

Does Lorentz-symmetric design boost network performance in jet physics?

Congqiao Li (Peking University)

based on <u>arXiv:2208.07814</u>

in collaboration with Huilin Qu², Sitian Qian¹, Qi Meng³, Shiqi Gong^{3,4}, Jue Zhang³, Tie-Yan Liu³, Qiang Li¹ ¹PKU ²CERN ³MSRA ⁴AMSS, CAS

ML4Jets 2022 · Rutgers University 2 November, 2022

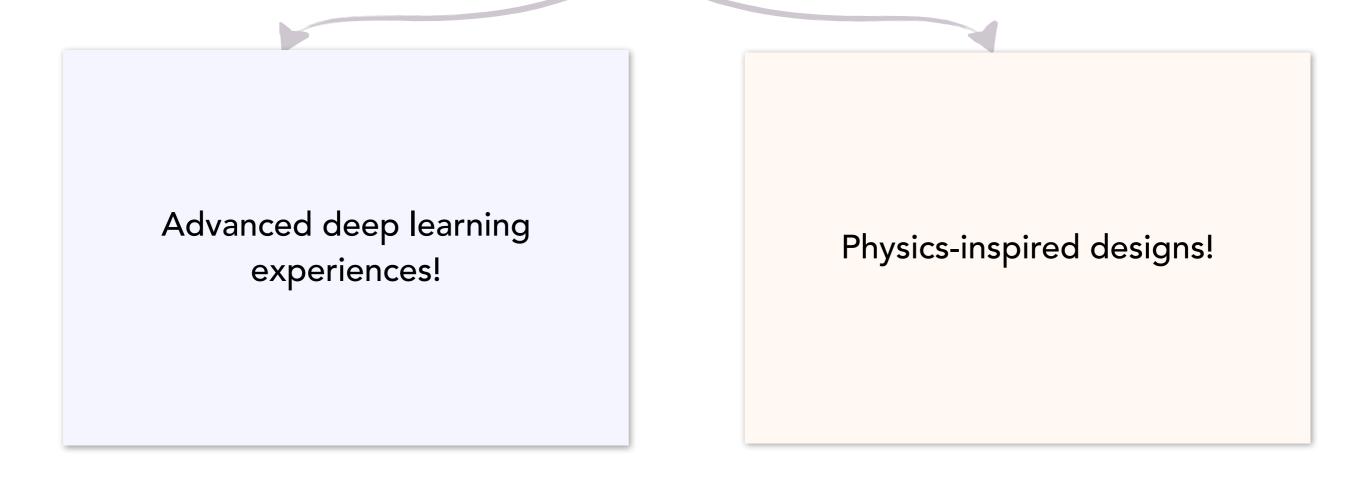
Jet tagging × deep learning

- → Jet tagging in the deep learning era
 - has brought a new performance level for jet tagging
 - has had a profound impact for many physics analyses!
 - efforts for further improvements still ongoing



"Post-ParticleNet" improvement

- → Various works continuously aim for improving the network performance, after ParticleNet marked a success
 - here allow me to summarize *some* tips & tricks discovered in the recent 1-2 years



"Post-ParticleNet" improvement

- → Various works continuously aim for improving the network performance, after ParticleNet marked a success
 - here allow me to summarize *some* tips & tricks discovered in the recent 1-2 years

✦ "Graph" behaves better

i.e., Graph NN/Transformer architecture builds edges (interactions) between a pair of particles. Generally, in terms of performance: fully-connected edges > edges from k-NN > no edge

Attentive pooling over average/ max pooling

i.e., on aggregating features among all particles, using average/max pooling losses more information; assigning learnable weights to particles (or other similar approaches) usually works better

✦ "Multi" over "one"

i.e., delivering multiple trainings on a given NN structure performs generally better than doing it once. Examples: multi-head over single-head; multi-scale k-NN for edge construction; training an ensemble of networks vs. training once...

✦ Pairwise features help

i.e., constructing pairwise features between particles is a solution to improve network performance

✦ Physics-informed edges

i.e., build a certain form of graph based on physicsinformed information. Example: define tree structures based on particle clustering information.

✦ Injecting symmetries

i.e., allow the network to obey a certain type of symmetry by the dedicated design of symmetry-preserving layers/architecture

Reference:

ABCNet: <u>V. Mikuni et al. EPJC 2020; 135(6): 463</u> LGN: <u>A. Bogatskiy et al. arXiv: 2006.04780, ICML 2020</u> ParticleNeXt: <u>H. Qu. Talk@ML4Jets2021</u> LundNet: <u>F. Dreyer et al. JHEP 03 (2021) 052</u> PCN: <u>C. Shimmin. arXiv:2107.02908</u> LorentzNet: <u>S. Gong et al. JHEP 07 (2022) 030</u> ParT: <u>H. Qu et al. arXiv:2202.03772, ICML 2022</u> CPT : <u>S. Qiu et al. arXiv:2203.05687</u> HMPNet : <u>F. Ma et al. arXiv:2210.13869</u>

"Post-ParticleNet" improvement

- → Various works continuously aim for improving the network performance, after ParticleNet marked a success
 - here allow me to summarize *some* tips & tricks discovered in the recent 1-2 years

- "Injecting symmetries" into a network is a popular and promising field
- Dedicated networks have been proposed such as to be invariant/equivariant to certain symmetries, e.g.:
 - boost on z-axis, rotation on x-y plane
 - rotation on the η-φ plain (similarly, around the jet axis)
 - boost along the "jet axis"
 - fully Lorentz symmetry
 - • •
- Can we do it without a special network design? -Yes!

Physics-informed edges

i.e., build a certain form of graph based on physicsinformed information. Example: define tree structures based on particle clustering information.

✦ Injecting symmetries

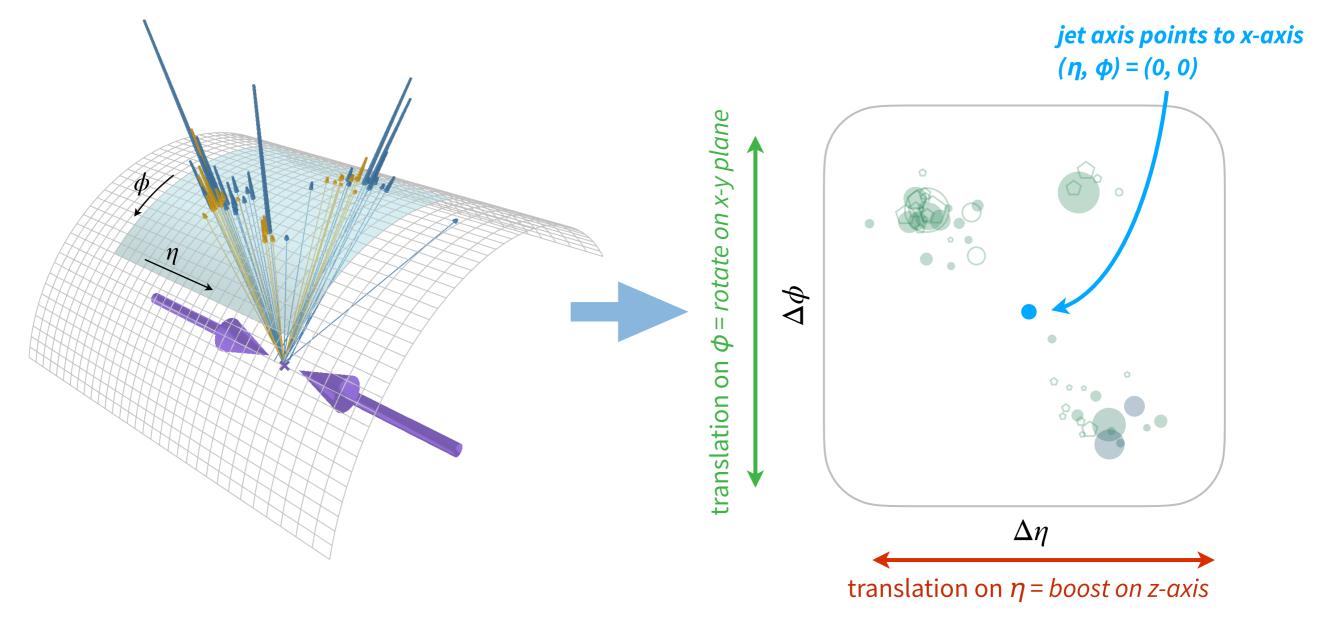
i.e., allow the network to obey a certain type of symmetry by the dedicated design of symmetry-preserving layers/architecture

Reference:

