HEPSim2Real* Creating background templates with normalizing flows

Radha Mastandrea

In collaboration with Tobias Golling, Samuel Klein, and Ben Nachman

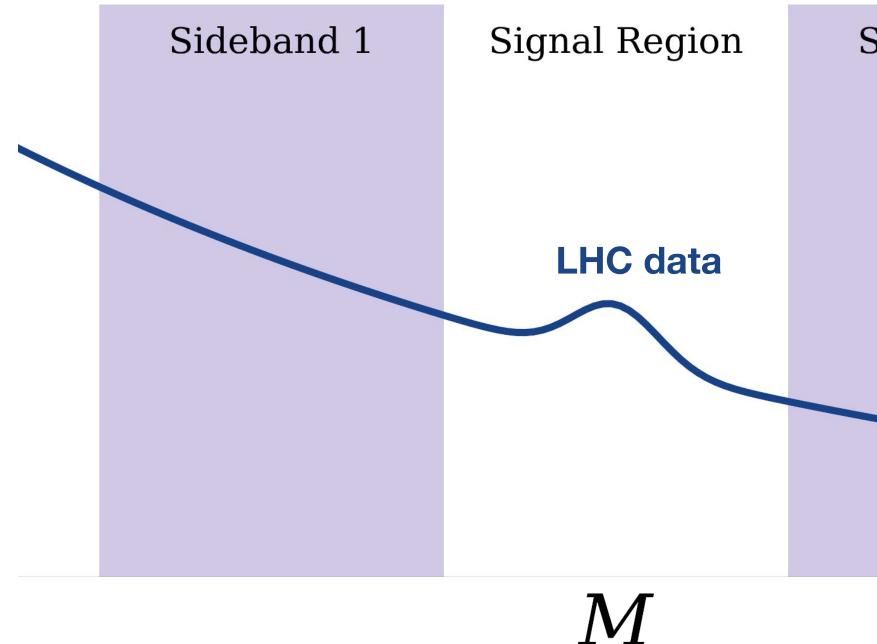
ML4Jets 11/03/2022

Mastandrea, HEPSim2Real

*Still working on a suitable acronym...

