

Score-based Generative Models for Calorimeter Shower Simulation

Vinicius M. Mikuni, Ben Nachman

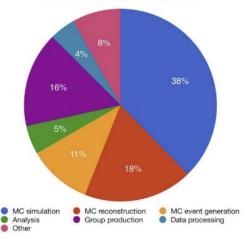
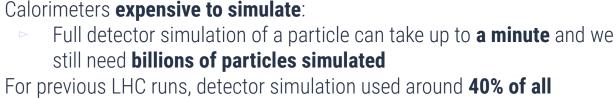
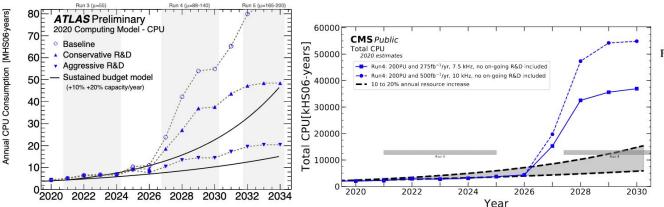


Figure 1: ATLAS CPU hours used by various activities in 2018



 For previous LHC runs, detector simulation used around 40% of all computing resources and may go beyond the available budget for future runs



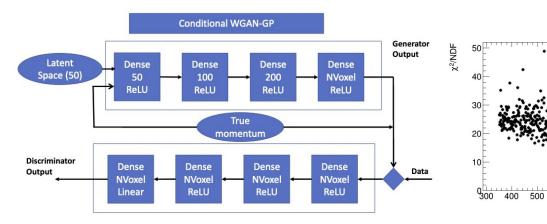
Wall clock consumption per workflow

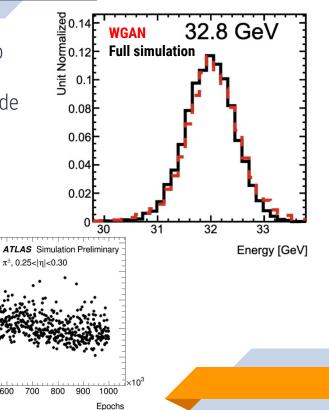
FastCaloGAN

3

See Michele's talk for updates!

- The **ATLAS collaboration** already has a WGAN-GP planned to replace the full simulation routine
- **Fully-connected** architecture that leads to orders of magnitude faster generation compared to full simulation
- Best epoch chosen based on the χ^2 of the energy distribution (sum of the energy depositions)





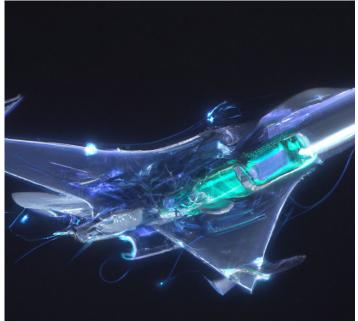
Diffusion models

"An astronaut lounging in a tropical resort in space in a photorealistic style"

https://openai.com/dall-e-2/

Salmon in the river

Machine learning for jets



Score matching/denoising/diffusion

Denoise diffusion models are the newest state-of-the-art generative models for image generation.

Pros:

- Stable training: convex loss function
- Scalability: Network complexity is more sensitive to the architecture than the dimensionality
- Access to data likelihood after training: similar to NFs, but overall normalization is not required during training

Cons:

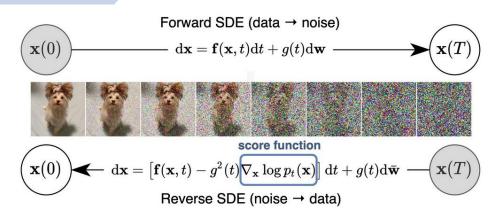
 Slow sampling: Possibly 1000s of model evaluations to generate realistic images

