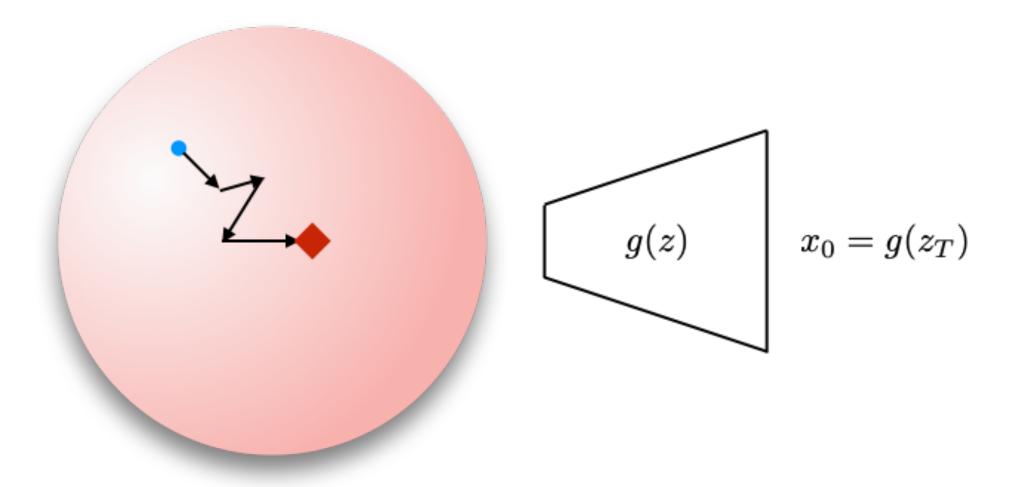
## **Sampling from the model\***

arXiv:2105.05735

- Sampling is done via Metropolis-Adjusted Langevin\* (MALA) Markov chains; • given the dimensionality of the input space the initialization of the MCMC do matter:

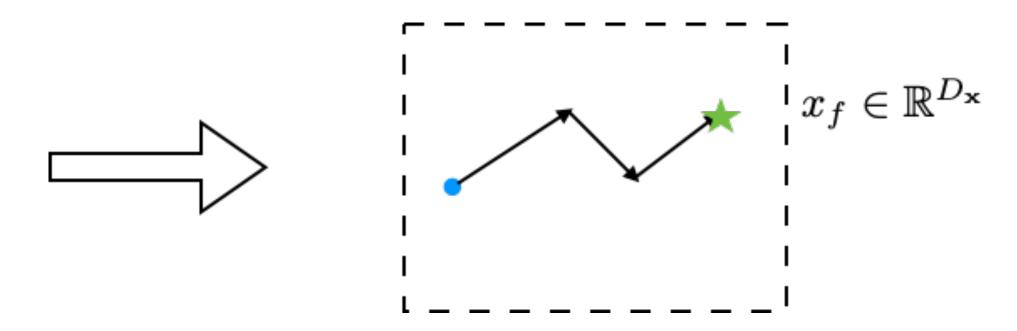
### **On-Manifold Initialization** $\rightarrow$ use latent space information

$$z_{t+1} = z_t + \lambda_t \nabla_z \log q_\theta(z)$$



\*choices made to reduce the training time

- Latent space chains are defined by On-Manifold distribution and On-Manifold energy:
  - $\epsilon \sim \mathcal{N}(0,1)$  $(t) + \sigma_t \epsilon$