ABCNet: <u>V. Mikuni et al. EPJC 2020; 135(6): 463</u> LGN: <u>A. Bogatskiy et al. arXiv: 2006.04780, ICML 2020</u> ParticleNeXt: <u>H. Qu. Talk@ML4Jets2021</u> LundNet: <u>F. Dreyer et al. JHEP 03 (2021) 052</u> PCN: <u>C. Shimmin. arXiv:2107.02908</u> LorentzNet: <u>S. Gong et al. JHEP 07 (2022) 030</u> ParT: <u>H. Qu et al. arXiv:2202.03772, ICML 2022</u> CPT : <u>S. Qiu et al. arXiv:2203.05687</u> HMPNet : <u>F. Ma et al. arXiv:2210.13869</u>

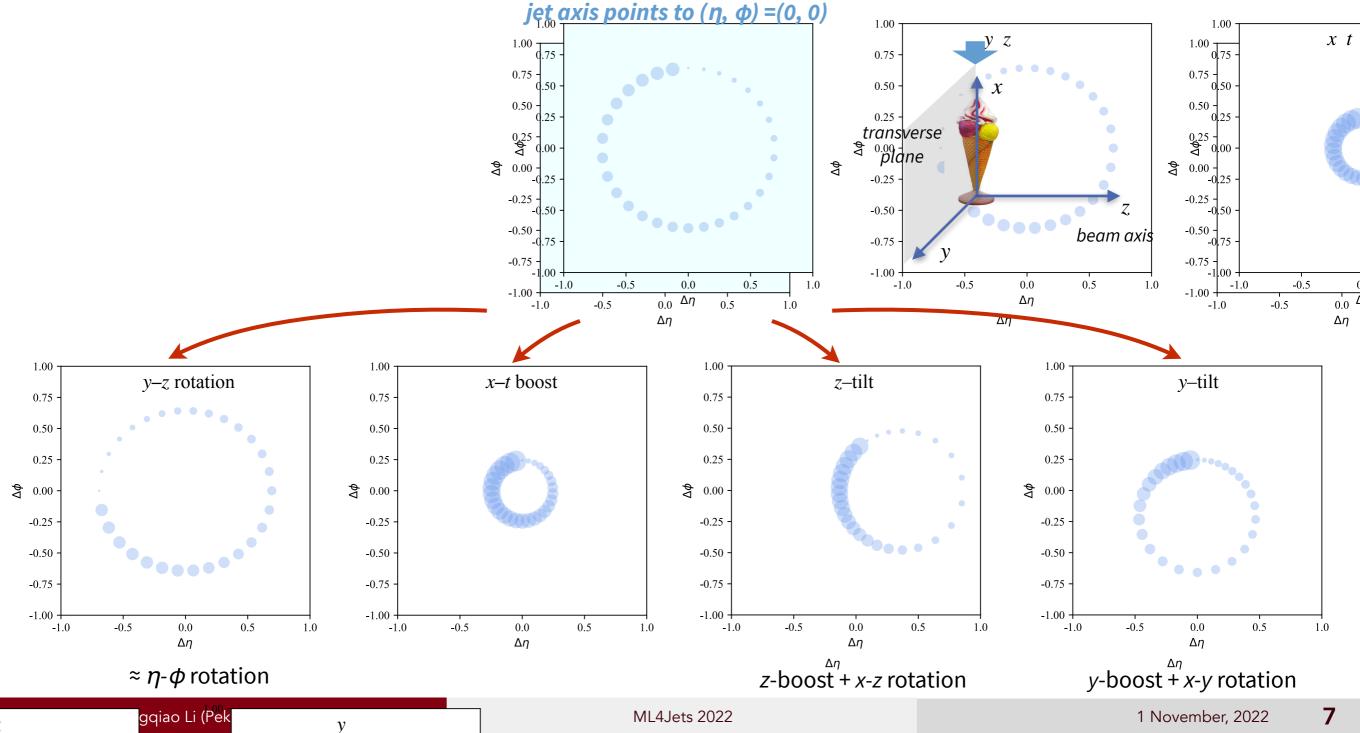
Lorentz transformations and symmetry

- → By HEP convention, a jet is represented on $\Delta\eta$ - $\Delta\phi$ plane w.r.t. its axis
 - ★ this pre-processing step is equivalent as: *apply a boost on z-axis* → *then a rotation on x-y plane* (transverse plane) → now
 jet points to the *x*-axis, *i.e.* (η, φ) = (0, 0)



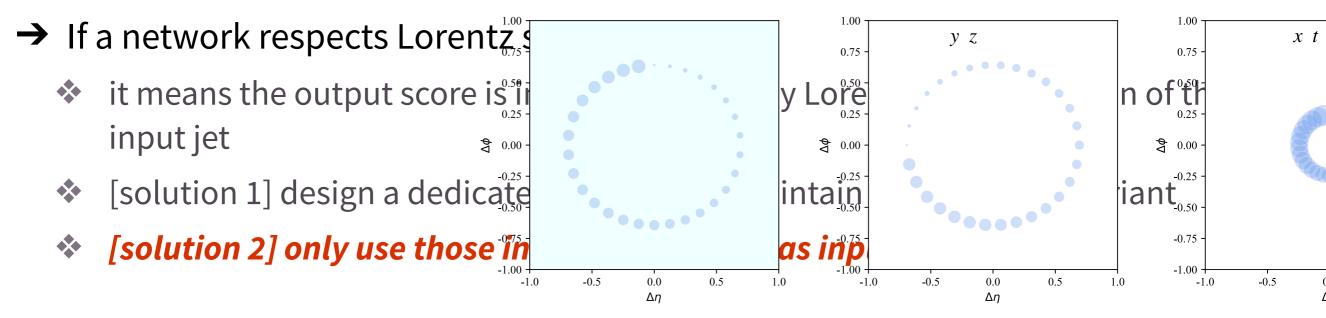
Lorentz transformations and symmetry

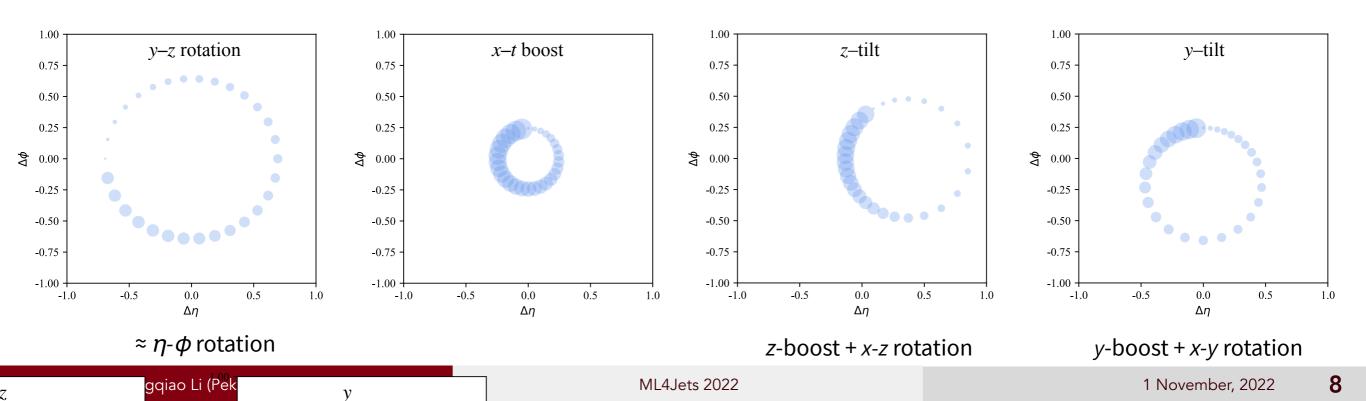
- → By HEP convention, a jet is represented on $\Delta\eta$ - $\Delta\phi$ plane w.r.t. its axis
 - after the conventional pre-processing, we have *four additional DoFs* for Lorentz transformation!
 A toy jet for illustration purpose



