ML4Jets Rutgers 2022

Conditional generative networks for pure quark and gluon jets

Based on arXiv:2211.xxxxx

Ayodele Ore

ayodeleo@student.unimelb.edu.au

The University of Melbourne

Quarks and gluons from data

- Distinguishing quarks and gluons is a key task at LHC:
 - New physics discovery
 - \triangleright α_S measurements
 - PDF determination
- ML models trained on MC parton labels are powerful but
 - Subject to QCD or detector mismodelling.
 - Q/G labels are ambiguous at the detector level.
- Data-driven methods (trained on Q/G mixtures) can evade these issues.

Jet topics Metodiev et al. [1802.00008]

1. Given two mixtures

$$\rho_{M_1}(x) = f_1 \, \rho_Q(x) + (1 - f_1) \, \rho_G(x)
\rho_{M_2}(x) = f_2 \, \rho_Q(x) + (1 - f_2) \, \rho_G(x)$$

2. Determine reducibilities

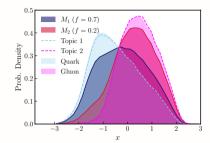
$$\kappa_{ij} = \min_{\mathbf{x}} \frac{p_{M_i}(\mathbf{x})}{p_{M_i}(\mathbf{x})}$$

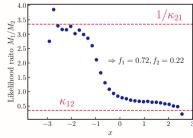
3. Recover fractions and distributions

$$f_1 = (1 - \kappa_{12})/(1 - \kappa_{12}\kappa_{21}), \quad f_2 = \kappa_{21}f_1$$

$$\rho_Q(y) = \frac{\rho_{M_1}(y) - \kappa_{12} \, \rho_{M_2}(y)}{1 - \kappa_{12}}, \quad \rho_G(y) = \frac{\rho_{M_2}(y) - \kappa_{21} \, \rho_{M_1}(y)}{1 - \kappa_{21}}$$

- Accurate and interpretable.
- Binning makes likelihood evaluation and sampling expensive in high dimension.





Deep-generative approach

How could a generative model for p_O and p_G be trained?

- Normalizing flow with target likelihood
 - ightharpoonup Train flows for M_1 and M_2
 - Use κ_{ij} and learned ρ_{M_k} to construct target
 - Train new flows with reverse-KL
- Event subtraction GAN
 - ► Re-purpose GAN setup from Butter et al. [1912.08824]
- Conditional model
 - ► Train single model on M_i with f_i as condition
 - Generate p_Q and p_G using conditions f = 1, 0

$$\rho_Q(x) = \frac{\rho_{M_1}(x) - \kappa_{12} \, \rho_{M_2}(x)}{1 - \kappa_{12}}$$

$$\rho_G(x) = \frac{\rho_{M_2}(x) - \kappa_{21} \, \rho_{M_1}(x)}{1 - \kappa_{21}}$$

$$\rho_{M_i}(x) = \rho(x|f_i)$$

$$\rho_{Q}(x) \equiv \rho(x|1) \quad \rho_{G}(x) \equiv \rho(x|0)$$

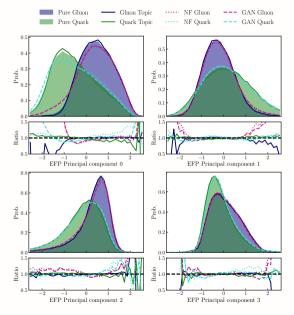
Datasets

- PYTHIA quark/gluon dataset from EnergyFlow
 - 2M jets total
 - $ightharpoonup R = 0.4 \, \text{anti-} k_T$
 - ▶ ρ_T ∈ [500, 550] GeV
- Quark/gluon mixtures are constructed by splicing full dataset:

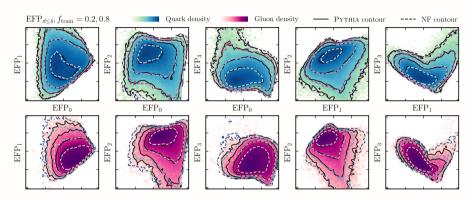
- Jets stored as prime Energy Flow Polynomials (EFPs) with
 - ▶ $1 \le \text{degree} \le 4$ (8 dimensional)
 - ▶ $1 \le \text{degree} \le 6$ (53 dimensional)
- Preprocess with PCA

Component distributions

- Good agreement with PYTHIA labels and topics.
- The first principal component is most challenging.
- Extrapolations are usually conservative.



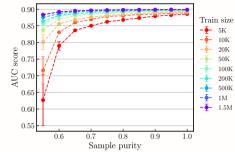
Component correlations

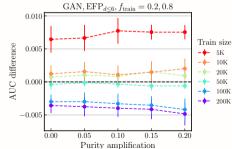


- Samples exhibit the correct correlations.
- Opens the possibility of combined use with other ML methods.

Dataset amplification

- Optimal weakly-supervised classifier requires maximizing size and purity of mixtures.
- Usually only one can be maximized.
- Conditional-generative networks can do both.
- Purity amplification improves performance on small datasets if initial purity is high.





Summary

- Deep generative networks can complement histogram-based jet topics in high dimension.
- Simple purity-conditional approach gives good results.
- Purity amplification can benefit weakly-supervised classifier.

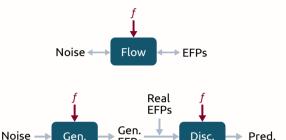
and

Outlook

- Reducibility-informed training (subtraction GAN, NF w. reverse-KL)
- CMS OpenData
- Jet images / particle clouds

Backup: Models and training

- Normalising Flow
 - Neural ODE Flow
 - \triangleright 5 × 256 layers with skip connections
- Generative Adversarial Network
 - Wasserstein loss
 - Generator: 5 × 256 layers with skip connections
 - Critic: 5 × 256 layers
- Compatible with more than two mixtures.
- Simple conditioning (no prior enforcing compact purity).



Backup: Wasserstein distances

- Pure samples improve with training fraction.
- NFs scale with train size, while GANs are less sensitive.
- GANs perform similarly in high dimension.

