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• It’s been 9 years since the 
“happiest thought” of Albert 
Einstein’s life sitting in the patent 
office in Bern. 

• World War I is raging on in Europe 
in 1916 and the newly famous 
Einstein publishes the General 
Theory of Relativity 

• Included in GR is the concept of 
ripples in spacetime that should be 
induced by accelerating objects –
Gravitational Waves (GW)!



A sad story!
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A long road for GWs…

• 1980s – NSF Funds MIT and Caltech to research 
laser interferometers, LIGO, GEO founded

• 1990s – Construction begins on LIGO, VIRGO, 
GEO600

• 1999-2003 – LIGO/VIRGO/GEO inauguration
• Later 2000s-2010s – LIGO/VIRGO starts

upgrading to Advanced LIGO/VIRGO
• September 2015 – aLIGO ready for first run
• September 14th, 2015 – aLIGO detects GWs 

from collision of two black holes
• 2017 - Multi-Messenger Astronomy (MMA) is 

realized (LIGO/VIRGO), additional GW 
experiments are built, funded, theorized

• 2020s+ – Golden era for GW astronomy! 
Detectors from all over the world are coming 
online
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International GW 
Collaborations

Observatories now (and in the 
future) include: 
1. GEO600 (Germany) 
2. LIGO (Hanford, Livingston USA)
3. VIRGO (Italy) 
4. KAGRA (Japan)
5. LIGO-India (India 2020s)
6. Einstein Telescope (Europe 

2030s)
7. LISA (Geosynchronous orbit 

2030s) 
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General Concept of GW Interferometers
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Source: Elena Cuoco - Real Time Classifier for transient signals in Gravitational Waves, From raw data to classified triggers  

• Michaelson interferometers (at heart) placed across the world in 
different orientations for full sky coverage 

• Different designs can be sensitive to different frequency ranges 

Produces: time-series [1-D strain + auxiliary channels]



Sounds trivial!!

7

Source: github.com/timothygebhard/ggwd, https://www.gw-openscience.org/data/

Produces: time-series [1-D strain + auxiliary channels]

BBH Sample

https://github.com/timothygebhard/ggwd
https://www.gw-openscience.org/data/


Sounds trivial!!
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Source: github.com/timothygebhard/ggwd, https://www.gw-openscience.org/data/

Produces: time-series [1-D strain + auxiliary channels]

BNS Sample

https://github.com/timothygebhard/ggwd
https://www.gw-openscience.org/data/


GW Dataset - Nontrivial
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• Sounds trivial, but isn’t – length measurements are ~ 10!""𝑚
• Constantly changing detector noise usually clouds signal 
• Detector glitches occur every O(10 sec) – resembling GWs in excess power! 

CBC Signal + Noise
Glitch Signal Signal

[Szczepanczyk et al. (2021) (Phys.Rev.D)][George & Huerta (2017) (Phys.Lett.B)]

https://arxiv.org/abs/2104.06462
https://arxiv.org/abs/1711.03121


Note: Advances in any collaboration propagate quickly to other GW facilities -
lots of knowledge share, open-science  

ML-Revolution in GW-physics
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Similar to HEP, AI can play an important role in real-time and offline data 
processing:

Data Quality

GW Detection, Real-time low latency MMA 

Parameter Estimation

Anomaly Detection

Check out: https://iphysresearch.github.io/Survey4GWML/ for full paper lists 

https://iphysresearch.github.io/Survey4GWML/


Section 1: 
Data Quality 
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Data Cleaning
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[Ormiston et al. (2020) (Phys.Rev.Res)]
https://indico.cern.ch/event/1156222/contributions/5062800/
https://indico.cern.ch/event/1156222/contributions/5062795/

• The output reconstructed from an interferometer contains

• Objective: recover 𝑠 𝑡 with best possible signal-to-noise ratio by minimizing 
𝑛#(𝑡).  

• Real-time/Offline noise reduction can provide quicker detections, more 
accurate GW parameters, find signals below the noise.

