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Quarks and gluons from data

® Distinguishing quarks and gluons is a key task at LHC:

» New physics discovery
> xs measurements
» PDF determination

@ ML models trained on MC parton labels are powerful but

» Subject to QCD or detector mismodelling.
» Q/G labels are ambiguous at the detector level.

® Data-driven methods (trained on Q/G mixtures) can evade these issues.



Jet topics metodiev et al. [1802.00008]
1. Given two mixtures
pu, (%) = fr (%) + (1~ fr) pg(x)
Pm, (X) = f2 po(X) + (1= f2) Pc(X)
2. Determine reducibilities

Kji = min P, (X)
y X pp; (%)

3. Recover fractions and distributions

fi=(1—x12)/(1 —x12k21), o =x21f4
poty) = Pl )17_";122””’2 W) oy = P (y);_;c;;pm v)

® Accurate and interpretable.

® Binning makes likelihood evaluation and
sampling expensive in high dimension.
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https://arxiv.org/abs/1802.00008

Deep-generative approach

How could a generative model for pgp and p¢ be trained?

® Normalizing flow with target likelihood Pm, (X) — K12 Py (X)
> Train flows for M; and M, Po(x) = 11,
> Use x; and learned py, to construct target
» Train new flows with reverse-KL Pm, (X) — K21 Pm, (X)
PG(x) = 1T— 11

® Event subtraction GAN

» Re-purpose GAN setup from Butter et al.
[1912.08824]

® Conditional model pm;(x) = p(x|f7)
> Train single model on M; with f; as condition _ _
> Generate pg and pg using conditions f = 1,0 pQ(X) = p(x|1) pP(x) = p(x|0)


https://arxiv.org/abs/1912.08824
https://arxiv.org/abs/1912.08824

Datasets

® PYTHIA quark/gluon dataset from EnergyFlow

> 2M jets total
> R =0.4anti-kr
> pr € [500, 550] GeV

® Quark/gluon mixtures are constructed by splicing full dataset:

Q Y 25 L/ 7
q /| Y AR M.

@ Jets stored as prime Energy Flow Polynomials (EFPs) with
» 1 < degree < 4 (8 dimensional)
» 1 < degree < 6 (53 dimensional)

® Preprocess with PCA
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https://energyflow.network
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® Good agreement with PYTHIA labels
and topics.
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challenging.

® Extrapolations are usually
conservative.
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Component correlations
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® Samples exhibit the correct correlations.

® Opens the possibility of combined use with other ML methods.

Conditional generative networks for pure quark and gluon jets | Ayodele Ore



Dataset amplification

Optimal weakly-supervised classifier
requires maximizing size and purity of
mixtures.

Usually only one can be maximized.

Conditional-generative networks can do
both.

Purity amplification improves
performance on small datasets if initial
purity is high.
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Summary

Outlook

Deep generative networks can complement
histogram-based jet topics in high dimension.

Simple purity-conditional approach gives good results.

Purity amplification can benefit weakly-supervised
classifier.

® Reducibility-informed training

(subtraction GAN, NF w. reverse-KL)
CMS OpenData
Jetimages / particle clouds



Backup: Models and training

® Normalising Flow i
» Neural ODE Flow
> 5 x 256 layers with skip connections Noise EFPs
® Generative Adversarial Network
> Wasserstein loss Real f
» Generator: 5 x 256 layers with skip EFPs
connections
> Critic: 5 x 256 layers Noise E,'?Sg Pred.

® Compatible with more than two mixtures.

@ Simple conditioning (no prior enforcing
compact purity).
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Backup: Wasserstein distances

NF, EFPy<4, firain = 0.4,0.6 GAN, EFP <4, firain = 0.4,0.6
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