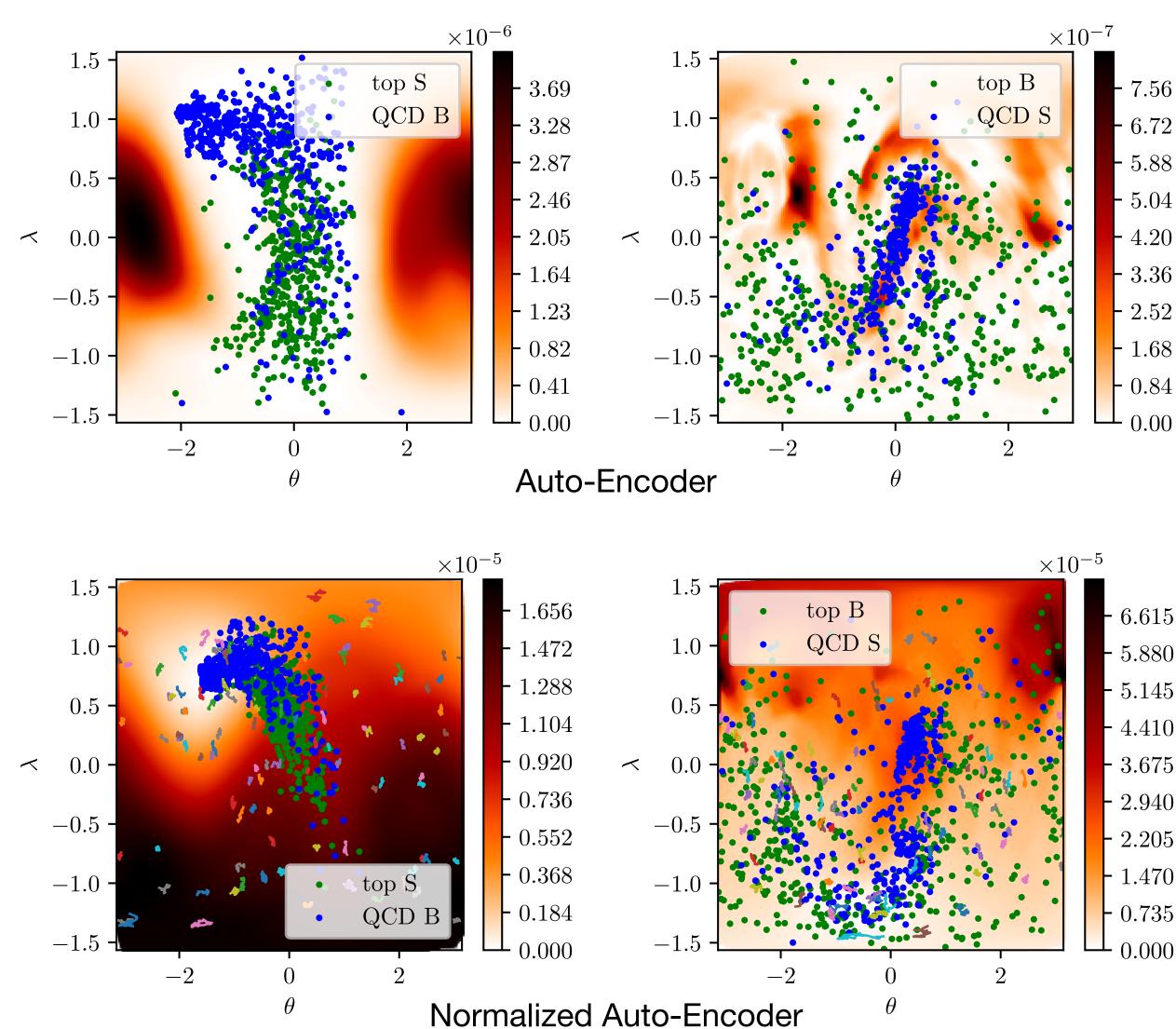




### Let's have a look at some results

We can study what happens during training:

- 2D projection of the latent space;
- decoder manifold for tops is more complex
- inducing an underlying metric via  $\log \Omega$ ;
- after training both QCD and top jets are mapped in high reconstruction regions of the decoder manifold;

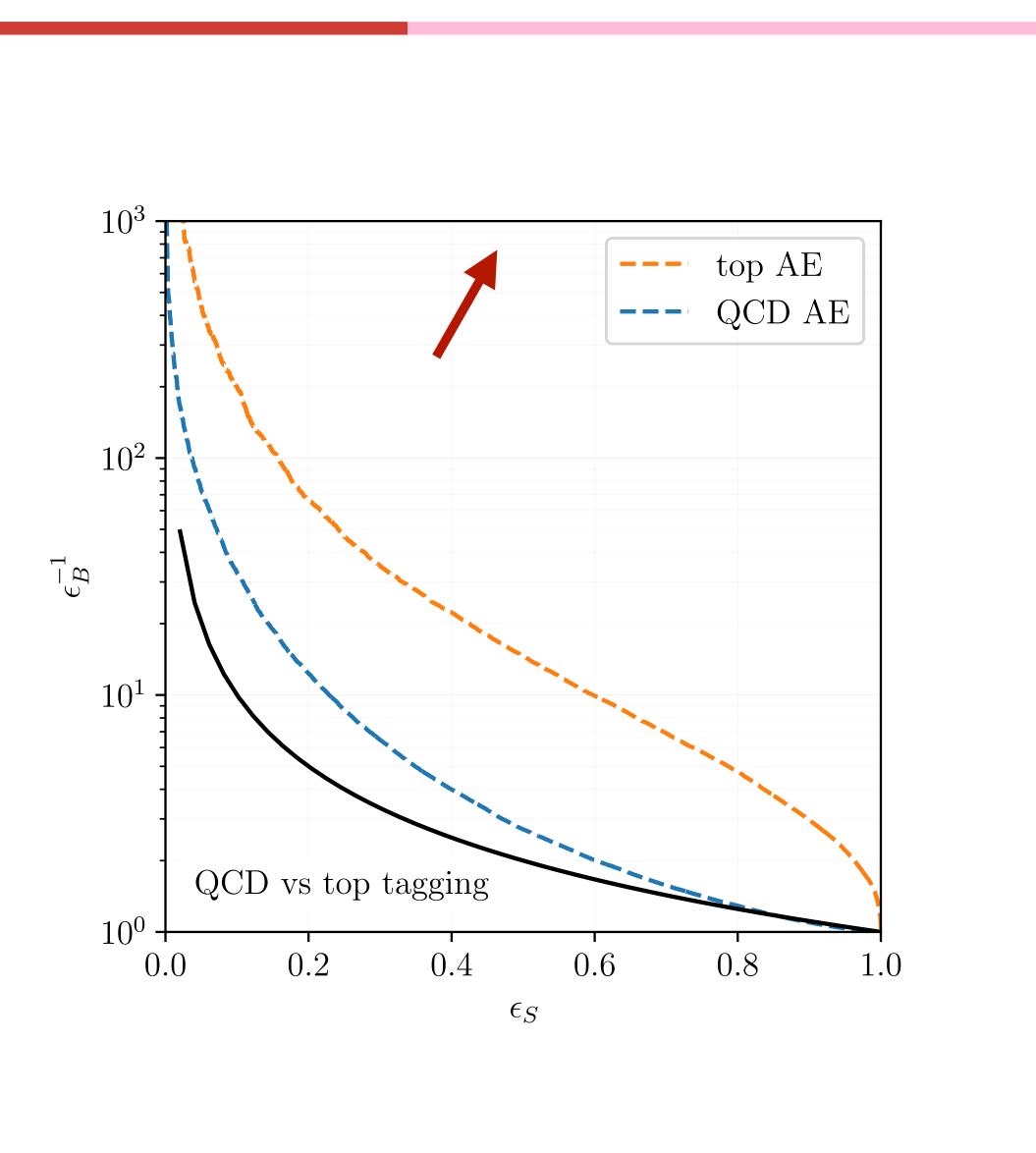


02/11/2022

- 4.4102.2051.470

## **Results: QCD vs top tagging**

- AE trained on jet images fails at tagging QCD jets;
- an AE is able to interpolate the simpler QCD features;