ℎ 𝑡 = 𝑠 𝑡 + 𝑛! 𝑡 + 𝑛" 𝑡

Possible GW Signal Witness Noise Fundamental Noise
(non-removable)

https://arxiv.org/pdf/2005.06534.pdf
https://indico.cern.ch/event/1156222/contributions/5062800/
https://indico.cern.ch/event/1156222/contributions/5062795/


DeepClean
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Witness channels: 

Detector Output: 

Fully convolutional auto-encoder maps the witness channels 𝑤$ 𝑡 into the 
noise predictions 𝑛#(𝑡) which are then subtracted from detector output ℎ(𝑡)

[Ormiston et al. (2020) (Phys.Rev.Res)]
https://indico.cern.ch/event/1156222/contributions/5062800/
https://indico.cern.ch/event/1156222/contributions/5062795/

[Bacon et al. (2022)]

https://arxiv.org/pdf/2005.06534.pdf
https://indico.cern.ch/event/1156222/contributions/5062800/
https://indico.cern.ch/event/1156222/contributions/5062795/
https://arxiv.org/abs/2205.13513


Glitches!, glitches, glitches?
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https://indico.cern.ch/event/1156222/contributions/5084202/
https://madlab.cs.ucr.edu/papers/FEED_2019_paper_8.pdf

• As opposed to detector noise subtracted by DeepClean, glitches are short duration non-gaussian noise 
transients originated from instrumental or environmental couplings. 

• Glitches are by far the culprit of most significant false alarms – excess power isn’t enough!

Signal

https://indico.cern.ch/event/1156222/contributions/5084202/
https://madlab.cs.ucr.edu/papers/FEED_2019_paper_8.pdf


DL Glitch Classification
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[George et al. (2017) (Phys.Rev.D)]
[Razzano & Cuoco (2018) (Class. Quantum Grav.)]

CNN

• Glitches affect data quality but do 
not have delayed propagation
between detectors (unless by 
chance)

• Important to investigate 
classification of glitches simply to 
group them into families of 
morphologies 

• Once glitch families are identified, 
study specific impact on data 
quality flags/detector performance

https://arxiv.org/abs/1706.07446
https://iopscience.iop.org/article/10.1088/1361-6382/aab793


GravitySpy
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[Zevin et al. (2017) (Class. Quantum Grav.)]
[Coughlin et al. (2019) (Phys.Rev.D)]

Concept: Have humans label data (for fun) then can then be used for DL Glitch Classification
Citizen Science: https://www.zooniverse.org/projects/zooniverse/gravity-sp

Front-End Back-End

30,055 
Volunteers

7,223,295
Classifications

https://iopscience.iop.org/article/10.1088/1361-6382/aa5cea
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.99.082002
https://www.zooniverse.org/projects/zooniverse/gravity-spy


GANs – Why not!
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[Dooney et al. (2022)]

Traditional GAN DVGAN

Wasserstein Distance Loss (Earth Movers Distance)

CNN CNN

Encode human intuition - second discriminator (derivative) ensures continuous 1D signals!  

https://arxiv.org/abs/2209.13592


Section 2: 
GW-Detection 
& Low Latency 
MMA
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Compact Binary Searches
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Implementations:[George & Huerta (2017) (Phys.Lett.B)] , [Kim et al. (2015) (Class.QuantumGrav.], [Gabbard et al. (2018) (Phys.Rev.Lett)]

Matched Filtering (MF)
• Current method used by LIGO 
• Theoretically perfect, with assumptions that do not 

exist in the real data 
• Compares incoming GW data to bank of simulated 

waveforms 
• Can only identify GWs that are available in GW 

banks (no exotic events)
• Computationally intensive! 