Image Generation on CIFAR-10

Rank	Model	FID 4	lnception score	bits/dimension	FID-10k- test	Paper	Code	Result	Year	Tags 🗷
1	StyleGAN-XL	1.85				StyleGAN-XL: Scaling StyleGAN to Large Diverse Datasets	0	÷	2022	
2	LSGM (FID)	2.10		3.43		Score-based Generative Modeling in Latent Space	C	Ð	2021	VAE Score-based
3	Subspace Diffusion (NSCN++)	2.17	9.99			Subspace Diffusion Generative Models	0	Ð	2022	Score-based
4	LSGM (balanced)	2.17		2.95		Score-based Generative Modeling in Latent Space	0	Ą	2021	VAE Score-based
5	NCSN++	2.20	9.73			Score-Based Generative Modeling through Stochastic Differential Equations	0	÷	2020	Score-based

Starting from an image, we can define a **diffusion** process that add small perturbations to the data until transforming it to a tractable distribution

- If we can reverse this process, we can start from the noise distribution and **denoise** to generate a new image
- Since the drift f(x,t) and diffusion g(t) coefficients are known, the tricky part is to estimate the data gradient, also known as the score function
- Goal of the network: estimate the data score



How it works?

- We would like to find $\mathbf{s}_{\boldsymbol{\theta}}(\mathbf{x})$ that minimizes: $\frac{1}{2}\mathbb{E}_{p_{\text{data}}}[\|\mathbf{s}_{\boldsymbol{\theta}}(\mathbf{x}) \nabla_{\mathbf{x}}\log p_{\text{data}}(\mathbf{x})\|_{2}^{2}]$
- Without knowing the density, we can instead, use a small data perturbation $q_{\sigma}(\mathbf{\tilde{x}} \mid \mathbf{x})$
- And estimate the score of the perturbed data by minimizing $\frac{1}{2}\mathbb{E}_{q_{\sigma}(\tilde{\mathbf{x}}|\mathbf{x})p_{\text{data}}(\mathbf{x})}[\|\mathbf{s}_{\theta}(\tilde{\mathbf{x}}) \nabla_{\tilde{\mathbf{x}}}\log q_{\sigma}(\tilde{\mathbf{x}}|\mathbf{x})\|_{2}^{2}]$
- Example: Gaussian perturbation $q_{\sigma}(\tilde{\mathbf{x}} \mid \mathbf{x}) = \mathcal{N}(\tilde{\mathbf{x}} \mid \mathbf{x}, \sigma^2 I) \ \nabla_{\tilde{\mathbf{x}}} \log q_{\sigma}(\tilde{\mathbf{x}} \mid \mathbf{x}) = -(\tilde{\mathbf{x}} \mathbf{x})/\sigma^2$
- We minimize $\frac{1}{2}\mathbb{E}[\|\sigma \mathbf{s}_{\theta}(\tilde{\mathbf{x}},\sigma) + \frac{\tilde{\mathbf{x}}-\mathbf{x}}{\sigma}\|_{2}^{2}]$

Gif from: https://keras.io/examples/generative/ddim/ **Ne**:sc

Perturbation kernels

- Let's go back to the diffusion equation
- In principle, we can choose any function for **f** and **g** but the common ones are those in which the transition kernel p(x_t|x) is gaussian. That can be accomplished if **f is an affine function**

Variance preserving (VP):
$$\,\,\mathrm{d}\mathbf{x}=-rac{1}{2}eta(t)\mathbf{x}\,\mathrm{d}t+\sqrt{eta(t)}\,\mathrm{d}\mathbf{w}.$$

Variance exploding (\underline{VE}):

$$\mathrm{d}\mathbf{x} = \sqrt{\frac{\mathrm{d}\left[\sigma^{2}(t)\right]}{\mathrm{d}t}}\mathrm{d}\mathbf{w}.$$

Sub Variance preserving(<u>subVP</u>):

$$\mathrm{d}\mathbf{x} = -\frac{1}{2}\beta(t)\mathbf{x}\,\mathrm{d}t + \sqrt{\beta(t)(1 - e^{-2\int_0^t \beta(s)\mathrm{d}s})}\mathrm{d}\mathbf{w}$$