Lorentz transformations and symmetry

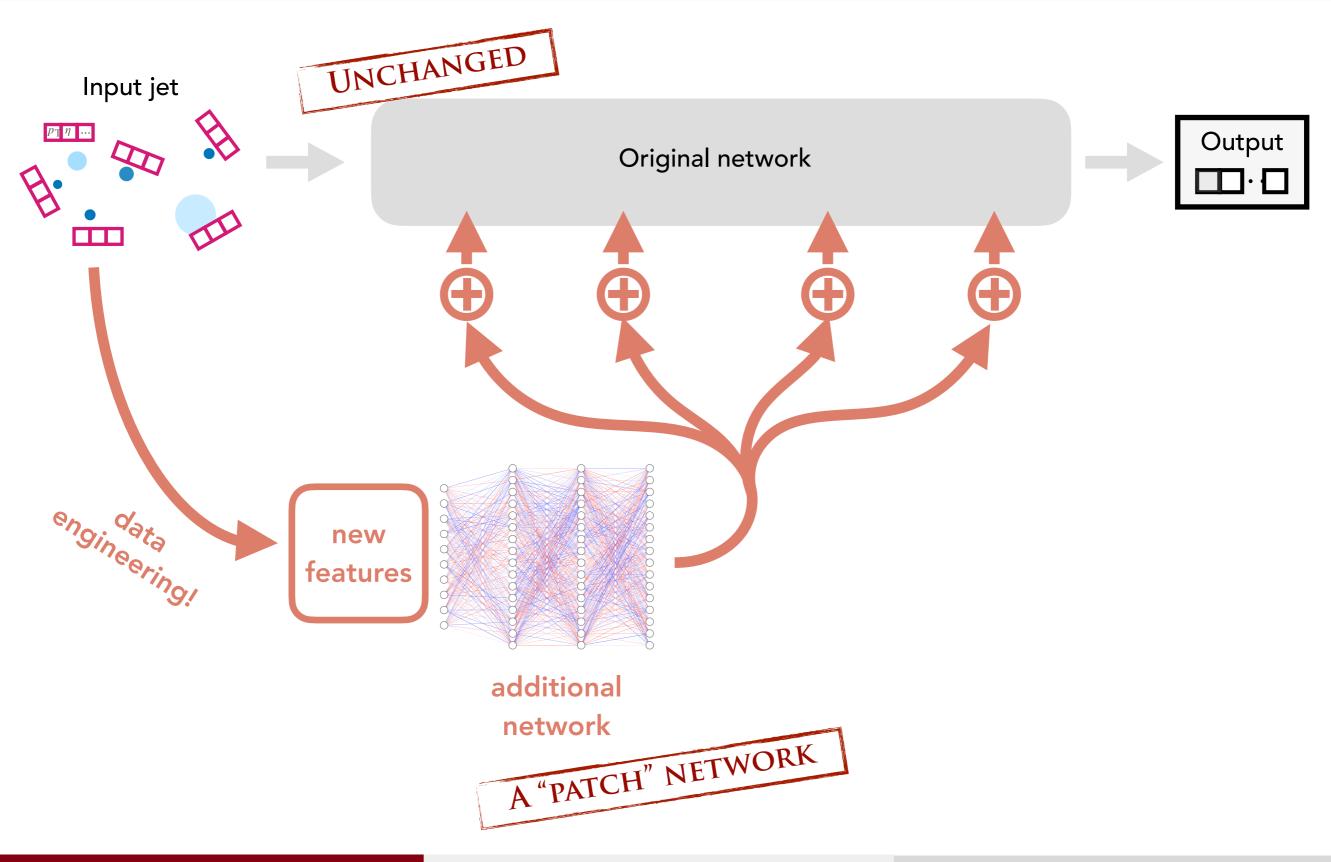
- \rightarrow By HEP convention, a jet is represented on Δη-Δφ plane w.r.t. its axis
 - after the conventional pre-processing, we have *four additional DoFs* for Lorentz transformation!

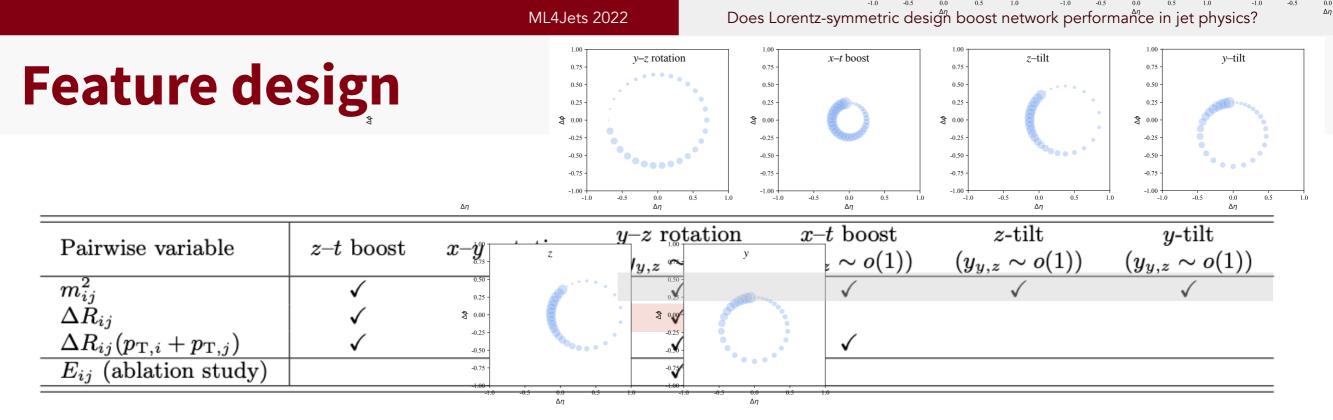




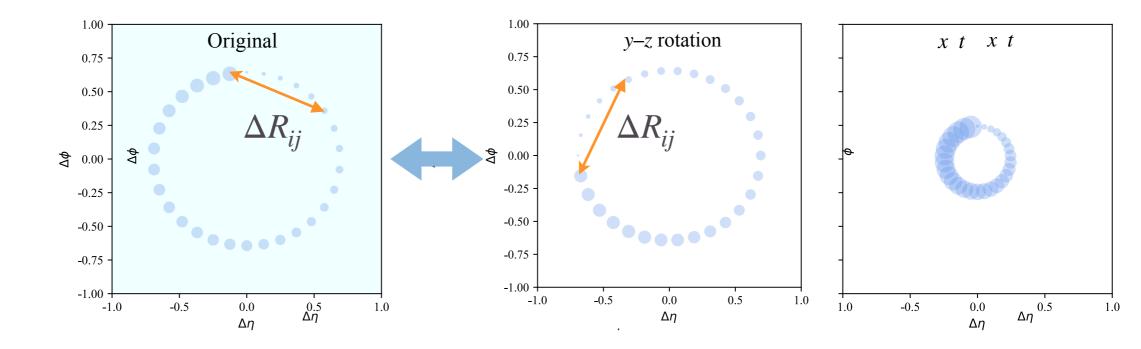
Our proposal on network architecture

Our proposal on network architecture

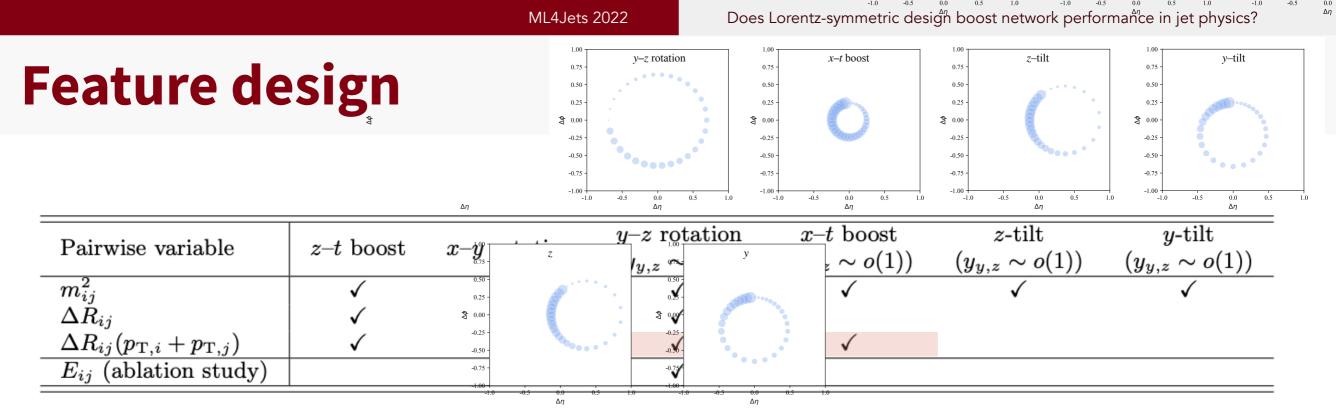




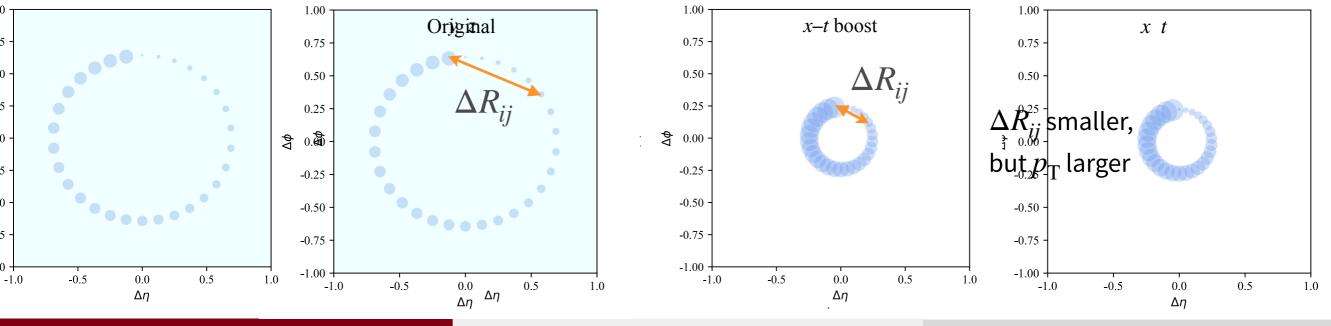
- → First, let's construct "pairwise" variables invariant under *some or all Lorentz (sub)symmetries*
 - ♦ **pairwise mass** $m_{ij}^2 = p_i^{\mu} p_{j,\mu}$: invariant under all transformations
 - *** pairwise** ΔR_{ii} : approx. invariant under y-z rotation (\approx η-φ rotation)