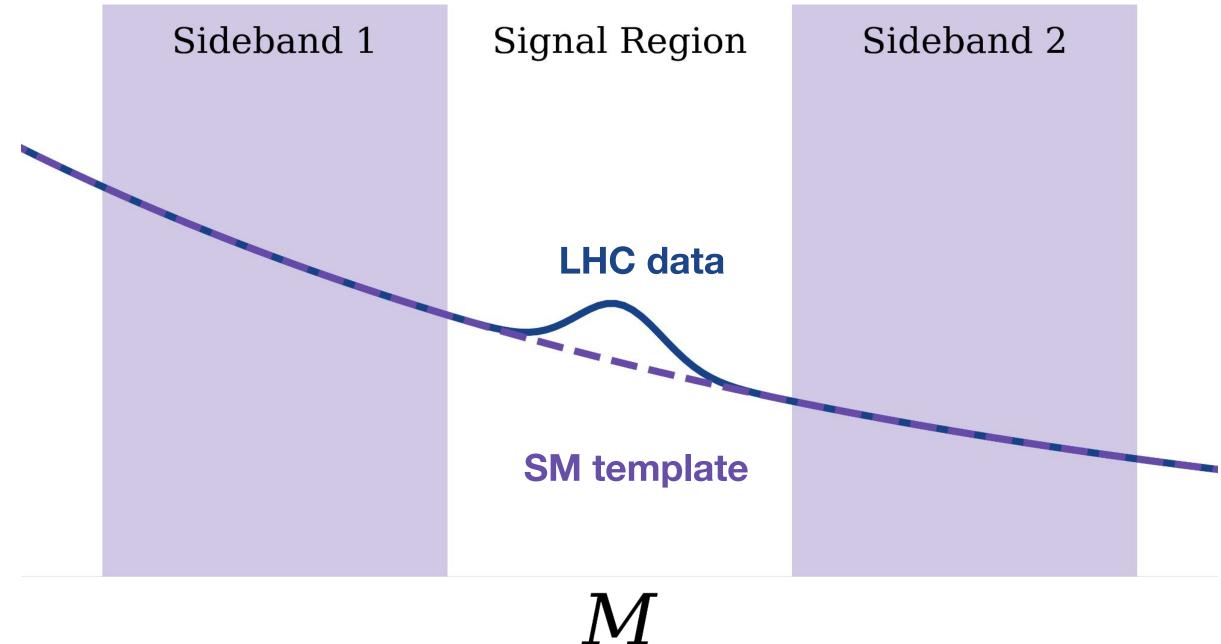
The goal

Create an accurate **SM background template** for resonant anomaly detection

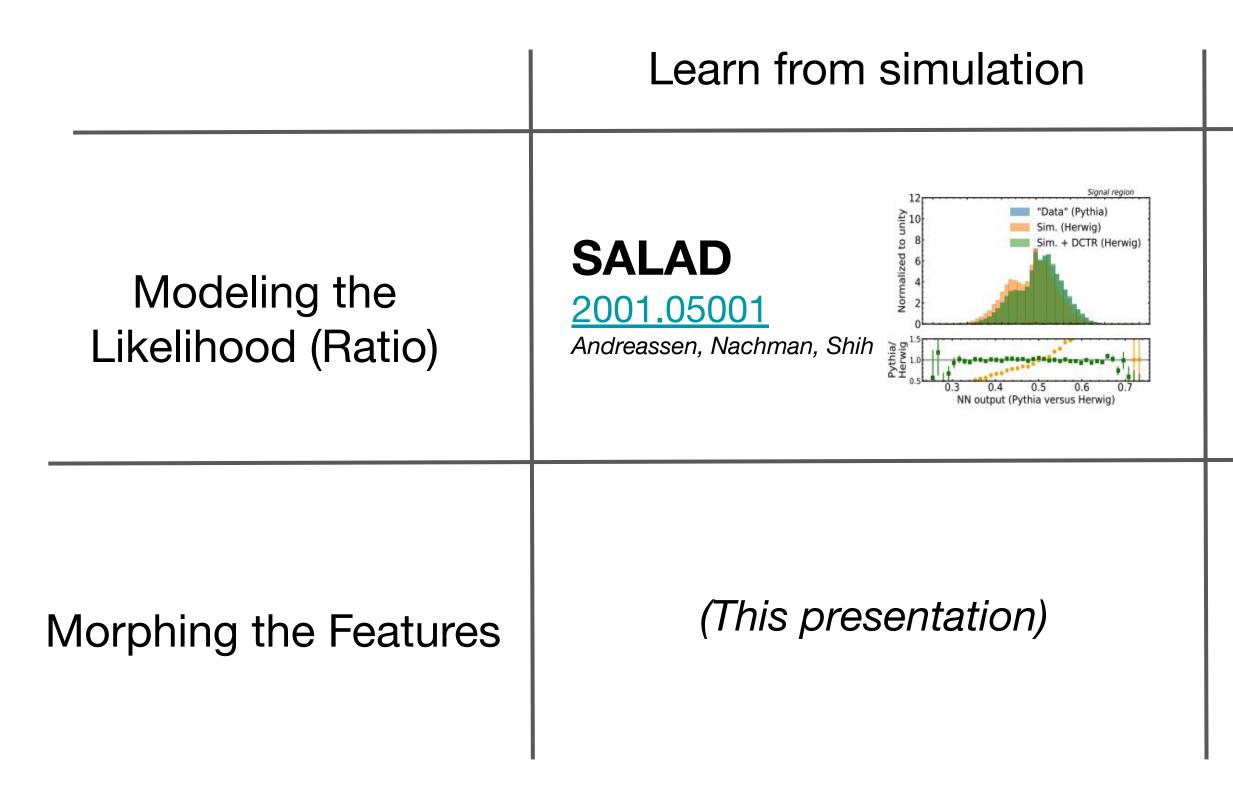


The goal

Create an accurate SM background template for resonant anomaly detection



Previous attempts to model SR background

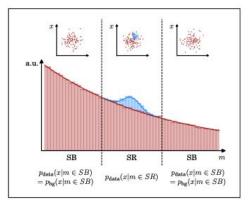


Mastandrea, HEPSim2Real

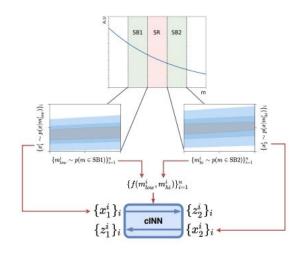
Learn from data (SB)

2109.00546

Hallin, Isaacson, Kasieczka et al.



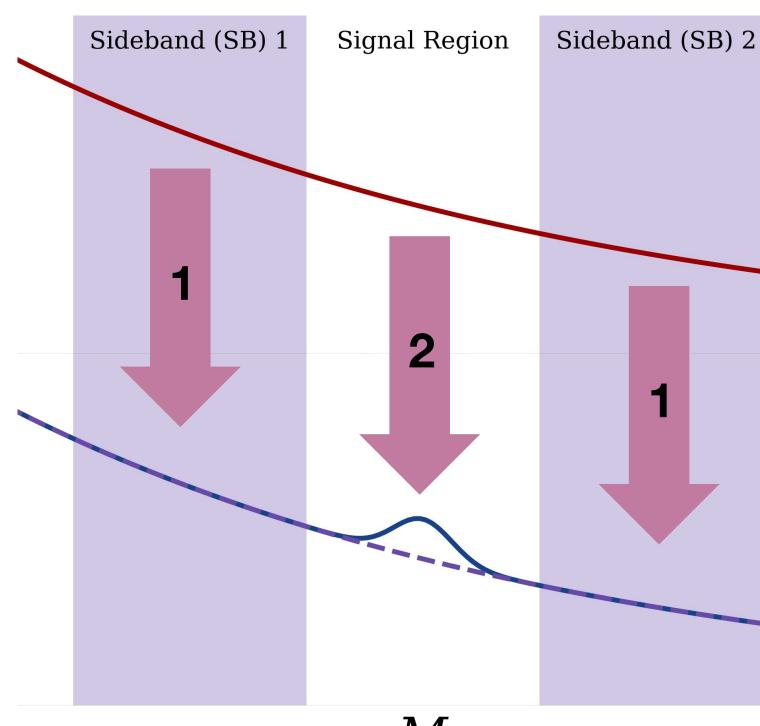
CURTAINS 2203.09470 Raine, Klein, Sengupta et al.