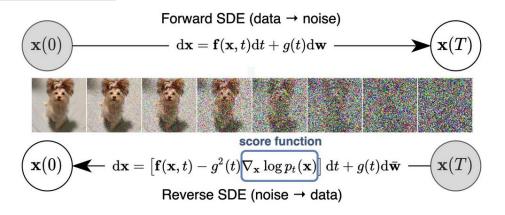
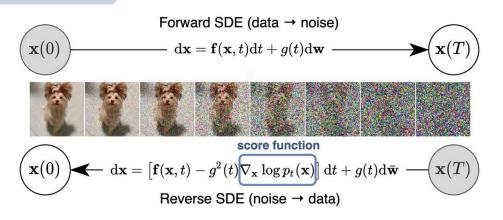


TABLE I. Perturbation kernel induced by different SDE choices.

$$\begin{array}{c|c} \text{SDE} & \text{Perturbation kernel} \\ \hline \textbf{VE} & \mathcal{N}(x(0),\sigma^2(t)-\sigma^2(0)) \\ \text{VP} & \mathcal{N}(x(0)e^{-\frac{1}{2}\int_0^t\beta(s)\mathrm{d}s},1-e^{-\int_0^t\beta(s)\mathrm{d}s}) \\ \text{subVP} & \mathcal{N}(x(0)e^{-\frac{1}{2}\int_0^t\beta(s)\mathrm{d}s},(1-e^{-\int_0^t\beta(s)\mathrm{d}s})^2) \end{array}$$

- Generation of new samples is done by solving the **reverse SDE**
- Langevin dynamics is used to draw samples from p(x) using only the score function
- High fidelity samples require small time steps, possibly leading to **1000s** of network evaluations to produce a new sample
- For Calorimeter generation, **O(100)** evaluations are enough to produce precise results



$$\mathbf{x}_{i+1} \leftarrow \mathbf{x}_i + \epsilon
abla_{\mathbf{x}} \log p(\mathbf{x}) + \sqrt{2\epsilon} \ \mathbf{z}_i, \quad i=0,1,\cdots,K,$$

front view

 $\Delta \phi$

Calorimeter shower generation

- Let's use a realistic example: **Fast Calorimeter Simulation Challenge 2022**
 - Converting initial sets voxelized in (alpha,r) coordinates to (eta,phi) coordinates
 - **Dataset 1**: 368
 - Dataset 2: 45x12x12 = 6480
 - **Dataset 3**: 45x32x32 = **46080**
 - Datasets 2 and 3: 3D convolutional layers.
 - Number of trainable parameters ~2M
 - Dataset 1: 1D convolutional layers
 - Number of trainable parameters ~32M
 - For comparison: Multiple normalizing flow model implemented in a 30x10x10 dataset used 72M parameters

 Δn

 $\Delta \phi$

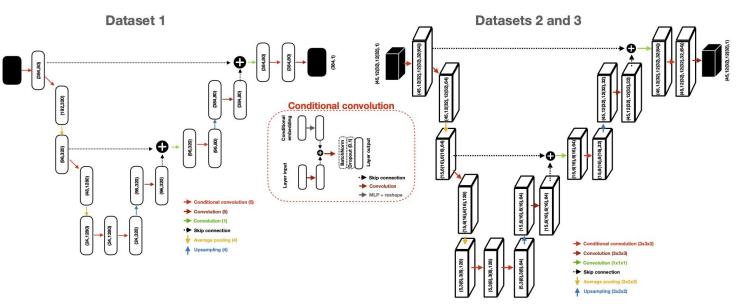
• Each energy deposition $\mathbf{E}_{\mathbf{i}}$ is normalized by the generated energy \mathbf{E} and transformed to log space: $\mathbf{u} = \mathbf{E}_{\mathbf{i}}/\mathbf{E}$ and $u_{\text{logit}} = \log \frac{x}{1-x}$,

3d view

$$x = \alpha + (1 - 2\alpha)u$$
 and $\alpha = 10^{-6}$.