Deep Learning
• Convolutional Neural Networks (CNNs) 
• Take time-series inputs, can determine detections and 

estimate parameters of events 
• Parallelizable 
• Performing about the same as MF – let’s talk about this!

https://arxiv.org/abs/1711.03121
http://dx.doi.org/10.1088/0264-9381/32/24/245002
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.120.141103


Complete Training Pipeline
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• Excess power 
algorithm/GravitySpy identifies 
glitches in training timeseries 

• During training, oversample 
these glitches to force learning

https://indico.cern.ch/event/1156222/contributions/5084202/
https://github.com/ML4GW/ml4gw

https://indico.cern.ch/event/1156222/contributions/5084202/
https://github.com/ML4GW/ml4gw


Complete Training Pipeline
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https://indico.cern.ch/event/1156222/contributions/5084202/
https://github.com/ML4GW/ml4gw

• Sample intrinsic parameters (masses, spins, 
tilts) and generate raw polarizations 

• During training, sample extrinsic parameters
(sky localization, distance) and project onto 
interferometers

• DL-work here as well: waveform modeling at a 
lower computational cost (waveform surrogates)

[Huerta et al. (2017) (Phys.Rev.D)]
[Blackman et al. (2017) (Phys.Rev.D)]

https://indico.cern.ch/event/1156222/contributions/5084202/
https://github.com/ML4GW/ml4gw
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.95.104023
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.95.104023


Scientifically Sound Validation
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https://indico.cern.ch/event/1156222/contributions/5084202/
https://github.com/ML4GW/ml4gw

• GW search sensitivity evaluated by comparing to 
background events generated through 
timeslides

• Achieving high significance detections requires 
analyzing years of background

Timeslides

“CNN algorithms should implement an 
accurate statistical measure of the 

background to take current, ML-based 
CBC searches from proof-of-principle 
studies to production search codes.”

GW-Science with ML Review 
[Cuoco et al. (2020) (MLST)]

https://indico.cern.ch/event/1156222/contributions/5084202/
https://github.com/ML4GW/ml4gw
https://iopscience.iop.org/article/10.1088/2632-2153/abb93a
https://iopscience.iop.org/article/10.1088/2632-2153/abb93a


Section 2.5: 
Real-time Low 
Latency MMA
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Inference-as-a-Service (IaaS)

24

• IaaS is becoming a 
common paradigm (also 
in HEP) to efficiently use 
compute resources

• Highly parallelizable
• Off-the-shelf solution: 

Triton inference server



IaaS challenges timeseries streaming
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HERMES – IaaS Timeseries Utility 
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https://github.com/ml4gw/hermes

Heterogeneous Real-Time Messaging Service 

https://github.com/ml4gw/hermes


HERMES – Increased Throughput
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https://github.com/ml4gw/hermes
https://alecgunny.github.io/hermes-examples/

https://github.com/ml4gw/hermes
https://alecgunny.github.io/hermes-examples/


Section 3: 
Parameter 
Estimation
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Bayesian Inference
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• Understanding the astrophysics behind a signal 
requires parameter estimation

• Bayesian parameter estimation pipelines are active: 
• LALInference
• Bilby
• RIFT

• Bayesian evidence is computational costly - takes 
days or weeks to measure GW signal parameters

Reproduce GW Bayesian posterior using NN

[Gabbard et al. (2022) (Nature Phys.)]
[Chua & Vallisneri (2020) (Phys.Rev.Lett)]

CVAE

Estimated posteriors (yellow) 
True posteriors (black) 

https://journals.aps.org/prd/pdf/10.1103/PhysRevD.91.042003
https://iopscience.iop.org/article/10.3847/1538-4365/ab06fc/meta
https://arxiv.org/abs/1805.10457
https://arxiv.org/abs/1909.06296
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.124.041102


Bayesian Posterior – Normalizing Flows
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[Green et al. (2020) (Phys.Rev.D)]

Convolutional Variational 
Autoencoder (CVAE)

Masked Autoregressive
Flows 

CVAE + Autoregressive
Flows

[Dax et al. (2021) (Phys.Rev.Lett)]

https://arxiv.org/abs/2002.07656
https://arxiv.org/pdf/2106.12594.pdf


Low Latency EM-Bright 
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[Chatterjee et al. (2020) (Astrophys.J.)]