	1.00		1.00			
Congqiao Li (Peking University)	1.00	Z.	1.00	у	ber, 2022	11

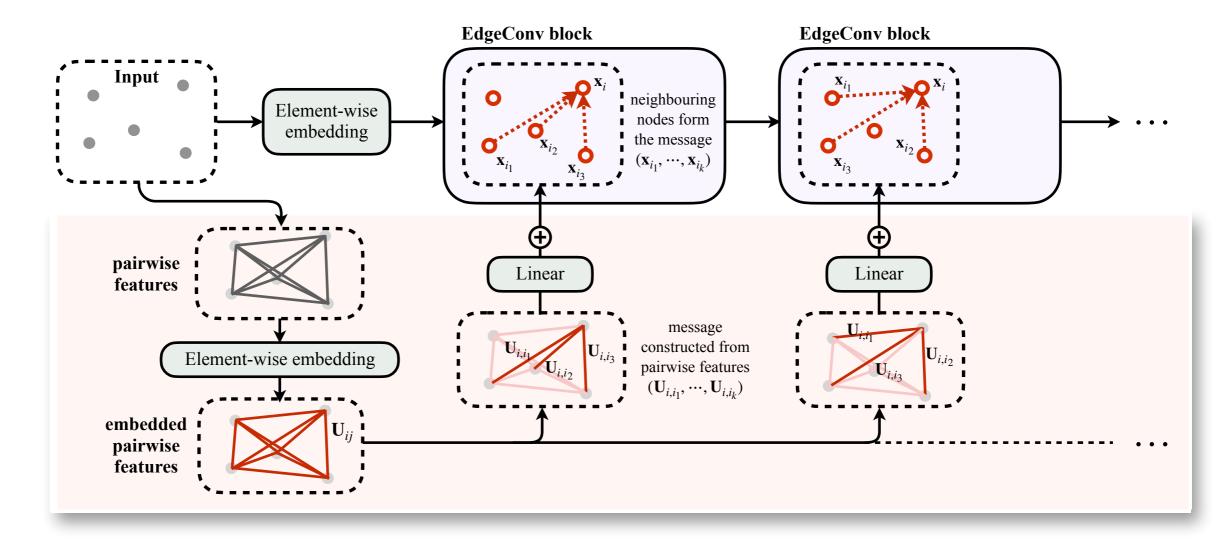


- → First, let's construct "pairwise" variables invariant under *some or all Lorentz (sub)symmetries*
 - ♦ **pairwise mass** $m_{ij}^2 = p_i^{\mu} p_{j,\mu}$: invariant under all transformations
 - **pairwise** ΔR_{ij} : approx. invariant under y-z rotation (\approx η-φ rotation)
 - ✤ manually construct variable $\Delta R_{ij}(p_{T,i} + p_{T,j})$: can prove that it is also approx. invariant under x-boost



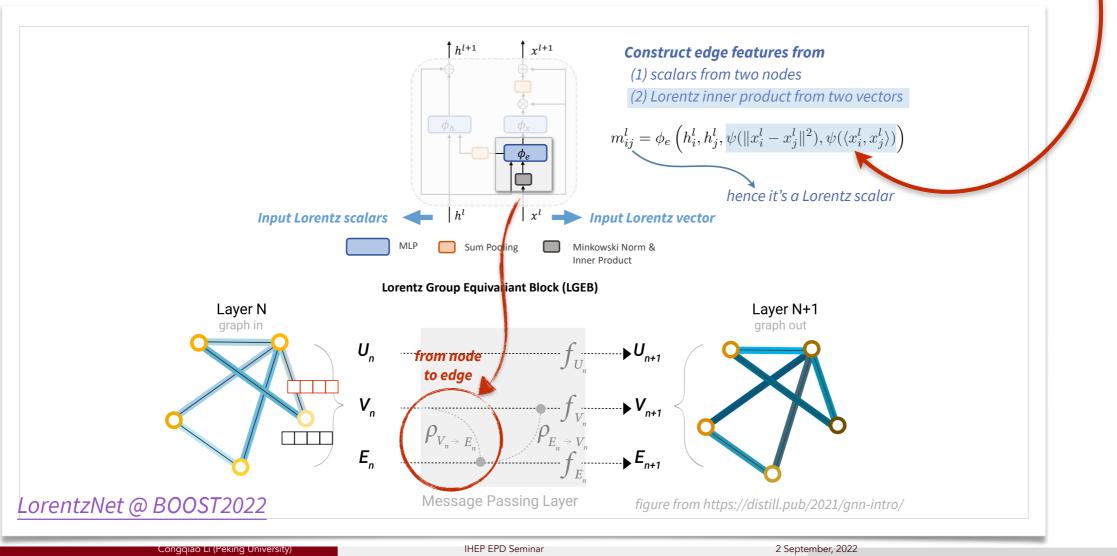
Experiments on ParticleNet and LorentzNet

- → Two baseline networks studied *ParticleNet* & *LorentzNet*_{base}:
 - how to combine pairwise features + additional patch network to the baseline network?
- → *ParticleNet*: integrate pairwise features into the network according to the intrinsic k-NN pairs



Experiments on ParticleNet and LorentzNet

- → Two baseline networks studied *ParticleNet* & *LorentzNet*_{base}:
 - how to combine pairwise features + additional patch network to the baseline network?
- → LorentzNet_{base}: LorentzNet has already included "pairwise mass": remove it to create our baseline (but complete attrained the free intervention of ParticleNet)



MI 4.Jets 2022

Conggiao Li (Peking University)

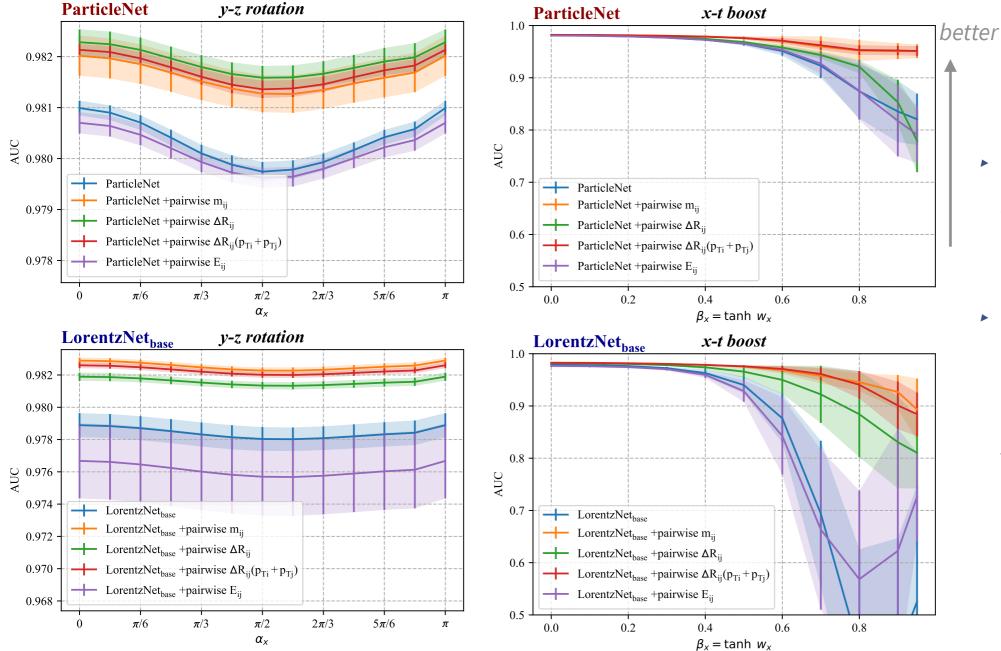
14

Performance for adding pairwise features

Training on 60k top tagging dataset (smaller dataset manifest the power of inductive bias)