Our approach: HEPSim2Real

(1) Use normalizing flowsto learn a map from SMsimulation to data in SB

(2) Apply this map tosimulation SR toconstruct a backgroundtemplate for SM

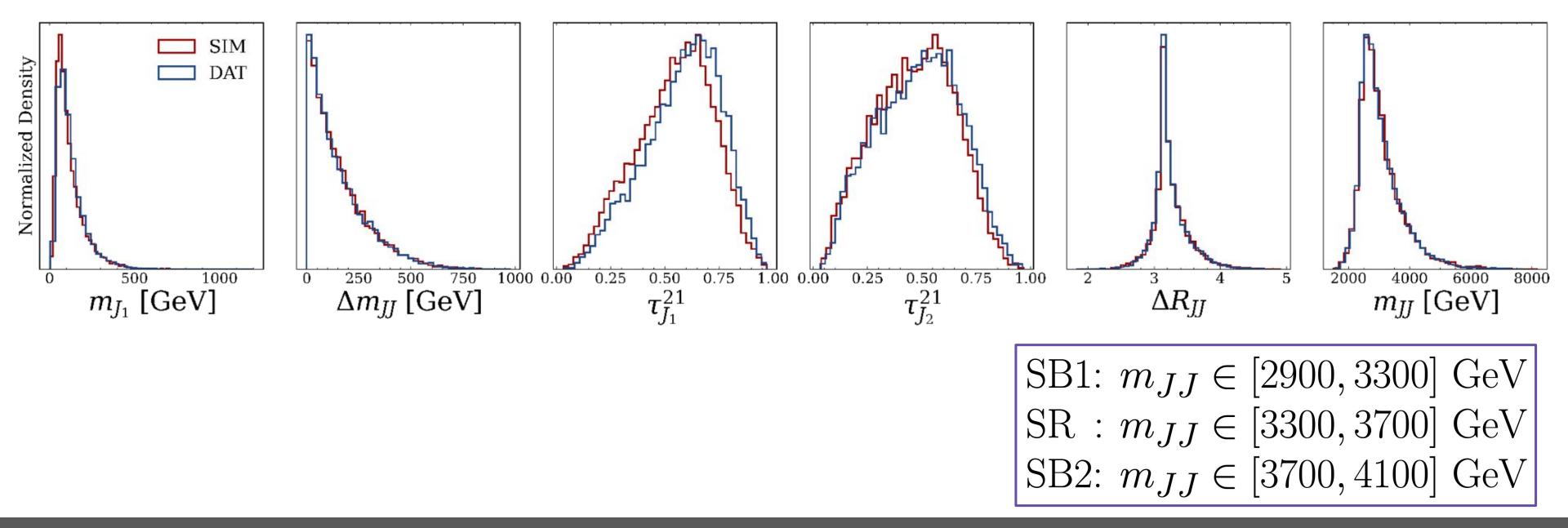


M

...then search for resonant anomalies by comparing the **template** to **SR data**

The dataset: LHCO Herwig and Pythia

- The LHC Olympics dataset (on <u>Zenodo</u>) consists of 1 mil background QCD dijet events _ and 100k signal dijet events.
 - Herwig \rightarrow "simulation"; Pythia \rightarrow "data"



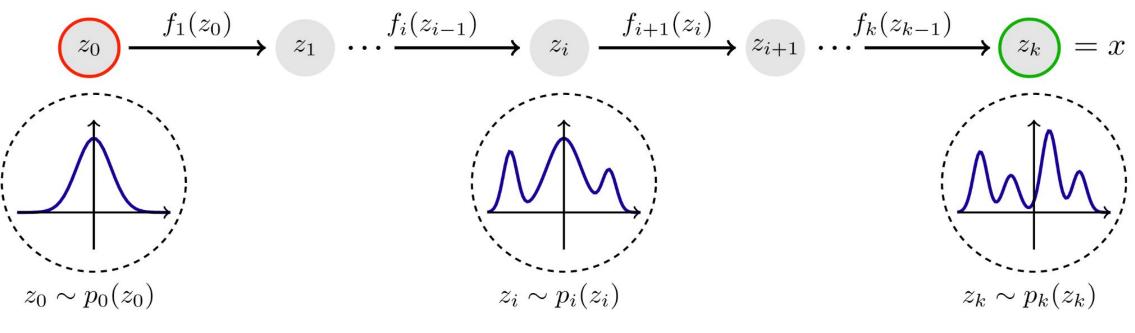
Computational procedure

Datasets

- Train the flow on 280k (each) simulation and data events in the SB
- Train classifiers on 120k (each) transformed simulation and data events in the SR
- Test classifiers on 20k signal, 20k background events

Training

- Train a coupling normalizing flow for 100 epochs, LR 5e-3, BS 256
- Detailed flow architecture given in the backup slides

