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Disclaimer:

        Very Preliminary Results!!
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VQ-VAE: Introduction
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Why VQ-VAE?

• Began as conversations w/ our CS colleagues, Eli & Xiaolong :


• CaloFlow basically solved the calogan dataset


• But it was slow…. 
                                   …until it wasn’t!


• Eli &al suggested we look into VQ-VAE to handle scaling expensive generative 
models


• VQ-VAE in particular has been used on some complex generative tasks (e.g. Dall-E)


➡  Some earlier talks (Vinicius, Jesse) already discussed some of the advantages of a 
two-step model!!!
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VQ-VAE Overview

Van den Oord et al. (2017)“Neural Discrete Representation Learning”
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VQ-VAE Forward Pass
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VQ-VAE Forward Pass
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VQ-VAE Forward Pass
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VQ-VAE Forward Pass

(…, 4, 3)

Latent

Channels

Ambient

Dimension

Encoder

Input Data

{ei = (xi, yi, zi) : i = 1..N}

Codebook

Size

(…, 4) : (2,6,5,5)

e2

e5

e6

∈ Z, |Z | = 4N

(Illus. w/ N=6)

Quantized latent space:

Identifies w/

Step III: Latent vectors are replaced with their nearest embedding
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e6

VQ-VAE Objective

L = log p (x |zq(x)) + sg[zenc(x)] − e
2

+ β zenc(x) − sg[e]
2

zenc(x) zq(x) = ek; k = argminj |ze(x) − ej |: raw encoder output

Reconstruction 
Loss

Vector 
Quantization

(e.g. MSE, GAN,

perceptual loss, etc)

Dictionary learning

//


Update codebook

Commitment 
Loss

Tries to keep encoder

predictions close to

codebook values.

* sg[] = stop gradient 13



e2
e5

e6

VQ-VAE Objective

L = log p (x |zq(x)) + sg[zenc(x)] − e
2

+ β zenc(x) − sg[e]
2

+ C

zq(x) = ek; k = argminj |ze(x) − ej |

Reconstruction 
Loss

Vector 
Quantization

Commitment 
Loss

“KL” 
Term

zenc(x) : raw encoder output

(e.g. MSE, GAN,

perceptual loss, etc)

Dictionary learning

//


Update codebook

Tries to keep encoder

predictions close to

codebook values.

Assuming

uniform

prior!

* sg[] = stop gradient 14



VQ-VAE Latent Distribution

In practice, the posterior distribution

is very nonuniform
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VQ-VAE Latent Distribution

In practice, the posterior distribution

is very nonuniform

• Once VQVAE achieves good 
reconstruction, a separate generative 
model is trained to learn a new (discrete) 
prior distribution.


• This means the representation learning 
is factorized from the generative model.


• Can train one VQVAE, and experiment 
with many different generative priors


• Obviates the problem of tuning “beta-
VAE”

But that’s okay!
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CaloChallenge Dataset 1
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DS 1: Strategy

Our strategy: 

• Fairly low dimensional: at 368-533 voxels, no 
regular structure 

• Fully-connected encoder/decoder architecture


• Normalize each layer in each event (h/t caloFlow)


• Predict layer-wise energy and voxel “shape” 
information separately


• The 5 layer energies are predicted using a 
standard cVAE


• The fractionalized voxel energies predicted using 
VQVAE

• VQVAE encodes to discrete 16 dimensional 
latent (~96% compression)


• +4 dim for layer energy VAE


• VQ prior modeled with autoregressive 
conditional RNN
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DS1: Architecture

Layer outputs
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Layer outputs

3x500 Dense layers (enc/dec)

ELU hidden activations


Batch Normalization

Activity regularized latent


Latent dim (16,16) // 512 codes

Ad-hoc “atan” output activation

DS1: Architecture
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Arctangent Activation

Shape control

Intercept control

• Useful output activation


• Increases sensitivity at high energy


• Attractor to zero


• Critical to model both high dynamic range 
and sparsity
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DS1: Architecture

Layer outputs

Embedding D=1024

GRU, conditional on one-hot energy


RNN units = 700
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Dataset 1: Energy metrics
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Dataset 1: Shape metrics
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DS1: Reconstruction Performance
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DS1: Reconstruction Performance

26



Dataset 1: Generation Time

•on A100 GPU:  0.04725  ms/evt


•S-VQVAE: 0.0107   ms/evt + 


•E-VQE:      0.00025 ms/evt +


•P-RNN:       0.0363    ms/evt

Prior model sampling

is the bottleneck, by far
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(Aside) VQ-VAE + Equivariance

Van den Oord et al. (2017)“Neural Discrete Representation Learning”
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https://arxiv.org/abs/1711.00937
https://arxiv.org/abs/1711.00937


(Aside) VQ-VAE + Equivariance

Van den Oord et al. (2017)“Neural Discrete Representation Learning”

• VQVAE makes intuitive sense in the context of 
equivariant architectures


• E.g., perhaps the model has  
learned that code 53 means “dog nose”


➡ This code acts as template

➡ Can be reused/replicated at any location, 

 simply by moving it around the latent space!
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CaloChallenge: Dataset 2

30



• DS2 (and DS3) are much larger datasets: 
6.5k and 40.5k voxels, resp.