Base model	Variation	Accuracy	AUC	$1/\epsilon_{ m B} \ (\epsilon_{ m S} = 50\%)$	$1/\epsilon_{ m B} \ (\epsilon_{ m S}=30\%)$	
		0.9310(3)	0.9810(2)	198 ± 7	640±29 🔨	
	+pairwise: m_{ij}	0.9334(8)	0.9820(4)	222 ± 13	722 ± 52	
ParticleNet	+pairwise: ΔR_{ij}	0.9334(6)	0.9823(3)	$\bf 231 \pm 10$	$\textbf{752} \pm \textbf{43}$	better
	+pairwise: $\Delta R_{ij}(p_{\mathrm{T},i} + p_{\mathrm{T},j})$	0.9337(3)	0.9821(1)	223 ± 6	741 ± 36	compared
	+pairwise: E_{ij}	0.9303(5)	0.9807(2)	200 ± 6	651 ± 23	to baselines
		0.9276(12)	0.9789(7)	172 ± 13	581 ± 53	
	+pairwise: m_{ij}	0.9347(4)	0.9829(2)	$\bf 260 \pm 6$	931 ± 50	
$LorentzNet_{base}$	+pairwise: ΔR_{ij}	0.9328(4)	0.9819(3)	232 ± 10	807 ± 35	
	+pairwise: $\Delta R_{ij}(p_{\mathrm{T},i} + p_{\mathrm{T},j})$	0.9342(4)	0.9826(2)	251 ± 6	919 ± 34	
	+pairwise: E_{ij}	0.9243(37)	0.9767(23)	144 ± 29	485 ± 108	

Performance for adding pairwise features

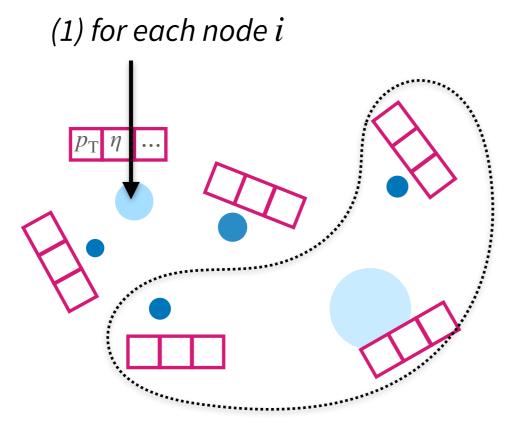


 Injecting ΔR to the network → more robust to y-z rotation

 Injecting ΔR(p_{Ti}+p_{Tj}) or mass → more robust to y-z rotation and now also the x-boost

A general solution?

- → Pairwise features have limitations
 - only applicable to GNN/Transformer networks which intrinsically build "edges"
- → Upgrade to node-wise features
 - "mass features" carried per node, not edge between nodes



(2) find a **friend group** G_i : composed of k nodes $i_m (m = 1, \dots, k)$ having this is a Lorentz invariant choice largest $p_i^{\mu} p_{i_m \mu}$

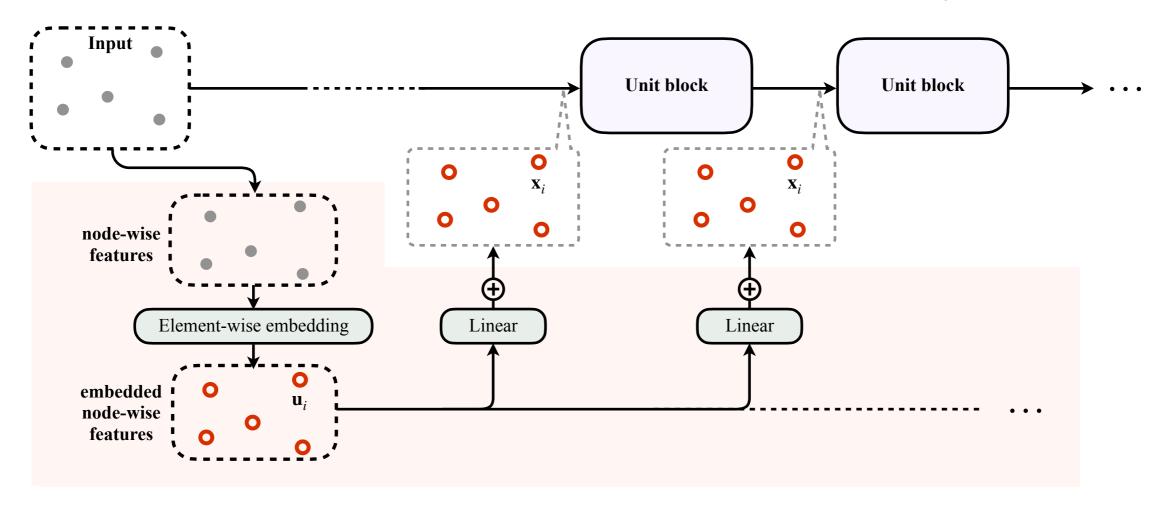
(3) calculate mass

$$m_{G_i}^2 = \left(\sum_{j \in G_i} p_j\right)^2 \approx 2 \sum_{j,k \in G_i}^{j < k} p_j^{\mu} p_{k\mu}$$

essentially, this is the pre-determined linear combination of all pairwise masses!

A general patch structure design?

Any baseline network

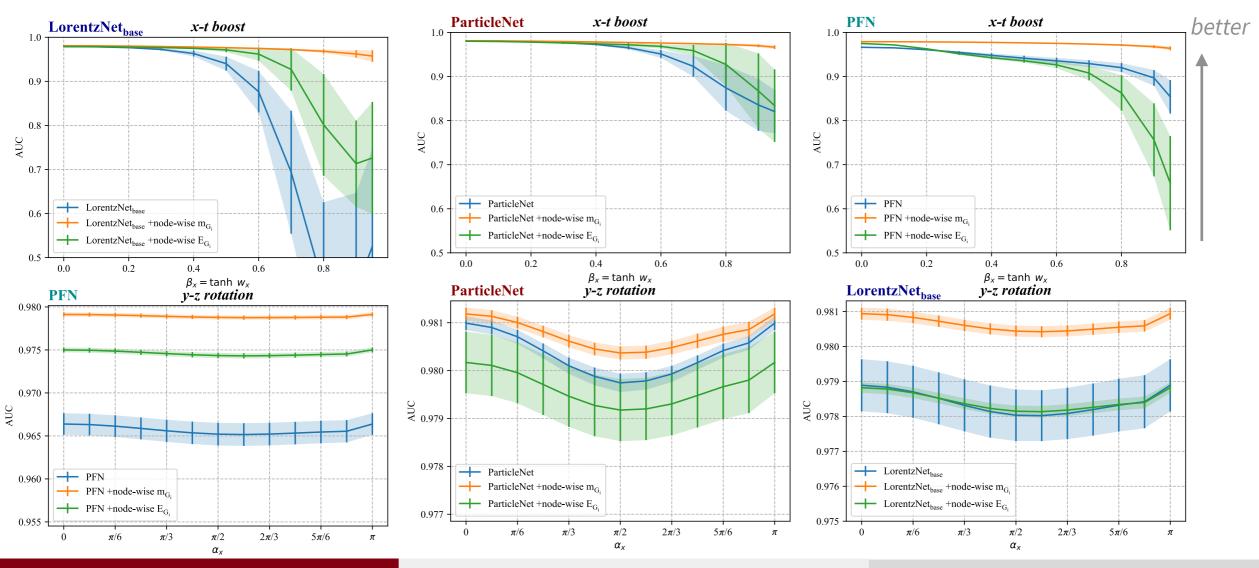


- → Baseline networks can be any network that treats jet as a point cloud
- → Integrate new node-wise features layer-by-layer
 - ✤ unit block is Φ(x) function for PFN, EdgeConv for ParticleNet, and LEGB for LorentzNet

Performance for adding node-wise features

Base model	Variation	Accuracy	AUC	$1/\epsilon_{ m B} \ (\epsilon_{ m S}=50\%)$	$1/\epsilon_{ m B} \ (\epsilon_{ m S}=30\%)$
	—	0.9104(12)	0.9664(13)	67 ± 5	198 ± 21
PFN	+node-wise: m_{G_i}	0.9281(4)	0.9791(2)	$\bf 184 \pm 5$	714 ± 50
	+node-wise: E_{G_i}	0.9207(4)	0.9750(3)	125 ± 3	378 ± 19
ParticleNet	_	0.9310(3)	0.9810(2)	198 ± 7	640 ± 29
	+node-wise: m_{G_i}	0.9313(3)	0.9812(1)	$\bf 222 \pm 5$	800 ± 40
	+node-wise: E_{G_i}	0.9300(12)	0.9802(6)	183 ± 12	572 ± 47
	_	0.9276(12)	0.9789(7)	172 ± 13	581 ± 53
$\rm LorentzNet_{base}$	+node-wise: m_{G_i}	0.9306(3)	0.9809(2)	$\bf 219 \pm 3$	887 ± 36
	+node-wise: E_{G_i}	0.9272(3)	0.9788(1)	171 ± 2	562 ± 16

- Adding node-wise mass:
- (1) improve network performance (especially for PFN!)
- (2) more robust to Lorentz transformations on test data
- (3) smaller error bars (illustrate more generalization ability)



Congqiao Li (Peking University)

Performance summary

→ What do the results mean?