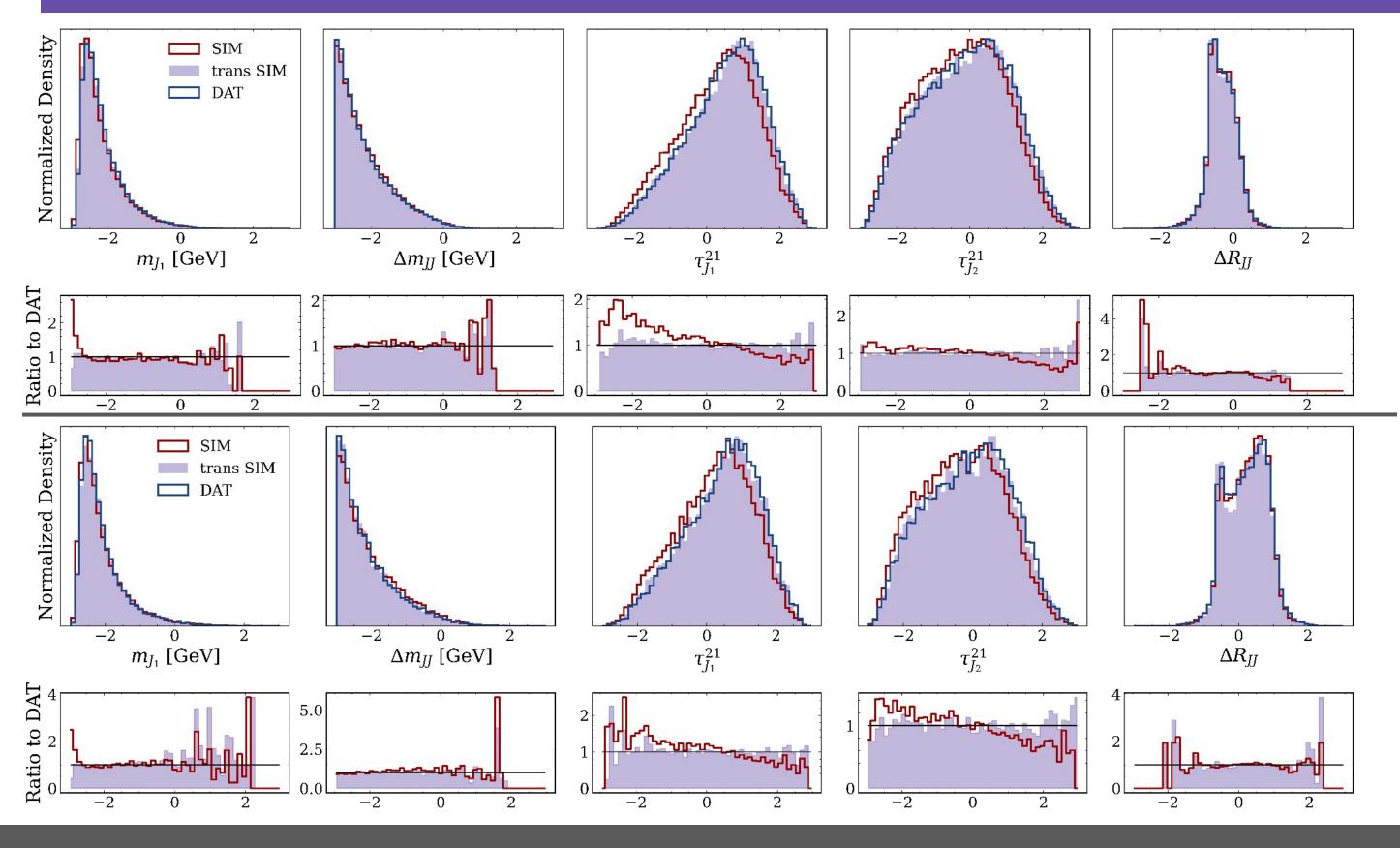


https://flowtorch.ai/users/

Mastandrea, HEPSim2Real

Does the flow learn the optimal transport mapping? Details in the backups!

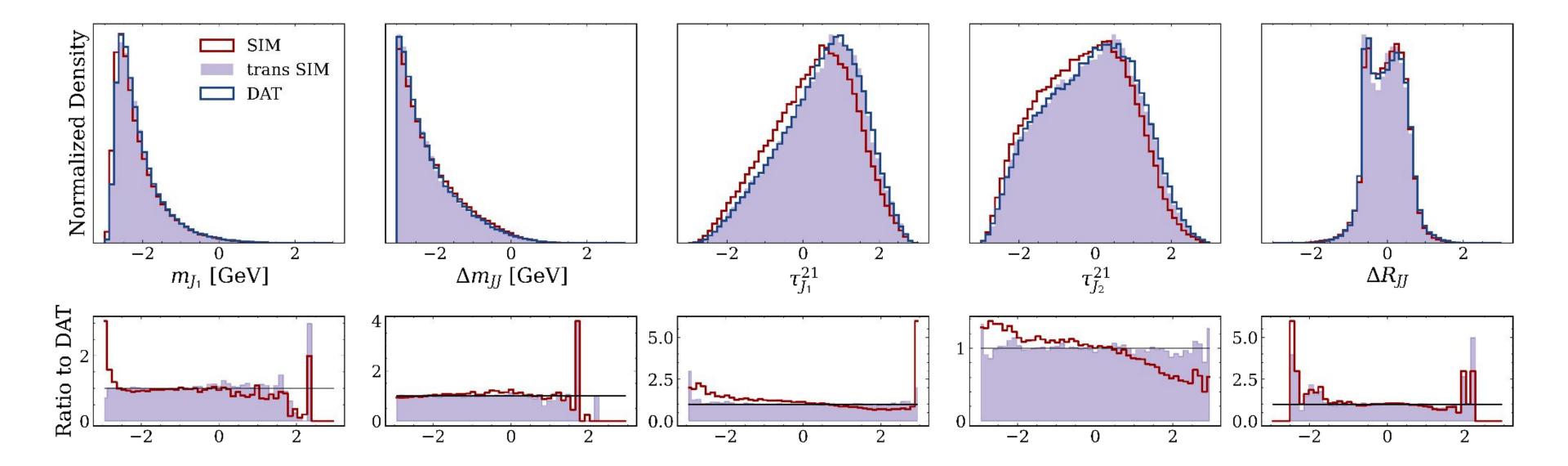
The flow effectively learns to map simulation to data in the SB...



Mastandrea, HEPSim2Real

Goal: align trans SIM with DAT

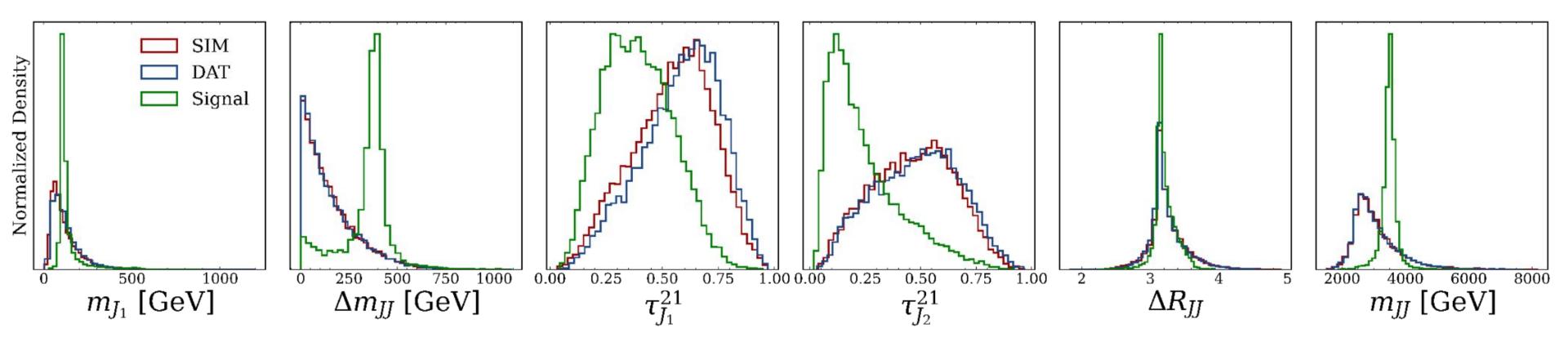
...and the flow performs well when interpolated into the SR