• Both have regular cylindrical structure


• Use cylindrical convolution to reduce spatial 
dimension


• VQVAE to reduce “information” dimension


• Generative model for prior: TBD… 

• Training previous autoregressive RNN with 
hundreds or thousands of steps is infeasibly 
slow.


• We are investigating alternative models.

CaloChallenge DS2+3: Strategy / Plans
• Initial study on reconstruction only:


• Fully-convolutional encoder/decoder


• It’s possible to reduce the spatial 
dimension as low as ~300, but 
performance is not great


• Can achieve good reconstruction fidelity 
with ~30% compression


• We hope to combine with other generative 
models: score, transformer, maybe flow(?), 
for dimensional speedup
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How to do Cylindrical Convolution?

Usual 3D convolution: 

Input data is a (cubic) grid 
kernel is a (cubic) grid        

Get a cubic grid back
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Input data Filter Kernel

=

Convolution Output
2x2x2

We would like to have a cylindrical grid as input/output!
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How to do Cylindrical Convolution?



Cylindrical Convolution* (First Approach)
Recall: Matrix convolution is done by


shift -> product -> sum

Z-shift R-shiftPhi-shift

[ f ⋆ g]ij = ∑
mn

fmng(i−m),( j−n)
We just have to redefine the shift*


operators, and ensure

boundary conditions
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*Strictly, not a real convolution 
since these shifts are not 
a homogenous space…



1D Example: Circular Convolution

s0

s1

s2

s3
s4

s5

s6

s7

Consider a signal s, sampled on a circle:
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1D Example: Circular Convolution

s0

s1

s2

s3
s4

s5

s6

s7

Consider a signal s, sampled on a circle:

Want to do circular convolution with

a kernel k

k0

k1

k2
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1D Example: Circular Convolution

s0

s1

s2

s3
s4

s5

s6

s7

Consider a signal s, sampled on a circle: Shift / product / sum to get output signal h:

k0

k1

k2

h2

h3

h3 = k0s2 + k1s3 + k2s4
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1D Example: Circular Convolution

s0

s1

s2

s3
s4

s5

s6

s7

Practical implementation: unroll the signal  -> Reduce to normal 1D convolution!

s0      s1      s2     s3      s4      s5      s6      s7

k0    k1    k2  

k0

k1

k2 38



1D Example: Circular Convolution

s0

s1

s2

s3
s4

s5

s6

s7
s0      s1      s2     s3      s4      s5      s6      s7

k0    k1  k2

Practical implementation: unroll the signal  -> Reduce to normal 1D convolution!
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1D Example: Circular Convolution

s0

s1

s2

s3
s4

s5

s6

s7
s0      s1      s2     s3      s4      s5      s6      s7

k0    k1  k2

Boundary condition just requires some careful padding:

s0      s1      s2     s3      s4      s5      s6      s7 s6     s7  s0

k0    k1    k2  

Practical implementation: unroll the signal  -> Reduce to normal 1D convolution!
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Cylindrical Convolution: Details

Z-shift R-shiftPhi-shift

Cylindrical convolution is similar to the 1D example,

we use padding reduce the problem to standard 3D convolution.

Can implement other common features such as kernel strides,

input padding, and transposed convolution.

41



DS 2: Reconstruction Results
(Yes, it’s cheating)
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Dataset 2: Energy Metrics
• Results shown for a 3-layer encoder/decoder


• 28 ~> 40 filters per layer


• Latent dimension: 416 (~ 90% spatial compression)


• <150k parameters each for enc/dec
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Dataset 2: Shape Metrics
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Dataset 2: Event reconstruction
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Dataset 2: Single event reco

ReconstructedTruth
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Dataset 2: Single event reco

Reconstructed (detail)Truth (detail)
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Conclusions

Dataset 1: 

• VQ-VAE enables a two step model with high model compression


• Performance on DS1 is comparable to CaloGAN (but no GAN required!)


• Both in terms of performance and generation time


• But VAE can’t compete with CaloFlow! -> will focus on studying VQ-VAE scaling to the larger datasets


Datasets 2+3: 

• We plan to further improve the Cylindrical Conv. architecture


• Factorized model allows us to focus only on reconstruction for now!


• Latent generative model for the convolutional VQ-VAE: TBD 

• Looking forward to hearing your ideas!!
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Thank you!
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PRIORI GENERATION: RNN

■ Generate one step based on previous history of steps
■ Compared with DNN: output only depend on current step
■ Widely used in generation of sequence like time sequence, text, so on
■ Suitable to generate the quantized number and model the joint distribution 

of discrete choice
■ One example to generate 1 3 2 4
■ 0 0 0 0  1 :  predict next step based on 0 0 0 0,  generative seed
■ 0 0 0 1  3 : predict next step based on 0 0 0 1
■ 0 0 1 3  2
■ 0 1 3 2  4
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