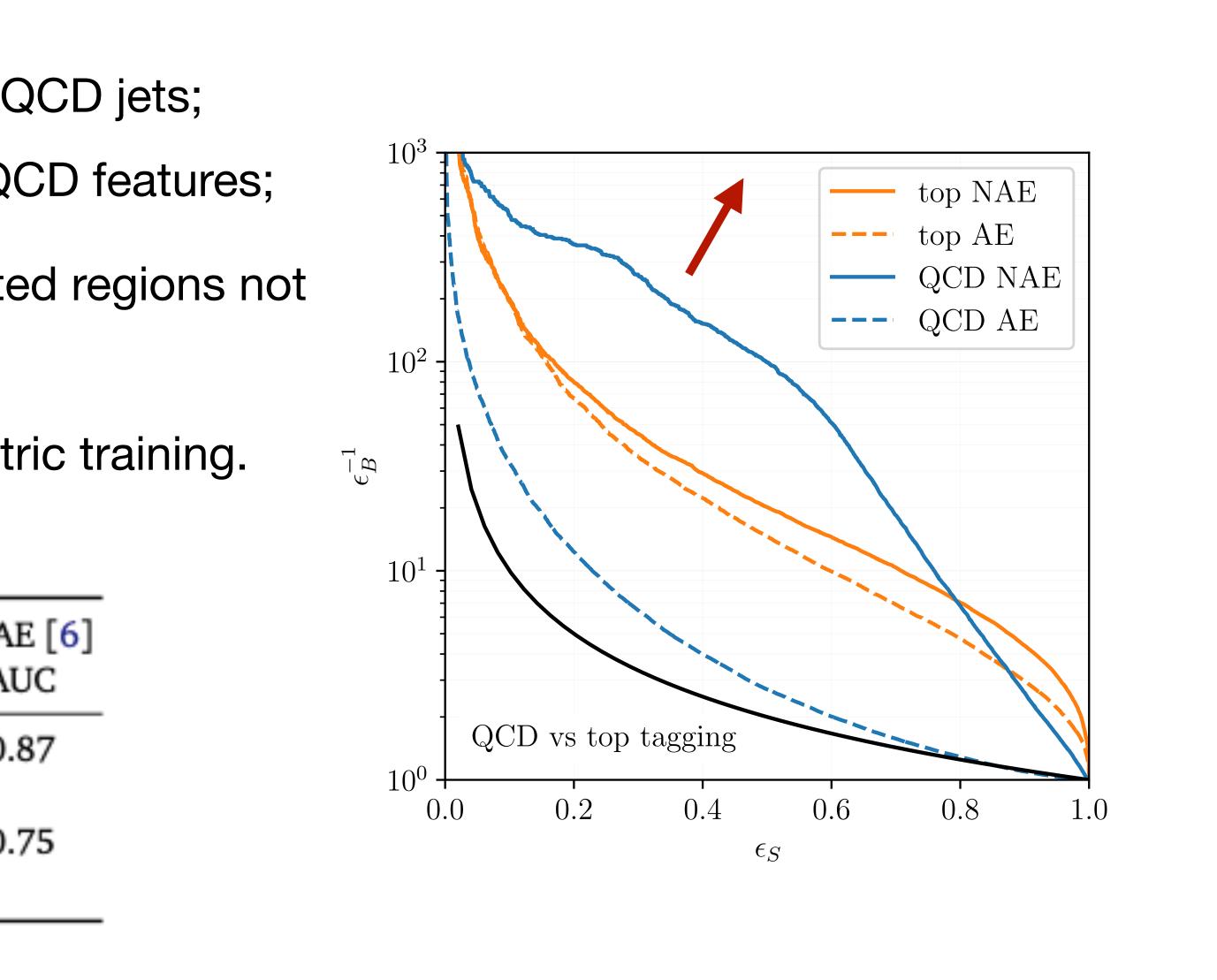


## **Results: QCD vs top tagging**

- AE trained on jet images fails at tagging QCD jets;
- an AE is able to interpolate the simpler QCD features;
- NAE explicitly penalizes well-reconstructed regions not in the training dataset;
- nice performance on both tasks, symmetric training.

| Signal    |       | NAE                                                                         | AE [1] | DVAE [ |
|-----------|-------|-----------------------------------------------------------------------------|--------|--------|
|           | AUC   | $\epsilon_{\scriptscriptstyle B}^{-1}(\epsilon_{\scriptscriptstyle S}=0.2)$ | AUC    | AUC    |
| top (AE)  | 0.875 | 68                                                                          | 0.89   | 0.87   |
| top (NAE) | 0.91  | 80                                                                          |        |        |
| QCD (AE)  | 0.579 | 12                                                                          | -      | 0.75   |
| QCD (NAE) | 0.89  | 350                                                                         |        |        |







## **NAE on events (preliminary)**

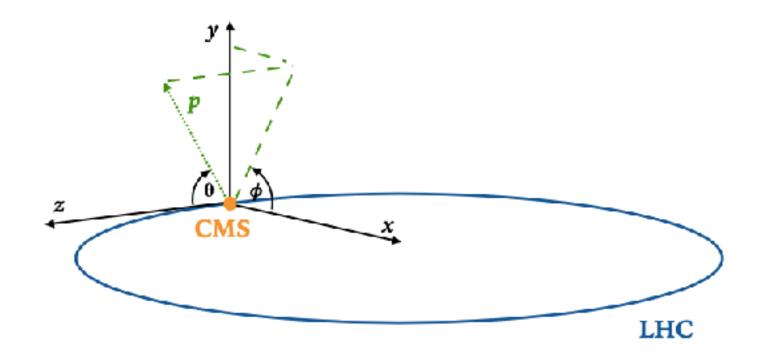
training on SM cocktail events:

 $W \rightarrow l \nu$  (59.2%)  $Z \rightarrow ll$  (6.7%)  $t\bar{t}$  production (0.3%) QCD multijet (33.8 %)

- The events are represented in the typical L1 format: (19, 3) entries • 19 particles: MET, 4 electrons, 4 muons, and 10 jets
  - 3 observables:  $p_T$ ,  $\eta$ ,  $\phi$
  - lepton cut  $p_T > 23 \text{ GeV}$

look for various BSM signals:

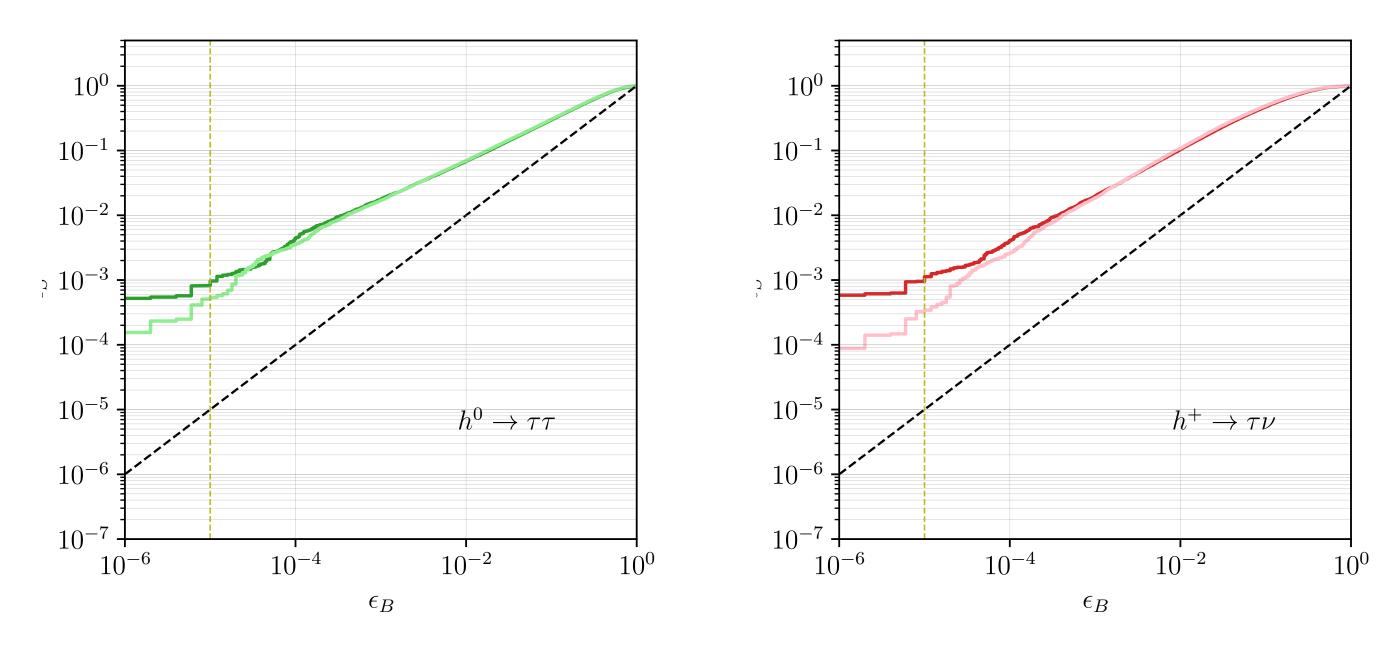
$$\begin{array}{l} A \rightarrow 4l \\ LQ \rightarrow b\nu \\ h_0 \rightarrow \tau\tau \\ h_+ \rightarrow \tau\nu \end{array}$$



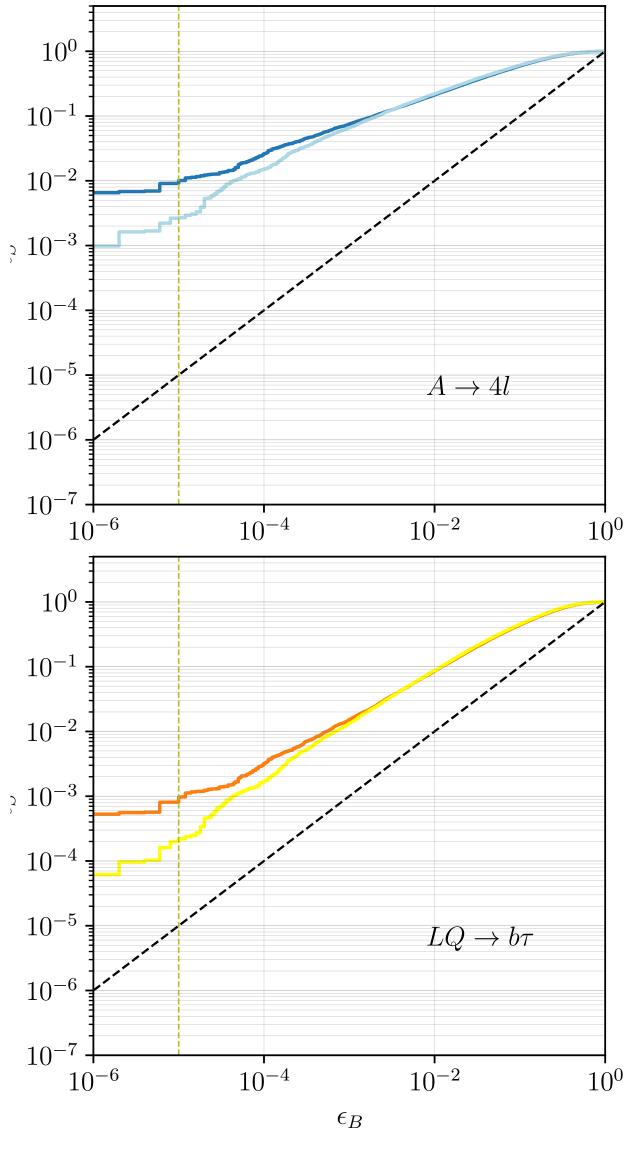


## **Tagging performances**

• focusing on  $\epsilon_B \sim 10^{-5}$  (output data rate available);