 Δn

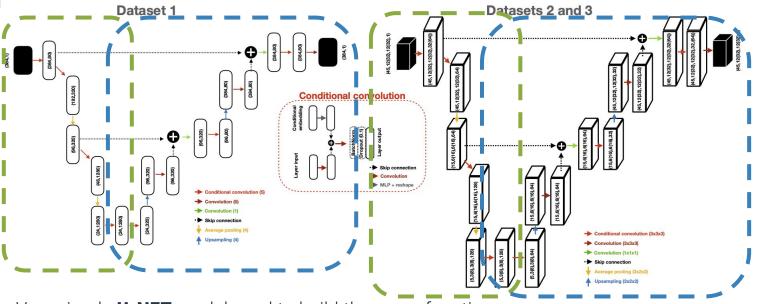
Calorimeter shower generation



Very simple **U-NET** model used to build the score function

- Lots of new developments over the years, adding attention between layers, additional skip connections, but kept it simple for this application
- **Conditional information** is added to convolutional layers as a **bias term**

Calorimeter shower generation

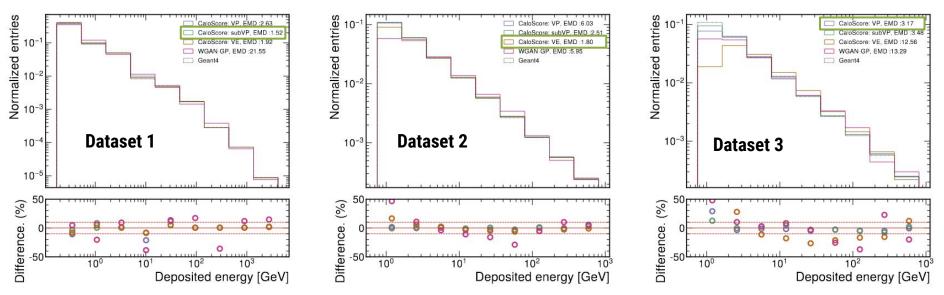


WGAN-GP: Critic Generator

Very simple U-NET model used to build the score function

- Lots of new developments over the years, adding attention between layers, additional skip connections, but kept it simple for this application
- **Conditional information** is added to convolutional layers as a **bias term**

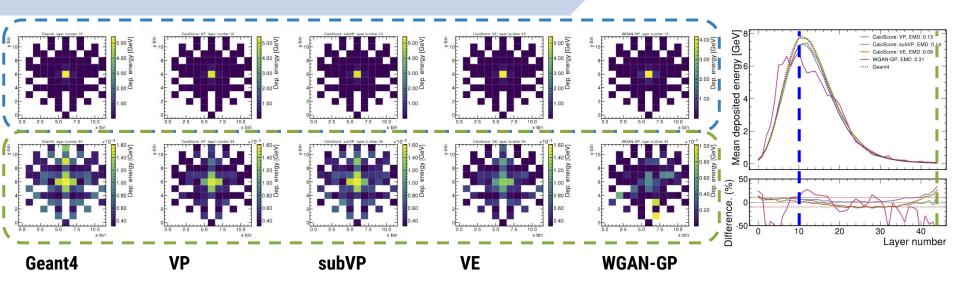
Results



Total energy deposited in the calorimeter material

 The 1-Wasserstein distance (EMD) between each generative model and Geant4 are shown for comparison

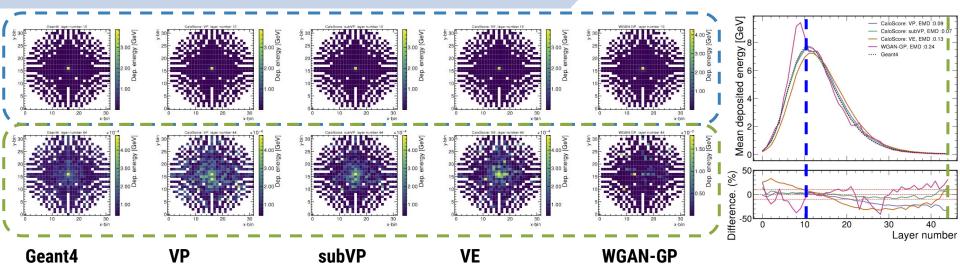
Results: Visualization



- Mean deposited energy for each calorimeter layer in dataset 2
- Visualize the energy deposition in the layers with highest (10) and lowest (44) expected energies
- Layer 10 is similar for all models, but layer 44 shows discrepancies compared to Geant.