- the full network tends to be *more robust and performant*, when we incorporate Lorentz-symmetry-preserved variables (pairwise/node-wise ones) into the network
- even when we *introduce a very small patch structure* invariant under a certain symmetry (the original network is unaffected) helps the network to perform better
 - without need to let the network fully satisfy Lorentz symmetries
 - invariance property of the small sub-network has a big impact on the learning, and can be reflected in the entire network

Base model	Variation	# parameters	FLOPs
PFN		83.84 k	4.46 M
I I IN	+ node-wise	$+26.19 { m k}$	$+3.41 \mathrm{~M}$
ParticleNet		366.16 k	535.73 M
	+pairwise	+34.91 k	$+285.29~\mathrm{M}$
	+ node-wise	$+21.97 { m k}$	+2.83 M
		226.23 k	1997.69 M
LorentzNet _{base}	+pairwise	+0.43 k	+7.02 M
	+ node-wise	+37.35 k	+4.8 M

Performance summary

→ What do the results mean?

- the full network tends to be *more robust and performant*, when we incorporate Lorentz-symmetry-preserved variables (pairwise/node-wise ones) into the network
- even when we *introduce a very small patch structure* invariant under a certain symmetry (the original network is unaffected) helps the network to perform better
 - without need to let the network fully satisfy Lorentz symmetries
 - invariance property of the small subcan be reflected in the entire network

Base model	Variation	# parameters	FLOPs
PFN		83.84 k	4.46 M
FFN	+ node-wise	$+26.19 { m k}$	$+3.41 \mathrm{~M}$
ParticleNet		366.16 k	$535.73~\mathrm{M}$
	+pairwise	+34.91 k	$+285.29~\mathrm{M}$
	+ node-wise	$+21.97 { m k}$	+2.83 M
LorentzNet _{base}		226.23 k	1997.69 M
	+pairwise	+0.43 k	+7.02 M
	+ node-wise	+37.35 k	+4.8 M

- The experiments show that "pairwise mass" is the key component in network design
- We reveal that the underlying logic lies in the Lorentz symmetry preservation
- We make a successful attempt to understand the interpretability of the network in terms of symmetry preservation

Short summary

→ We have some new findings from our experiments, potentially helpful to the HEP × ML community

Engineering on network? Engineering on data!

Data engineering provides a more general solution for symmetry preservation - for that we simply construct some symmetry-invariant input, introduce a patch structure, and inject them into the baseline network of any kind

Just a "hint" on symmetry will do

Creating a network to strictly obey a source of symmetry is a solution, but usually brings potential limitations to network designs; adding a small symmetry-preserving "patch" structure to the baseline networks can be a new solution

Full Lorentz symmetry is better!

By delivering a fair comparison among networks respecting to full Lorentz symmetry or some of its sub-symmetries, we find that the former performs better

→ One more thing... Some inspirations to other HEP × ML tasks?

23

1 November, 2022

Inspirations

Congqiao Li (Peking University)

➔ One more thing... Some inspirations to other HEP × ML tasks?

Tasks	Eamples	Inspirations on network design? 😳
object-based tasks	 event-classifier (BDT/NN) for analysis, using e.g. jet/lep information jet assignment tasks autoencoders for event anomaly detection 	consider adding "masses" between objects (jet–jet, jet–lep, etc) as additional input
particle-based tasks	 jet tagging! ML-based paticle-flow reconstruction 	consider adding "pairwise mass" between particles
tasks using more primary input?	 processing track hits processing energy deposit on calorimeters (data on fixed grids) More possibilities AHEAD! 	<pre>fact: the essence of these data are still based on particles open question: can we somehow design a Lorentz-symmetry- preserving (sub)network to adapt these sources of input to further improve network performance?</pre>

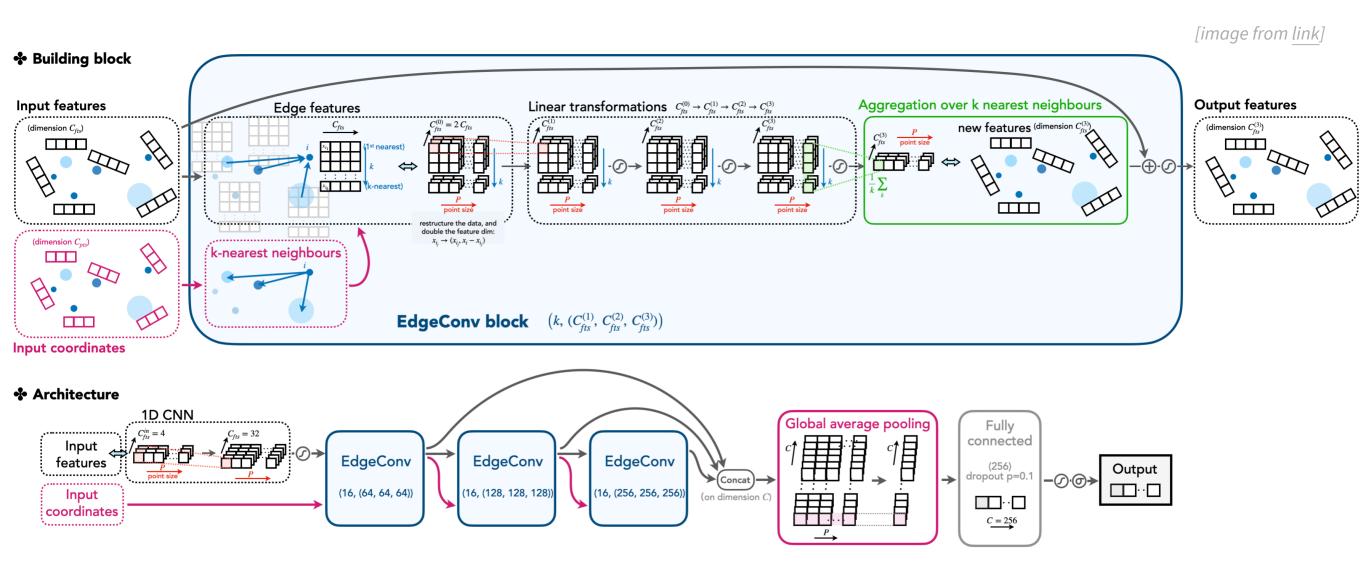
ML4Jets 2022

Backup

Recap on ParticleNet and LorentzNet

<u>H.Qu, L.Gouskos. PRD 101 (2020) 056019</u>

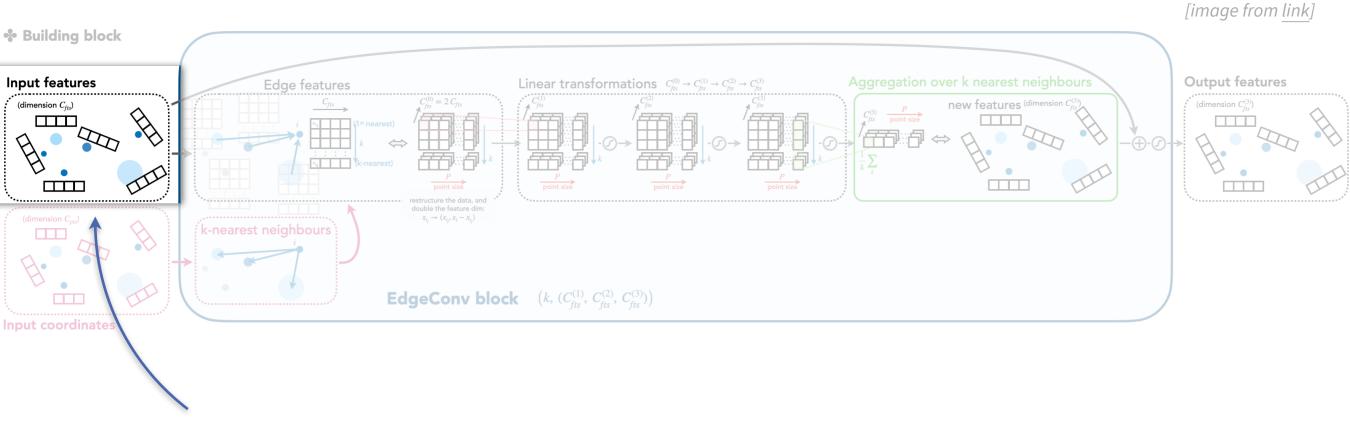
A powerful and popular model in the HEP community with a variety of applications