Beyond classification, source property inference EM-
bright is provided to MMA community:

1. Probability that CBC system contains NS of 
mass less than 3.0 M☉ - P(HasNS)

2. Probability that the final coalesced object is 
surrounded by tidally-disrupted matter after 
the merger - P(HasRemnant)

Use K-neighbors-neighbors (KNN) vote on 
fast matched filter searches 

https://arxiv.org/abs/1911.00116


Section 4: 
Anomaly 
Detection
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What are anomalies? 
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Anomalies are unmodelled waveforms 

• GWs have been detected in Matched-Filter 
pipelines from: 

• Binary Black Holes (BBH)
• Binary Neutron Stars (BNS)
• Black Hole – Neutron Star (BHNS) 

• Anomalous signals: 
• Core Collapse Supernovas (CCSNe)
• Neutron Star Glitches
• Cosmic Strings 
• NSs collapsing to BHs
• Gravitational Bremsstrahlung 
• Other stochastic processes



Strain Pearson Correlation

Correlation Detection
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[Vasileios et al. (2022)]

Idea: The one thing we can count on is inter-detector correlation

Trained on generic 
white-noise bursts 
(WNBs) as signal

https://arxiv.org/abs/2107.12698


Unsupervised Learning: Detection
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Comparing input and reconstructed 
data gives a model loss

Anomaly detection sequence:
1. Train autoencoder to encoder and decode 

data on data with no anomalies. 
2. Compute the highest loss on the training 

dataset – set as threshold for anomalous 
detection

3. Run autoencoder for test data, identify 
events that fall above detection threshold

[Moreno et al. (2022) (MLST)]

https://arxiv.org/abs/2107.12698
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Event Loss with Autoencoders

• LSTM (and now Transformer) AE 
evaluated on BBH and BNS 
events yields promising results

• Red dotted line represents 
detection threshold which can 
be determined according to FPR

• During training, AE never 
receives information about any 
GW (signal) -> Source Agnostic

[Moreno et al. (2022) (MLST)]

https://arxiv.org/abs/2107.12698
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Quasi-Anomalous Knowledge - QUAK
[Park et al. (2021) (JHEP)]

https://arxiv.org/pdf/2011.03550.pdf
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4D QUAK Space 

BBH AE

Glitch AE

Bkg AE

Sine-Gaussian 
AE
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Trained QUAK Spaces

Specific regions of the QUAK 
space correspond to different 

types of events!

Also interested in other embedded spaces…..



Conclusions
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ML in GW-Physics is alive and well: 

Data Quality

GW Detection, Real-time low latency MMA 

Parameter Estimation

Anomaly Detection

Check out: https://iphysresearch.github.io/Survey4GWML/ for full paper lists 

From A3D3, keep a look out for:
1. ML4GW Workshop @ MIT (January 2023) 
2. Mock-data Challenge  

https://iphysresearch.github.io/Survey4GWML/


Backup
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ML-Revolution in GW-physics
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1. Data Cleaning
• Non-linear noise subtraction using autoencoders (DeepClean)

2. GW detection, parameter estimation 
• End-to-end optimized, validated, analysis-ready models (BBHNet)
• Timeseries tools (Hermes, ML4GW) 

3. Real-time low latency MMA
• Parallel processing in Inference-as-a-Service pipelines (IaaS)

4. Anomaly Detection
• Autoencoders, embedded spaces to detect outlying events 

Similar to HEP, AI can play an important role in real-time and offline data 
processing:

Some tools being developed in our org: https://github.com/ML4GW

https://github.com/ML4GW


Different Kinds of Noise
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https://arxiv.org/pdf/2005.06534.pdf
https://indico.cern.ch/event/1156222/contributions/5062800/
https://indico.cern.ch/event/1156222/contributions/5062795/

• Noise can be split into two kinds:

n 𝑡 = 𝑛#! 𝑡 + 𝑛!(𝑡)