Heidelberg University

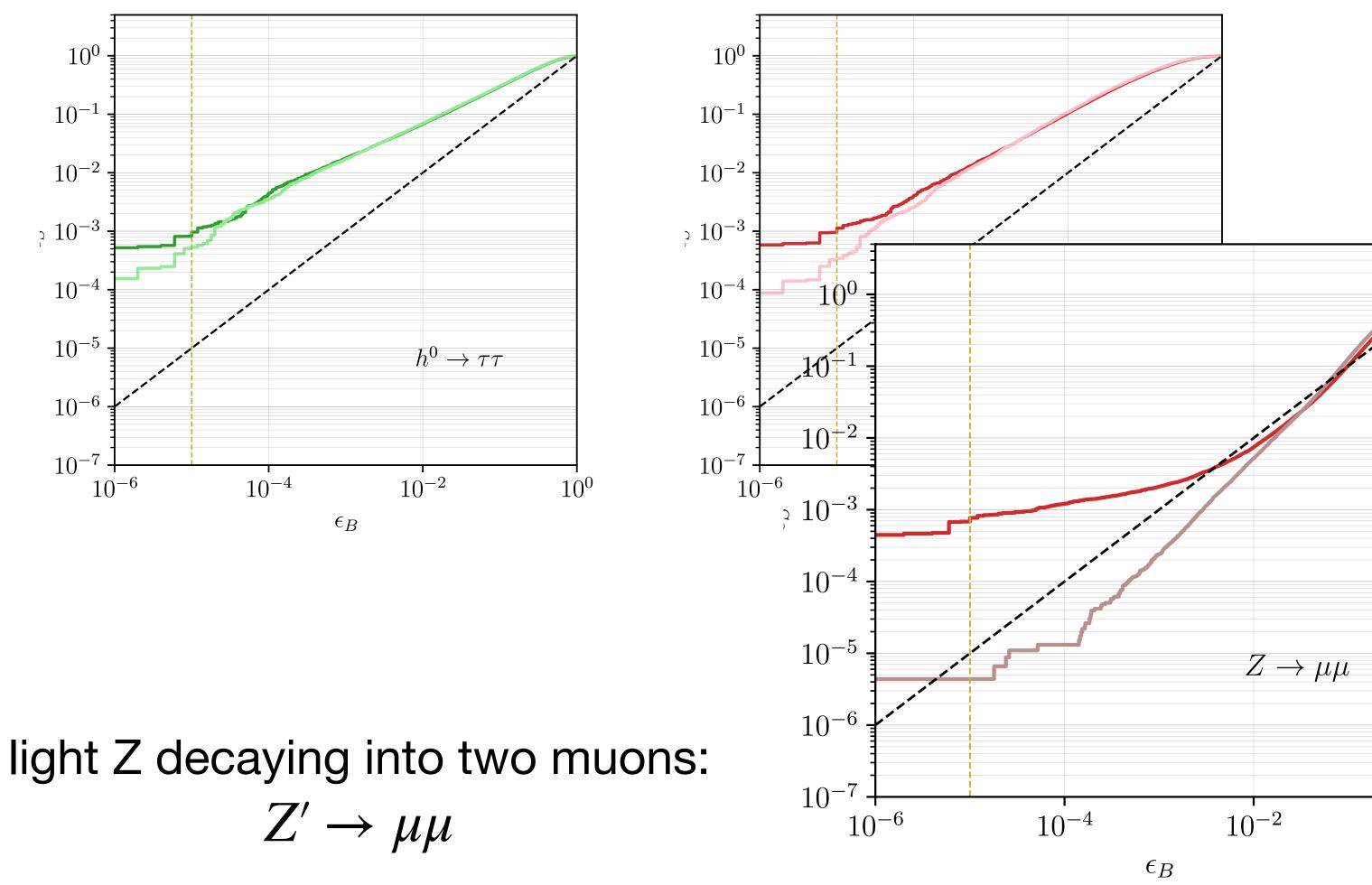
02/11/2022

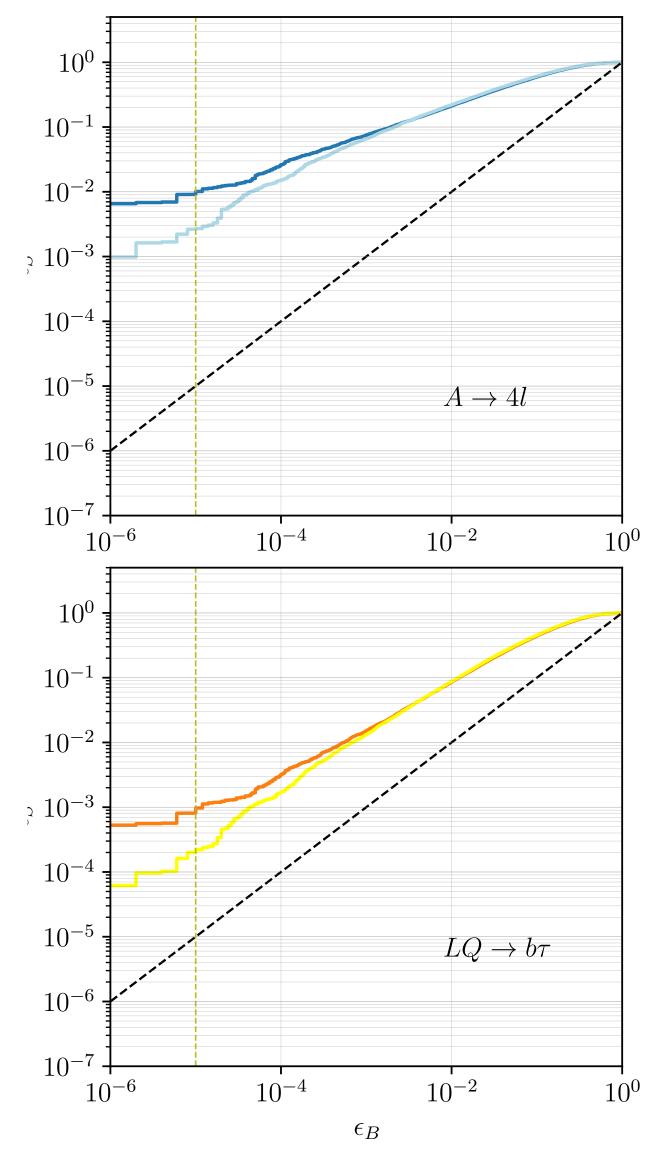




## **Tagging performances**

• focusing on  $\epsilon_B \sim 10^{-5}$  (output data rate available);





02/11/2022

 $10^{0}$ 





## Conclusions

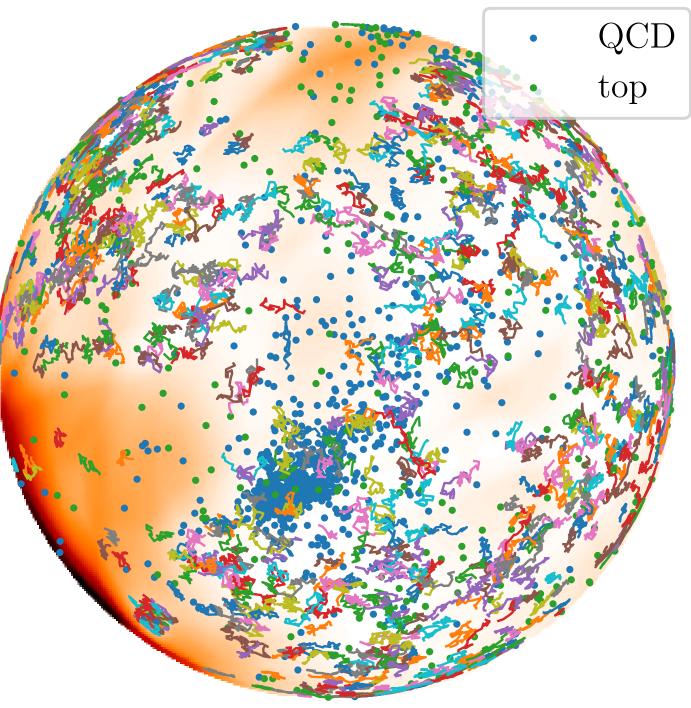
Normalized Auto-Encoders allow for:

- an energy-based description of an Auto-Encoder
- penalization of regions not covered by the training distribution:  $\rightarrow$  no complexity bias
- the code will be available on GitHub: luigifvr/normalized-autoencoders

Example results: tagging QCD vs top and NAE on events

Next steps:

- Detailed study and comparison between AE and NAE on events
- study implementation of NAE on FPGA
- paper on arXiv soon...





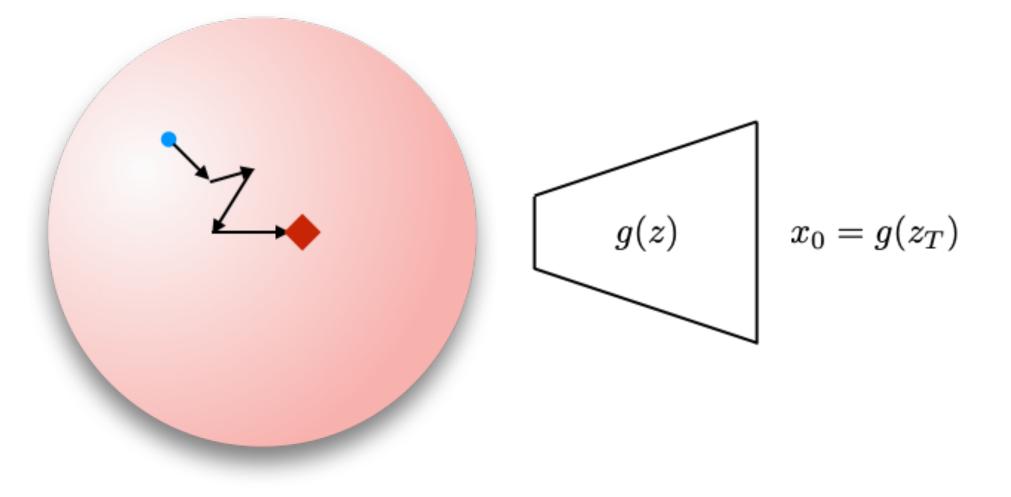
## Thanks for you attention!