Recap on ParticleNet and LorentzNet

H.Qu, L.Gouskos. PRD 101 (2020) 056019

A powerful and popular model in the HEP community with a variety of applications

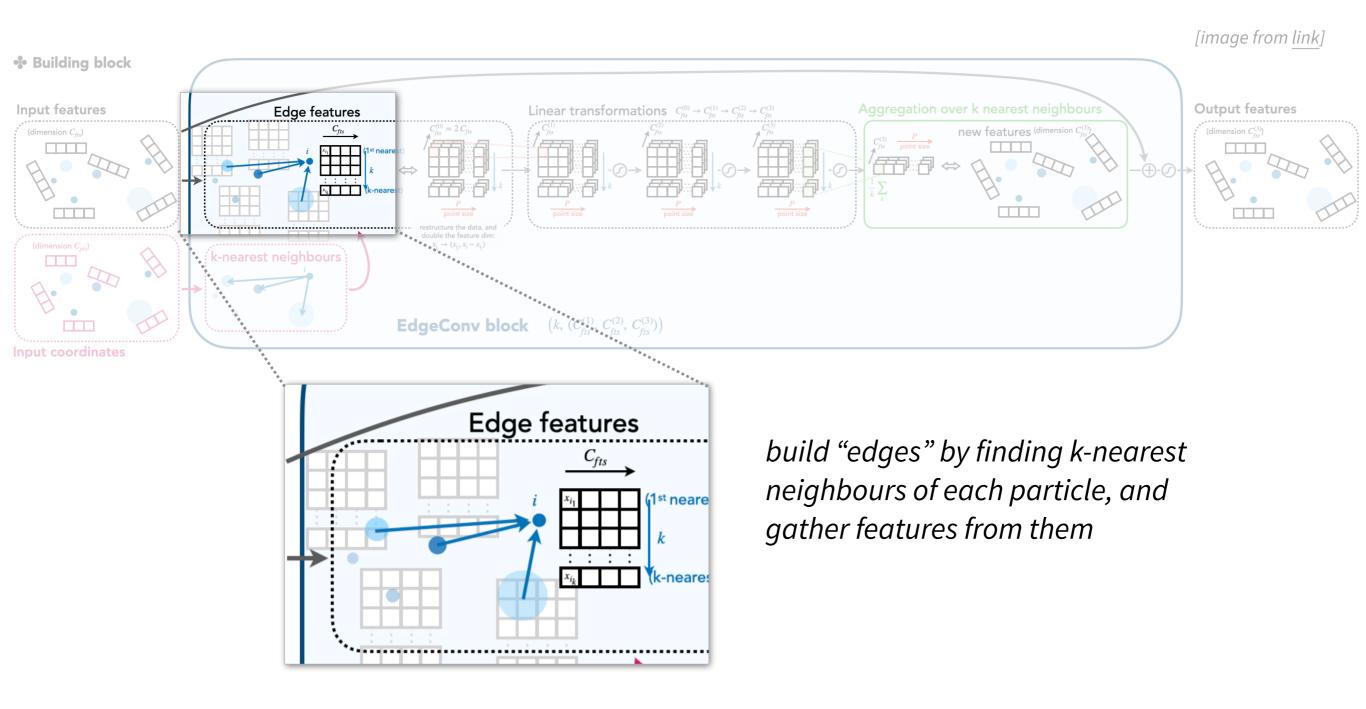


Point cloud representation of jet

Recap on ParticleNet and LorentzNet

<u>H.Qu, L.Gouskos. PRD 101 (2020) 056019</u>

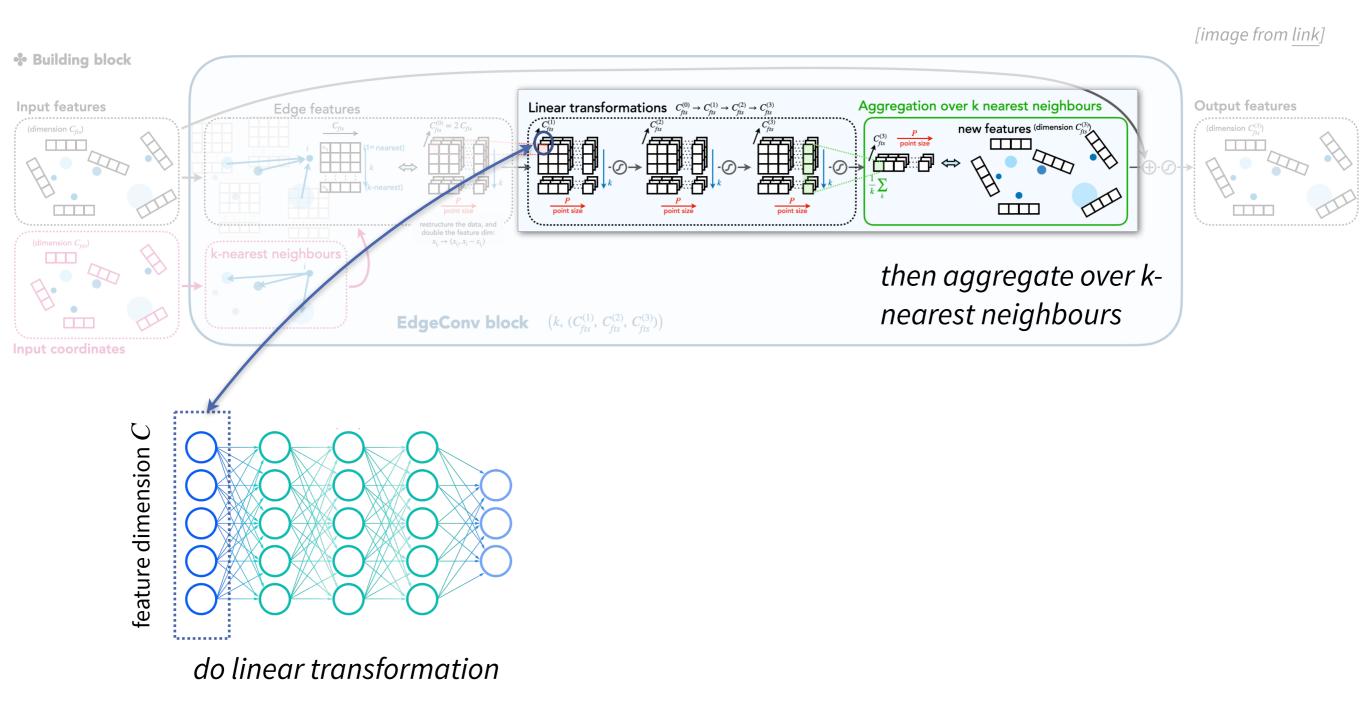
A powerful and popular model in the HEP community with a variety of applications