Weird shapes are a result of the coordinate transformation

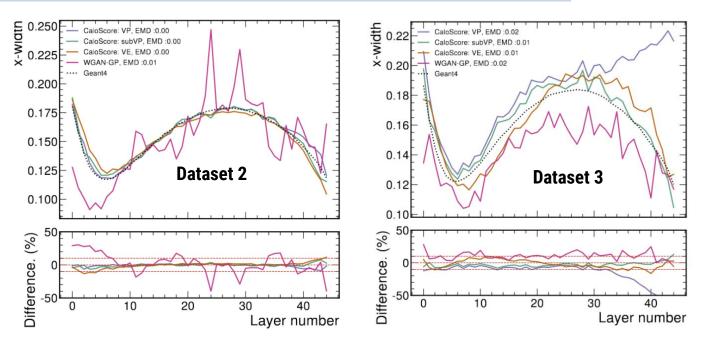
Results: Visualization



- Mean deposited energy for each calorimeter layer in dataset 2
- Visualize the energy deposition in the layers with highest (10) and lowest (44) expected energies
- Layer 10 is similar for all models, but layer 44 shows discrepancies compared to Geant.

Weird shapes are a result of the coordinate transformation

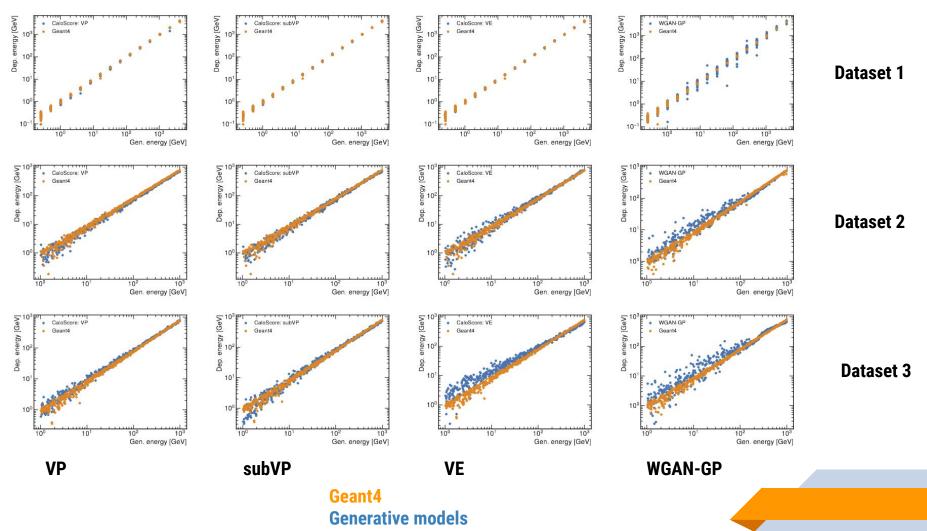
Results



$$\sigma_i = \sqrt{\langle x_i^2 \rangle - \langle x_i \rangle^2},$$

 $\langle x_i
angle = rac{\sum_j x_{i,j} E_j}{\sum_j E_j}.$

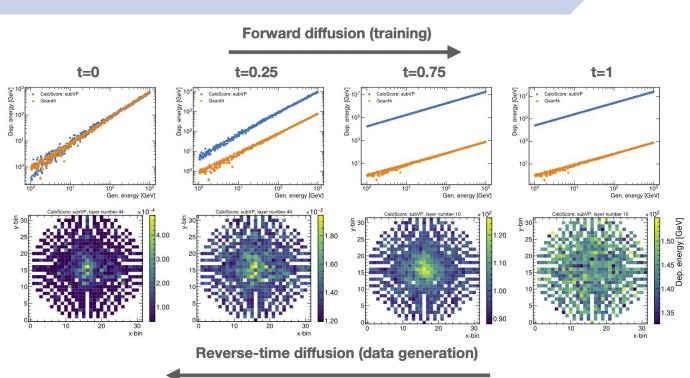
- Width of the particle shower is particularly challenging to model
- subVP describes well all regions and datasets