## Sampling from the model\*

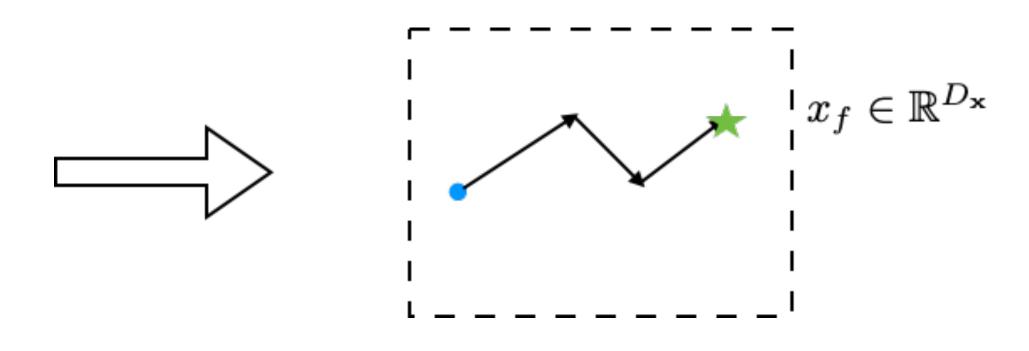
The second chain is performed in the input space using the distribution  $p_{\theta}(x)$ :

$$x_{t+1} = x_t + \lambda_t \nabla_x \log p_{\theta}(x) + \sigma_t \epsilon \qquad \epsilon \sim \mathcal{N}(0, 1)$$

\* both chains run for a small number of steps  $\mathcal{O}(100)$ , and they are constrained into low energy regions by taking  $\lambda > \sigma$ 