Signal injection studies

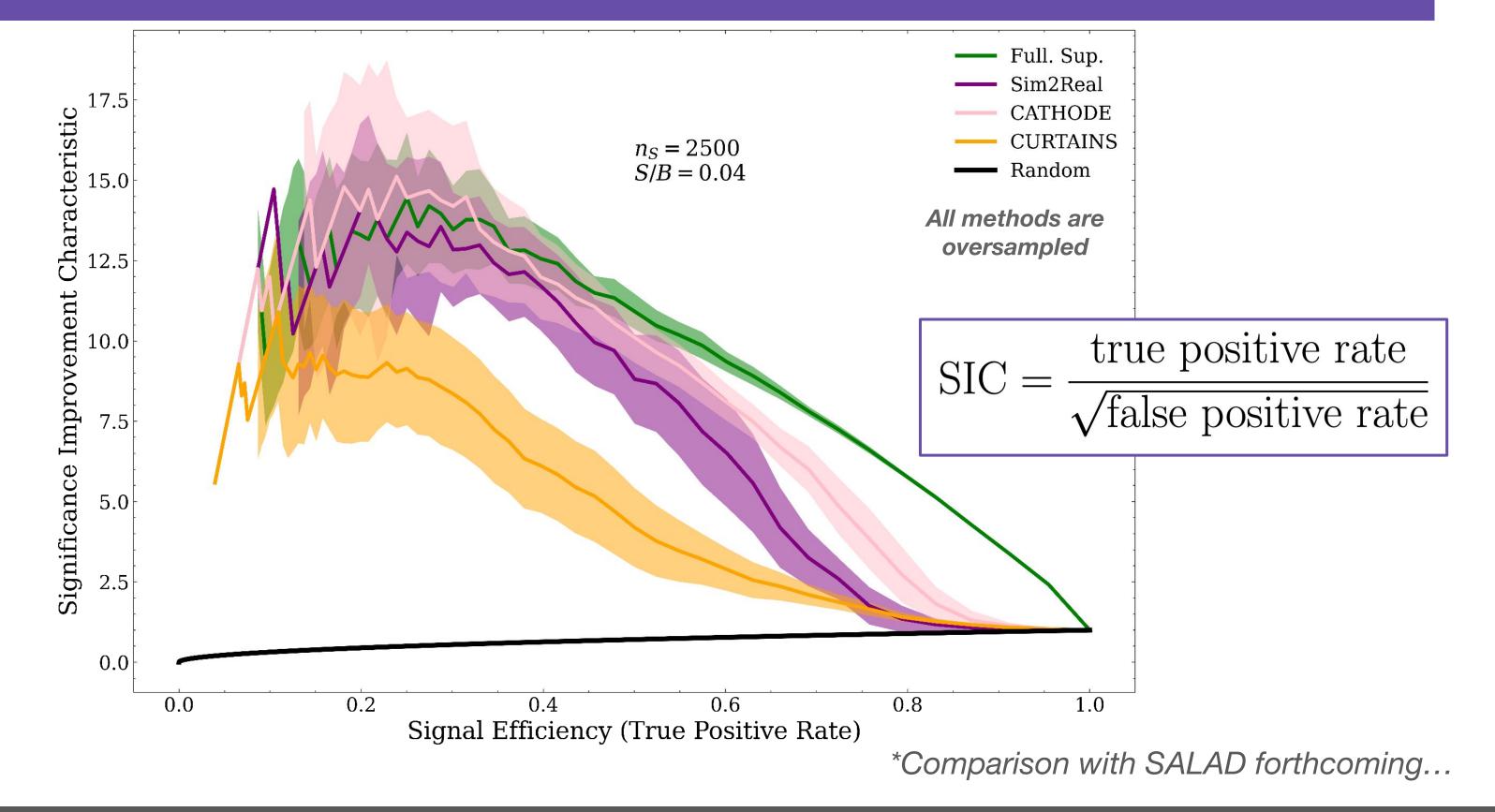
Signal injection procedure

- Inject a known number of signal events into the "data" (Pythia) dataset
 - Signal comes from $Z' \rightarrow X(\rightarrow qq)Y(\rightarrow qq)$, with a new resonance Z' at 3.5 TeV
 - ~ 20% of the events are injected into the SB