• Non-removable (fundamental noise)
• Budgeted by system design
• Eg: photon shot noise, thermal noise
• Can only be reduced with upgraded 

design and technology

• Source of noise witnessed by 
dedicated system monitors 
(witness sensors)

• Environmental contamination or 
technical noise 

https://arxiv.org/pdf/2005.06534.pdf
https://indico.cern.ch/event/1156222/contributions/5062800/
https://indico.cern.ch/event/1156222/contributions/5062795/


DeepClean
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https://arxiv.org/pdf/2005.06534.pdf
https://indico.cern.ch/event/1156222/contributions/5062800/
https://indico.cern.ch/event/1156222/contributions/5062795/

https://arxiv.org/abs/2205.13513

Witness channels: 

Detector Output: 

https://arxiv.org/pdf/2005.06534.pdf
https://indico.cern.ch/event/1156222/contributions/5062800/
https://indico.cern.ch/event/1156222/contributions/5062795/
https://arxiv.org/abs/2205.13513


DeepClean Performance
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https://arxiv.org/pdf/2005.06534.pdf
https://indico.cern.ch/event/1156222/contributions/5062800/
https://indico.cern.ch/event/1156222/contributions/5062795/

Fully convolutional auto-encoder maps the witness channels 𝑤$ 𝑡 into the 
noise predictions 𝑛#(𝑡) which are then subtracted from detector output ℎ(𝑡)

Third Observing Run (2019)
Ideal

https://arxiv.org/pdf/2005.06534.pdf
https://indico.cern.ch/event/1156222/contributions/5062800/
https://indico.cern.ch/event/1156222/contributions/5062795/


Need for End-to-End ML
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https://indico.cern.ch/event/1156222/contributions/5084202/
https://github.com/ML4GW

?

•How do offline metrics correspond to real-time performance?
•What happens when data goes bad?
•What happens when model goes stale?

https://indico.cern.ch/event/1156222/contributions/5084202/
https://github.com/ML4GW


End-to-End ML
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https://indico.cern.ch/event/1156222/contributions/5084202/
https://github.com/ML4GW

https://indico.cern.ch/event/1156222/contributions/5084202/
https://github.com/ML4GW


How to actually train a model
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https://indico.cern.ch/event/1156222/contributions/5084202/
https://github.com/ML4GW

• It’s easy enough to generate a toy dataset, train a CNN, detect GWs! 
• In practice, this is almost completely useless. 

• You need to have a complete infrastructure that can utilize real data : 
• Consistent preprocessing schemes
• Data Loader 
• Data augmentation to sample glitches, oversample noise 
• Data generator to generate hypothetical signal 
• Validation on real data
• Systematic implementation/attention to detail that can be used in REAL training pipelines

• Preferably, this should also be accessible to non-GW physicists!
• Preferably, this whole process should be automatic, requiring little user input.
• Hence: ML4GW Organization

https://indico.cern.ch/event/1156222/contributions/5084202/
https://github.com/ML4GW


Burst Searches 
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Pick specific burst source 
type/simulation

Simulate waveforms
with lots of assumptions or 

incomplete simulations

Train CNNWrite Paper / Find Nothing

How do you find something when you don’t know what it looks like?
Historically ML burst search pipelines have gone like this…. 

But there are some new ideas! Let’s talk about this more in Sec. 4 anomaly detection…



Bayesian Posterior – Normalizing Flows
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[Green et al. (2020) (Phys.Rev.D)]

Neural Posterior Estimation
using Normalizing Flows

[Dax et al. (2021) (Phys.Rev.Lett)]

https://arxiv.org/abs/2002.07656
https://arxiv.org/pdf/2106.12594.pdf


Direct Parameter Estimation
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Quick estimation of 
binary masses* after 

a supervised 
detection using CNN 

*Usually, you need full 
parameter set for MMA 

pipelines

[George & Huerta (2017) (Phys.Lett.B)]

https://arxiv.org/abs/1711.03121
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QUAK Spaces on Supernovae