### Let's have a look at some results!

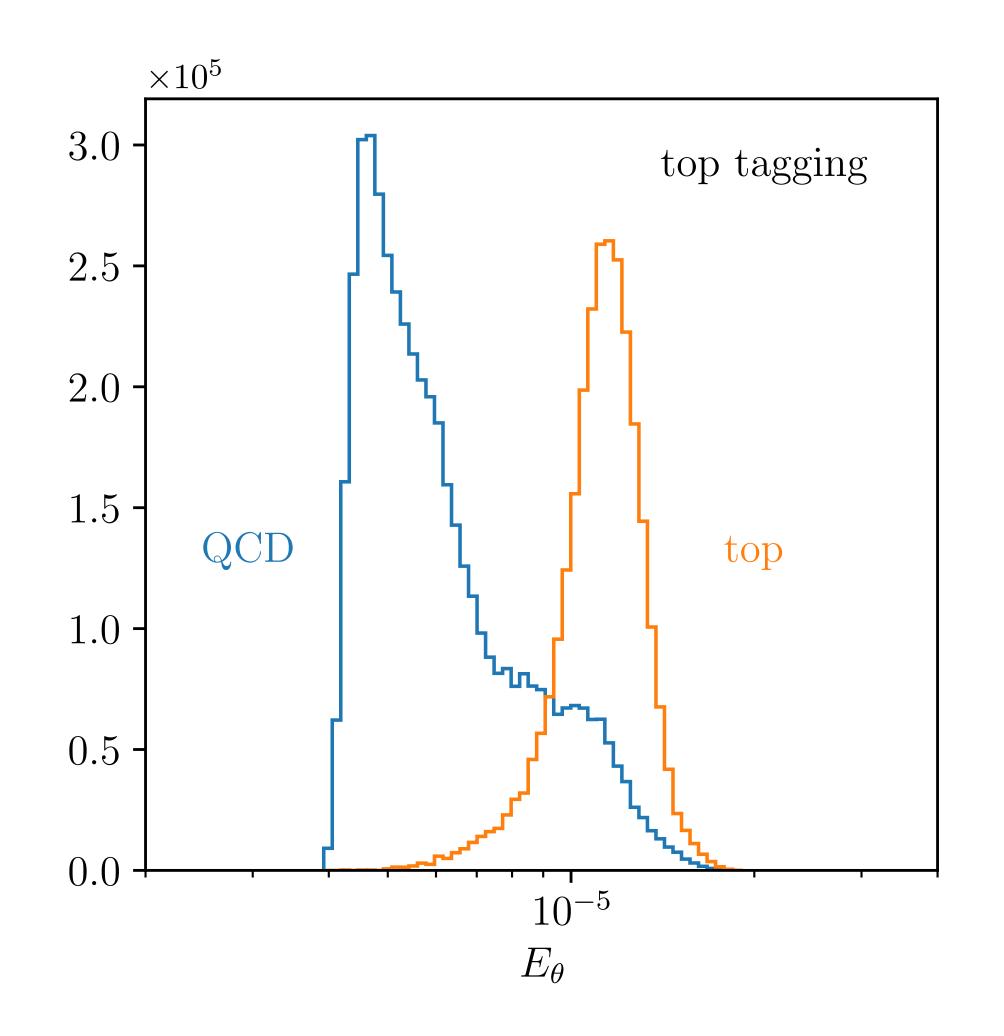


02/11/2022

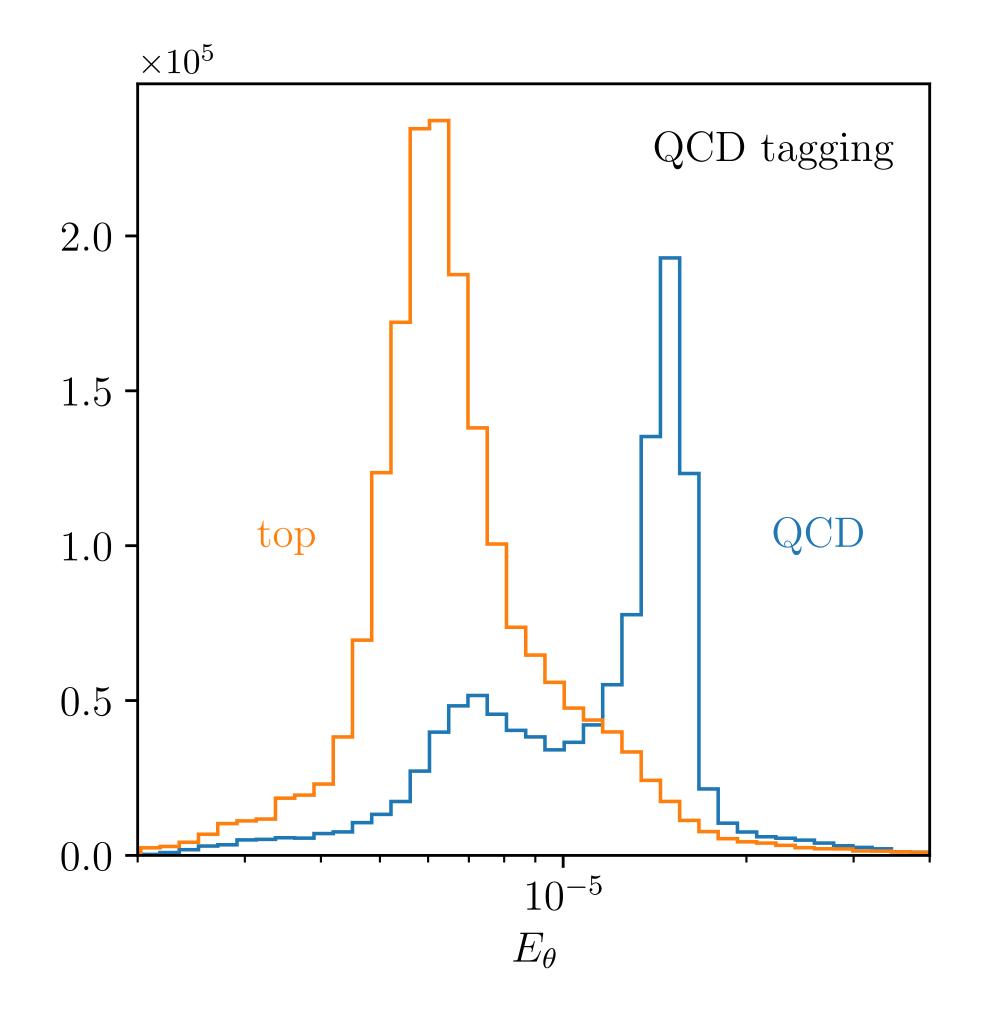