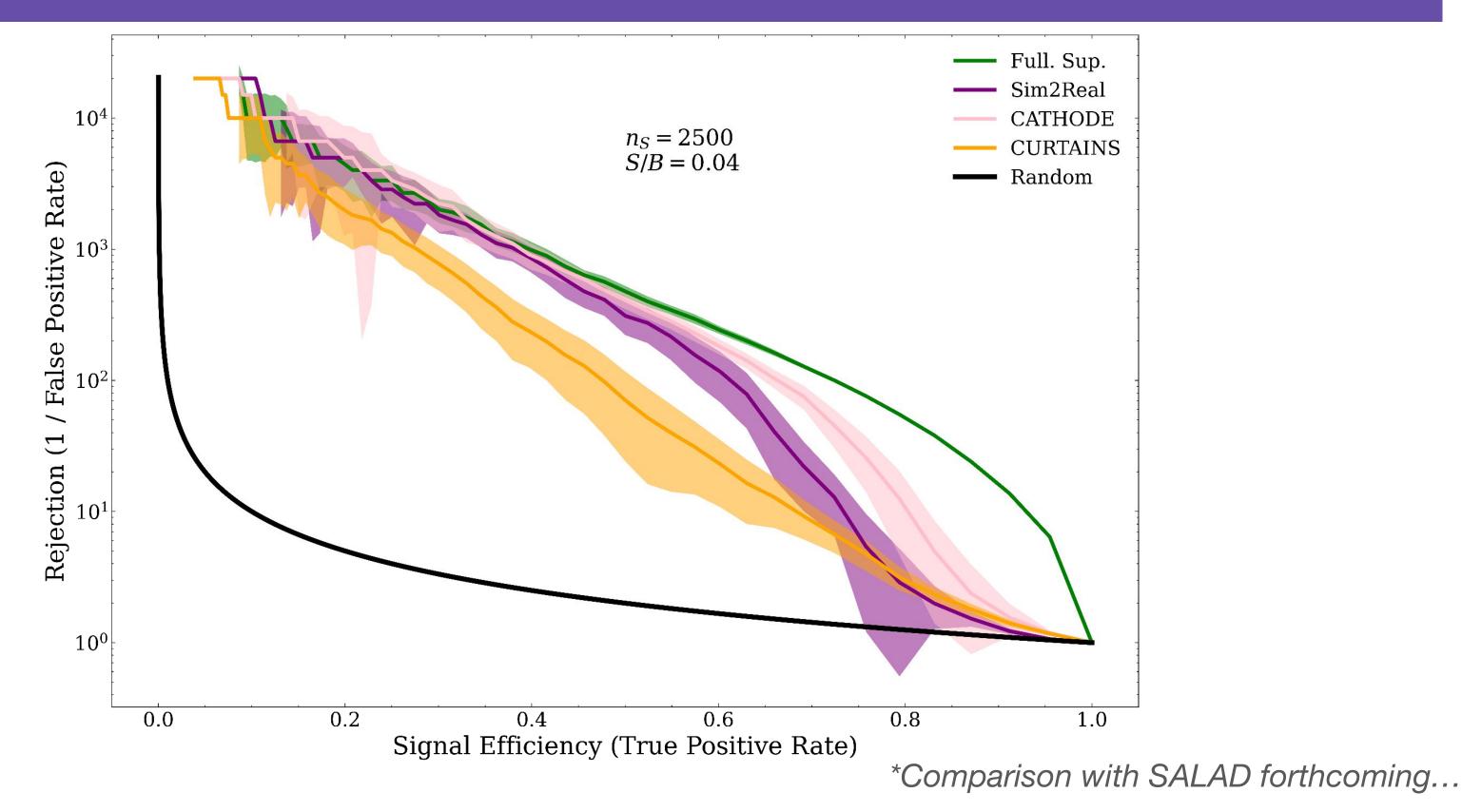


Rerun the flow training procedure, and compare the results with those from the CATHODE and CURTAINS procedures

Summary plot: Significance Improvement Characteristic



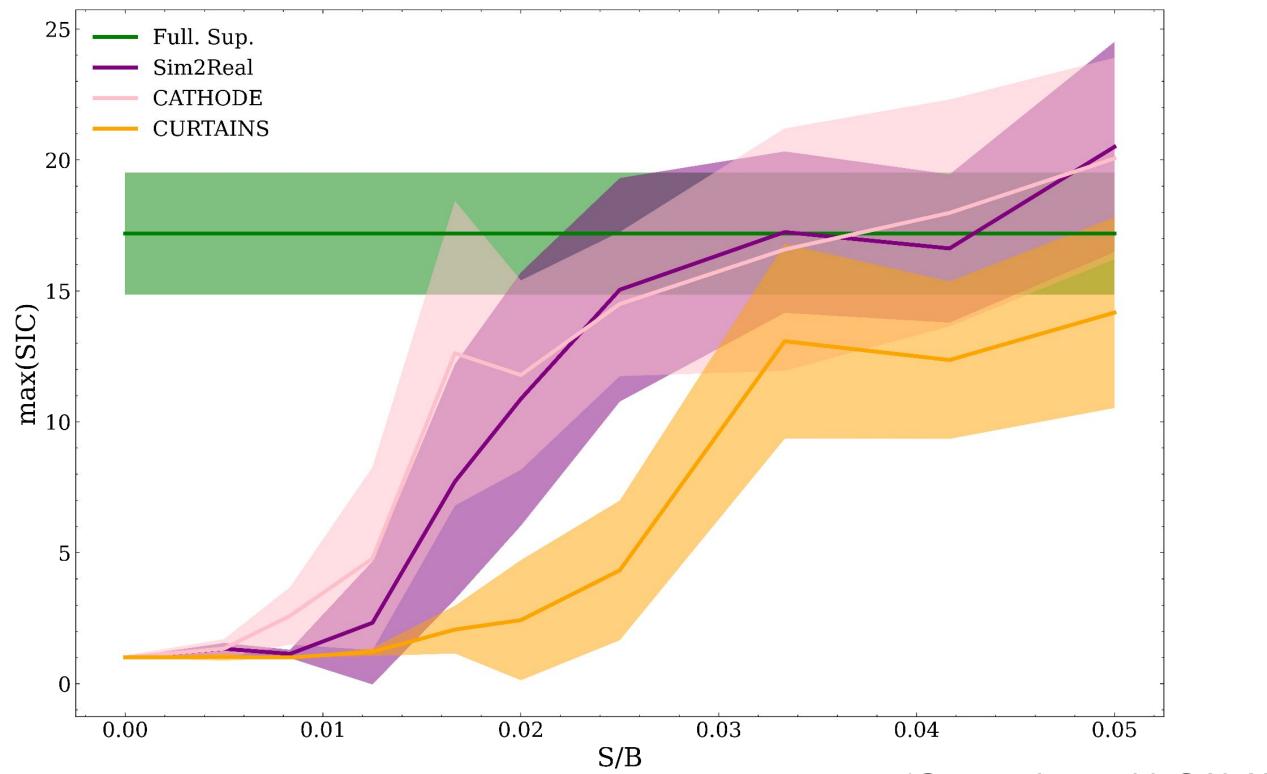
Summary plot: Rejection



Mastandrea, HEPSim2Real

13

Summary plot: Maximum significance improvement



Mastandrea, HEPSim2Real

*Comparison with SALAD forthcoming...