Dataset	N. of N. of		Time to 100 showers [s]				
	voxels	weights	CALOSCORE	WGAN-GP	Geant		
dataset 1	384	32M	4.0	1.3	$\mathcal{O}(10^2-10^3)$		
dataset 2	6480	$1.4\mathrm{M}$	5.8	1.33	$\mathcal{O}(10^4)$		
dataset 3	46080	1.7M	33.4	2.06	$\mathcal{O}(10^4)$		

- Total number of trainable weights are more sensitive to the model architecture rather than the total number of dimensions
- Compared to the WGAN, CaloScore is 3-16 times slower
- Compared to the full simulation, the generation time is 2-3 orders of magnitude faster

Conclusion



NERSC

Score-based generative

models are an exciting new option for generative models

<u>https://scorebasedgener</u>
 <u>ativemodeling.github.io/</u>

arXiv posting:

<u>https://arxiv.org/abs/220</u>
 <u>6.11898</u>

You can take a look at the implementation:

https://github.com/ViniciusMik uni/CaloScore

Backup

- Data generation can also be achieved by solving the associated ODE
 - Often leads to worse samples compared to Langevin dynamics generation
- On the other hand, we can also use the deterministic ODE recover the data density!

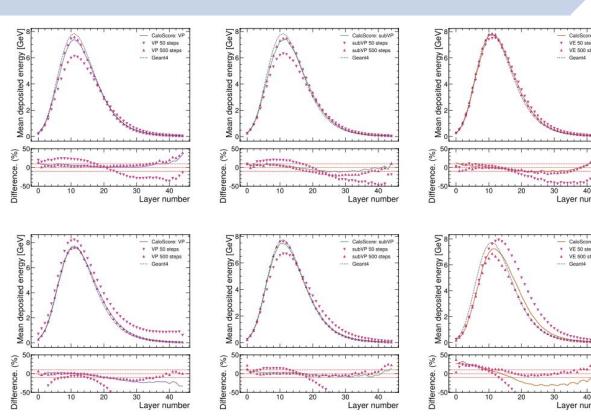
SDE
$$d\mathbf{x} = [\mathbf{f}(\mathbf{x}, t) - g^2(t)\nabla_{\mathbf{x}}\log p_t(\mathbf{x})]dt + g(t)d\mathbf{w}$$

ODE $d\mathbf{x} = \left[\mathbf{f}(\mathbf{x}, t) - \frac{1}{2}g^2(t)\nabla_{\mathbf{x}}\log p_t(\mathbf{x})\right]dt$

$$d\mathbf{x} = \tilde{\mathbf{f}}(\mathbf{x}, t) dt,$$

$$\log p_0(\mathbf{x}(0)) = \log p_T(\mathbf{x}(T)) + \int_0^T \nabla \cdot \tilde{\mathbf{f}}_{\theta}(\mathbf{x}(t), t) dt,$$

Results



CaloScore: VE VE 50 steps VE 500 steps Sample quality can be improved if more time steps are used, however the time increase for ALLILLER CONTRACTOR sampling is the bottleneck

Geant4

40

CaloScore: VE

40

Layer number

VE 50 steps

VE 500 steps

Geantd

Layer number

30

20

30

TABLE III. Time comparison to generate 100 calorimeter showers using the baseline model and different number of time steps

NERSC

Dat	taset	Baseline [s]	N=50 $[s]$	N=500 [s]
dat	aset 1	4.0	2.9	14.8
dat	aset 2	5.8	2.7	13.1
dat	aset 3	33.4	10.3	80.2