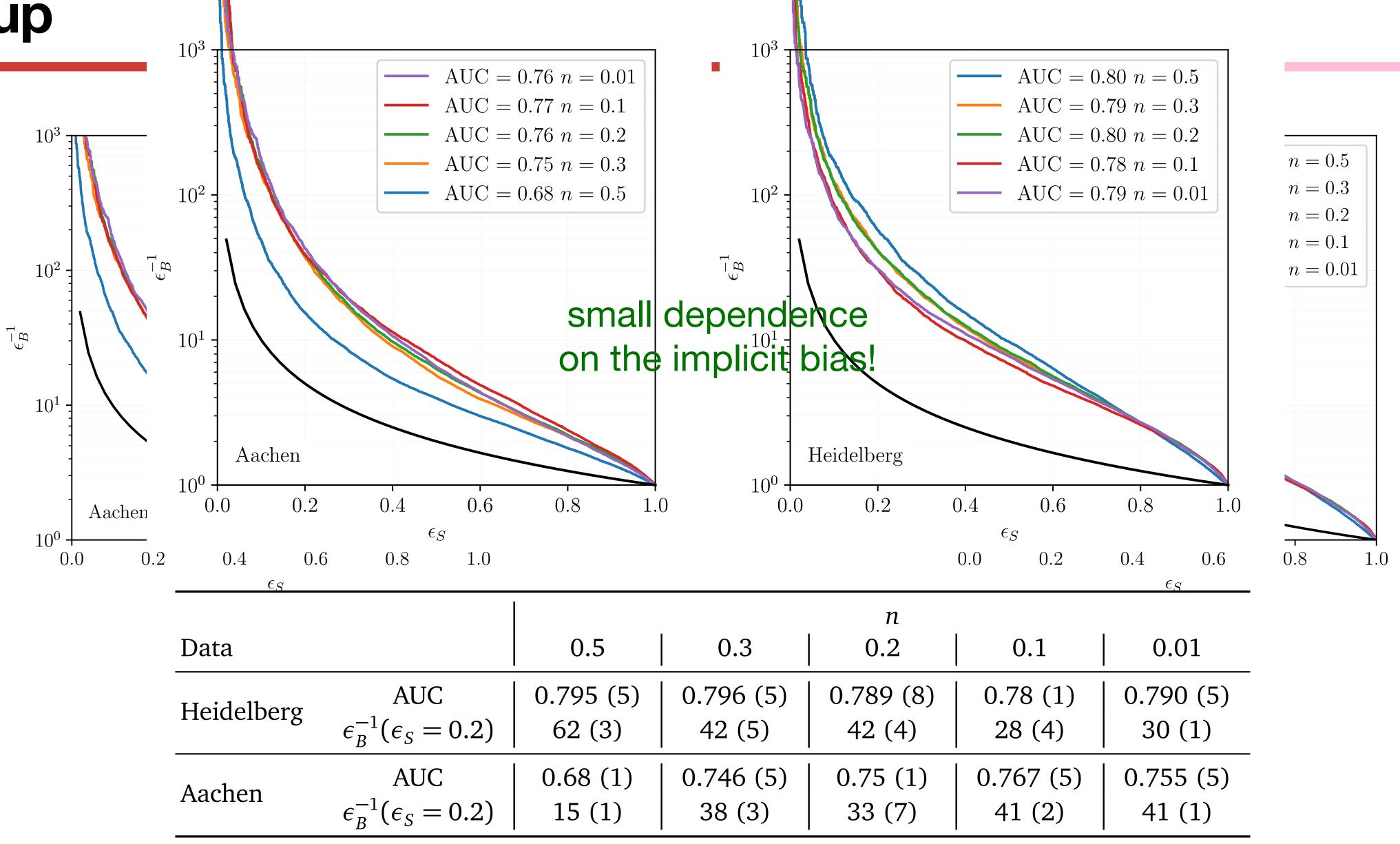
## Backup



MSE histograms for QCD and top tagging



## Backup





### Backup