Conclusions and outlook

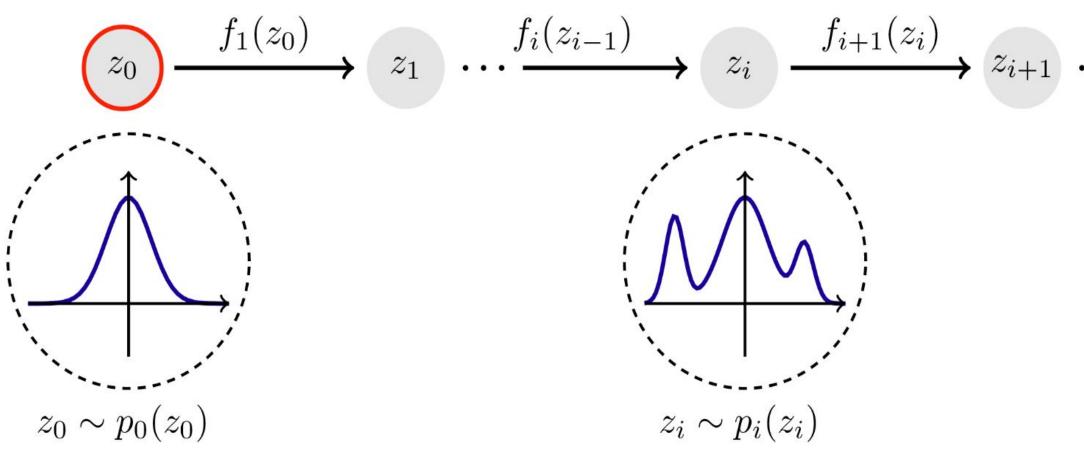
- Sim2Real is a simulation-augmented method to construct faithful SM **background templates** for resonant AD
 - Simulation gives us a more **informative prior** -
 - Feature morphing works well for **low-density regions** of phase space -
- Sim2Real, CATHODE, CURTAINS, and SALAD can be treated as a set of complementary techniques for a wide range of datasets and resonances

Backups

Mastandrea, HEPSim2Real

16

Normalizing flows learn mappings between probability densities



k $\mathcal{L} = \log p(z) + \sum \log J_i$

Mastandrea, HEPSim2Real

 $f_k(z_{k-1})$ = x z_k $z_k \sim p_k(z_k)$

https://flowtorch.ai/users/

Event band numbers breakdown

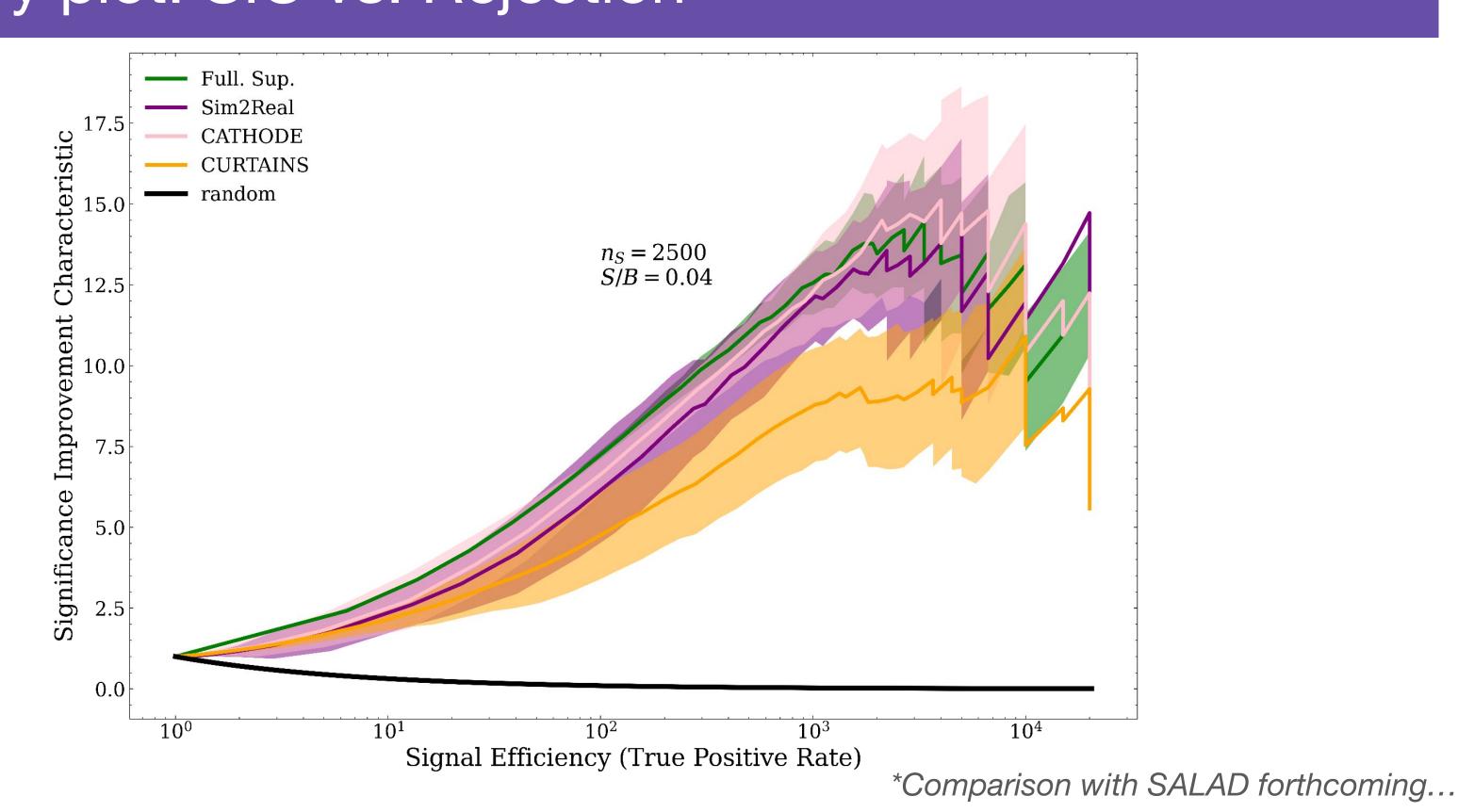
Band	GeV Bounds	HERWIG ("Simulation")	Pythia ("Data")
SB1	(2900, 3300)	210767	212115
\mathbf{SR}	(3300, 3700)	121978	121339
SB2	(3700, 4100)	68609	66646
SB1 + SB2	_	279376	278761