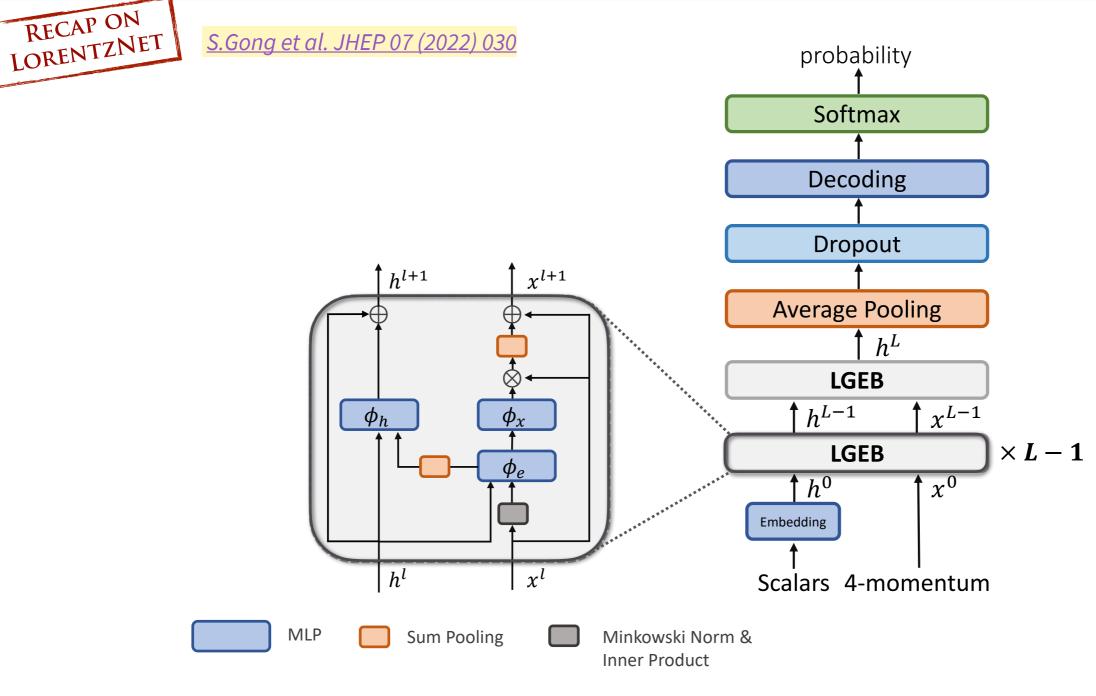
Recap on ParticleNet and LorentzNet

<u>H.Qu, L.Gouskos. PRD 101 (2020) 056019</u>

A powerful and popular model in the HEP community with a variety of applications

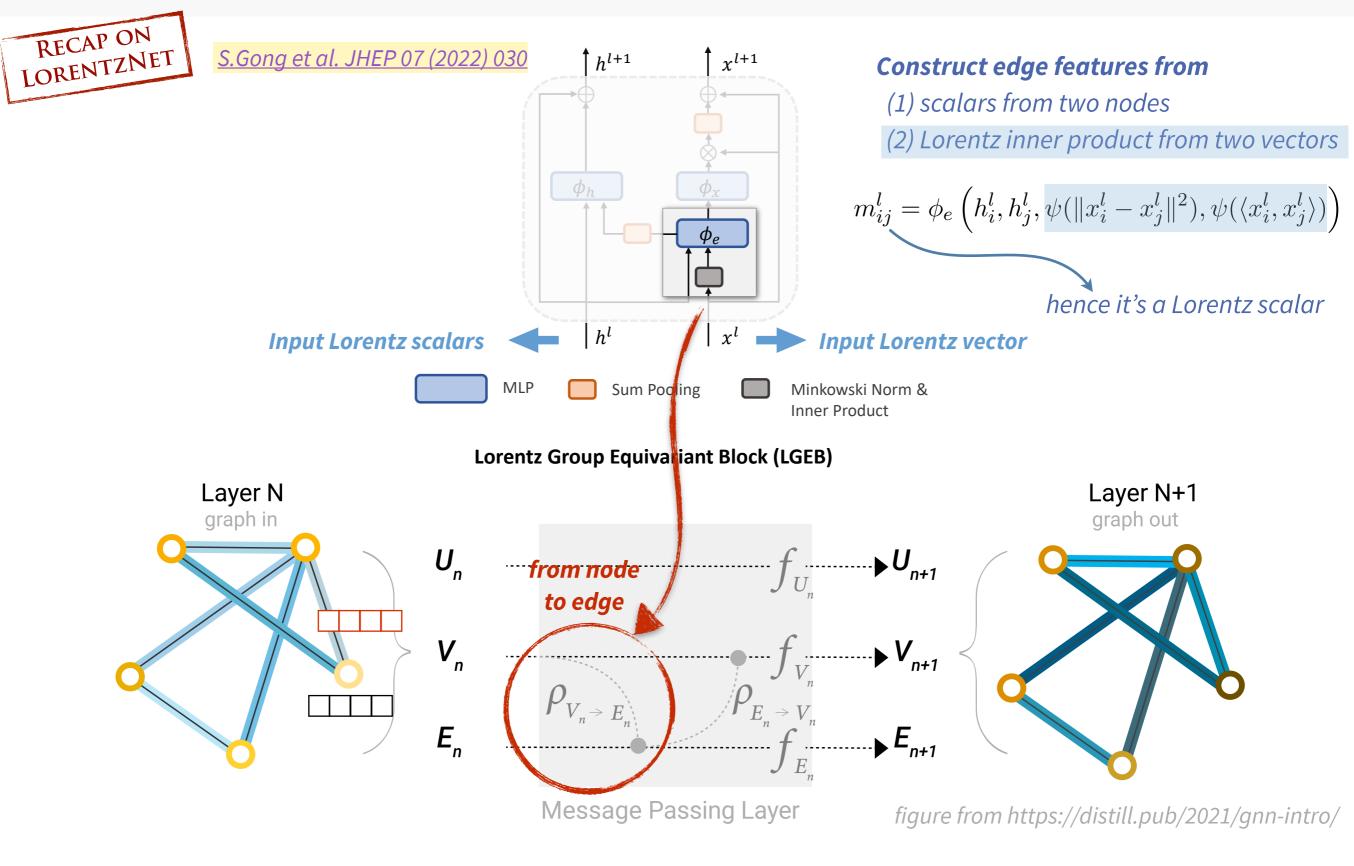


Recap on ParticleNet and LorentzNet



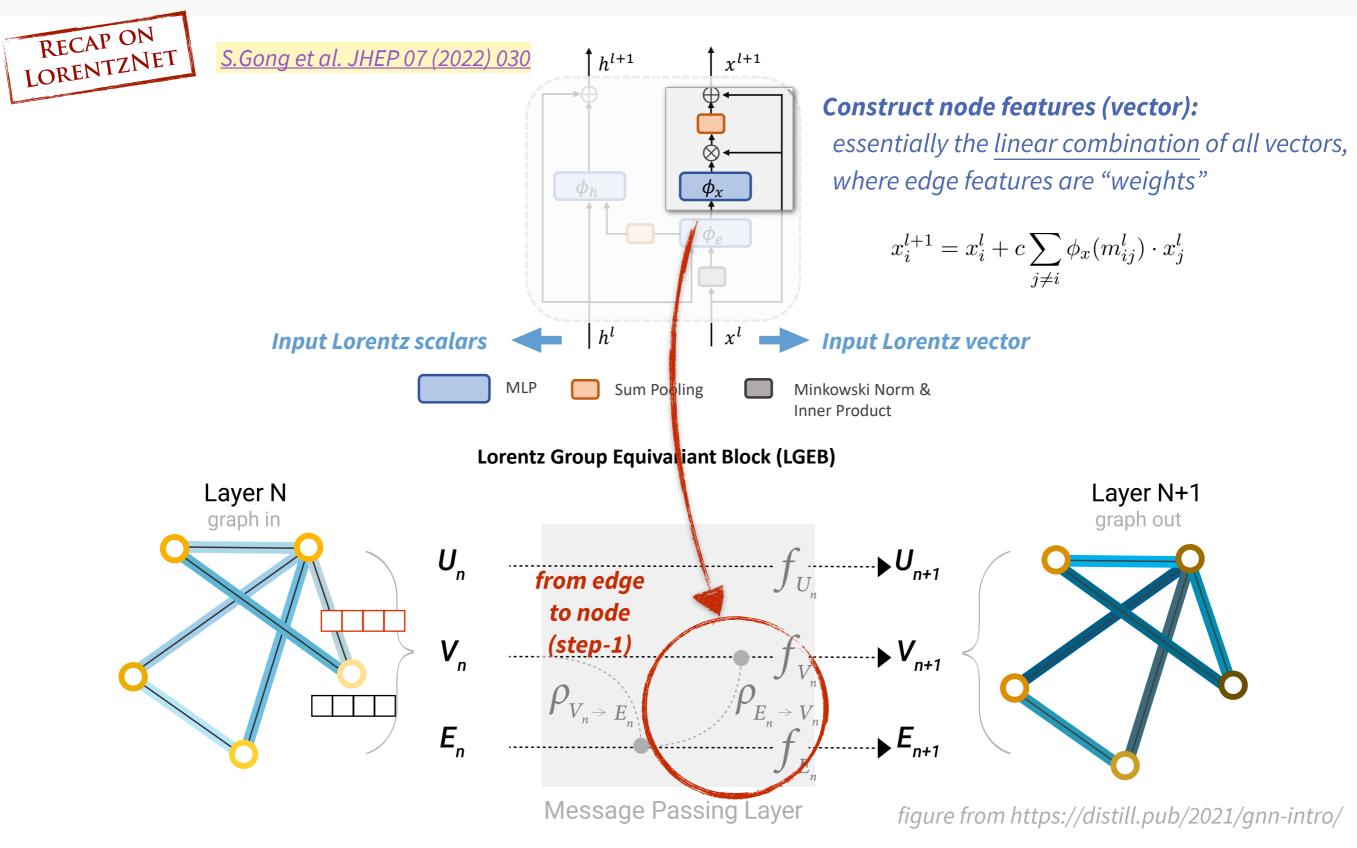
Lorentz Group Equivariant Block (LGEB)

Recap on ParticleNet and LorentzNet



Congqiao Li (Peking University)

Recap on ParticleNet and LorentzNet



Recap on ParticleNet and LorentzNet