The **Base density** flow learns the probability density of simulation, and the **Transport** flow learns to transport between simulation and data densities

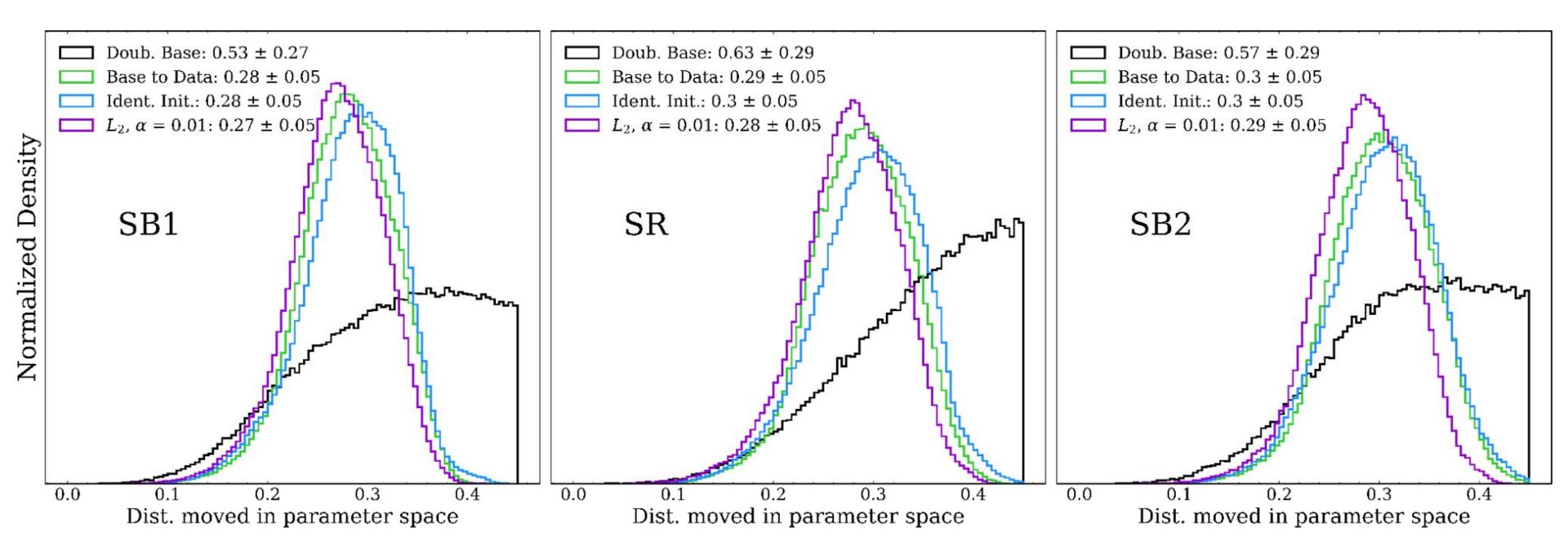
Parameter	"Base density" flow	"Transport" flow	
Flow type	Autoregressive	Coupling	
Spline	Piecewise RQ	Piecewise RQ	
Num. MADE blocks	15	8	
Num. layers	1	2	
Num. hidden features	128	16	
Epochs	100	100	
Batch size	128	256	
Learning rate	1e-4	5e-4	
Weight Decay	1e-4	1e-5	

All flows are implemented with the nflows package in Pytorch. Training is optimized with AdamW, and the learning rate is cosine-annealed. The model from the epoch with the lowest validation loss is used for evaluation.

Summary plot: SIC vs. Rejection



Optimal transport: distance traveled in feature space



*Formal results to be presented at the Machine Learning and the Physical Sciences workshop at NeurIPS 2022

Optimal transport: SIM \rightarrow DAT transformer performance

Band	Double Base	Base to Data	Identity Init.	$L_2 (\alpha = 10^{-2})$
OB1	0.630 ± 0.024	0.511 ± 0.003	0.508 ± 0.004	0.507 ± 0.002
SB1	0.501 ± 0.000	0.502 ± 0.001	0.501 ± 0.000	0.502 ± 0.001
SR	0.553 ± 0.011	0.503 ± 0.001	0.503 ± 0.001	0.503 ± 0.000
SB2	0.501 ± 0.000	0.503 ± 0.001	0.503 ± 0.001	0.502 ± 0.001
OB2	0.594 ± 0.030	0.506 ± 0.002	0.507 ± 0.004	0.507 ± 0.003

*Formal results to be presented at the Machine Learning and the Physical Sciences workshop at NeurIPS 2022