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Jet tagging × deep learning

➔ Jet tagging in the deep learning era 

❖ has brought a new performance level for jet tagging 😆 

❖ has had a profound impact for many physics analyses!🎖 

❖ efforts for further improvements still ongoing  🛣 
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“Post-ParticleNet” improvement
➔ Various works continuously aim for improving the network performance, after ParticleNet 

marked a success 
❖ here allow me to summarize *some* tips & tricks discovered in the recent 1-2 years
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Advanced deep learning 
experiences! Physics-inspired designs!
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“Post-ParticleNet” improvement
➔ Various works continuously aim for improving the network performance, after ParticleNet 

marked a success 
❖ here allow me to summarize *some* tips & tricks discovered in the recent 1-2 years
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✦ Attentive pooling over average/
max pooling

i.e., on aggregating features among all particles, using 
average/max pooling losses more information; assigning 
learnable weights to particles (or other similar 
approaches) usually works better

✦ “Graph” behaves better
i.e., Graph NN/Transformer architecture builds edges 
(interactions) between a pair of particles. Generally, in 
terms of performance: fully-connected edges > edges 
from k-NN > no edge

✦Pairwise features help
i.e., constructing pairwise features between particles is 
a solution to improve network performance

✦ “Multi” over “one”
i.e., delivering multiple trainings on a given NN 
structure performs generally better than doing it once. 
Examples: multi-head over single-head; multi-scale k-
NN for edge construction; training an ensemble of 
networks vs. training once…

✦Physics-informed edges

✦ Injecting symmetries

i.e., build a certain form of graph based on physics-
informed information. Example: define tree structures 
based on particle clustering information.

i.e., allow the network to obey a certain type of 
symmetry by the dedicated design of symmetry-
preserving layers/architecture

Reference: 
ABCNet: V. Mikuni et al. EPJC 2020; 135(6): 463 
LGN: A. Bogatskiy et al. arXiv: 2006.04780, ICML 2020 
ParticleNeXt:  H. Qu. Talk@ML4Jets2021 
LundNet: F. Dreyer et al. JHEP 03 (2021) 052 
PCN: C. Shimmin. arXiv:2107.02908 
LorentzNet:  S. Gong et al. JHEP 07 (2022) 030 
ParT: H. Qu et al. arXiv:2202.03772, ICML 2022 
CPT : S. Qiu et al. arXiv:2203.05687 
HMPNet : F. Ma et al. arXiv:2210.13869

https://doi.org/10.1140/epjp/s13360-020-00497-3
https://arxiv.org/abs/2006.04780
https://indico.cern.ch/event/980214/contributions/4413544/attachments/2277334/3868991/ParticleNeXt_ML4Jets2021_H_Qu.pdf
https://doi.org/10.1007/JHEP03(2021)052
https://arxiv.org/abs/2107.02908
https://link.springer.com/article/10.1007/JHEP07(2022)030
https://arxiv.org/abs/2202.03772
https://arxiv.org/abs/2203.05687
https://arxiv.org/abs/2210.13869
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✦Physics-informed edges

✦ Injecting symmetries

i.e., build a certain form of graph based on physics-
informed information. Example: define tree structures 
based on particle clustering information.

i.e., allow the network to obey a certain type of 
symmetry by the dedicated design of symmetry-
preserving layers/architecture

✦ Injecting symmetries
i.e., allow the network to obey a certain type of 
symmetry by the dedicated design of symmetry-
preserving layers/architecture

• “Injecting symmetries” into a network is a popular 
and promising field 

• Dedicated networks have been proposed such as to 
be invariant/equivariant to certain symmetries, e.g.: 
‣ boost on z-axis, rotation on x-y plane 

‣ rotation on the η–φ plain (similarly, around the jet 
axis) 

‣ boost along the “jet axis” 

‣ fully Lorentz symmetry 

‣ … 

• Can we do it without a special network design? - 
Yes!

Reference: 
ABCNet: V. Mikuni et al. EPJC 2020; 135(6): 463 
LGN: A. Bogatskiy et al. arXiv: 2006.04780, ICML 2020 
ParticleNeXt:  H. Qu. Talk@ML4Jets2021 
LundNet: F. Dreyer et al. JHEP 03 (2021) 052 
PCN: C. Shimmin. arXiv:2107.02908 
LorentzNet:  S. Gong et al. JHEP 07 (2022) 030 
ParT: H. Qu et al. arXiv:2202.03772, ICML 2022 
CPT : S. Qiu et al. arXiv:2203.05687 
HMPNet : F. Ma et al. arXiv:2210.13869

https://doi.org/10.1140/epjp/s13360-020-00497-3
https://arxiv.org/abs/2006.04780
https://indico.cern.ch/event/980214/contributions/4413544/attachments/2277334/3868991/ParticleNeXt_ML4Jets2021_H_Qu.pdf
https://doi.org/10.1007/JHEP03(2021)052
https://arxiv.org/abs/2107.02908
https://link.springer.com/article/10.1007/JHEP07(2022)030
https://arxiv.org/abs/2202.03772
https://arxiv.org/abs/2203.05687
https://arxiv.org/abs/2210.13869
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Lorentz transformations and symmetry
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➔ By HEP convention, a jet is represented on Δη-Δφ plane w.r.t. its axis 
❖ this pre-processing step is equivalent as:  

apply a boost on z-axis → then a rotation on x-y plane (transverse plane) → now 
jet points to the x-axis, i.e. (η, φ) = (0, 0)

Δη
Δ

ϕ

η

ϕ

translation on η = boost on z-axis

tr
an
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 =
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y 
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e

jet axis points to x-axis 
(η, φ) = (0, 0)
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Lorentz transformations and symmetry
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➔ By HEP convention, a jet is represented on Δη-Δφ plane w.r.t. its axis 
❖ after the conventional pre-processing, we have four additional DoFs for Lorentz 

transformation!

Original

(a)

–  boostx t–  rotationy z

–tiltz –tilty

(b) (c)

(d) (e)

Original

(a)

–  boostx t–  rotationy z

–tiltz –tilty

(b) (c)

(d) (e)

Original

(a)

–  boostx t–  rotationy z

–tiltz –tilty

(b) (c)

(d) (e)

A toy jet for illustration purpose 
jet axis points to (η, φ) =(0, 0)

≈ η-φ rotation z-boost + x-z rotation y-boost + x-y rotation

x

y

z

transverse 
plane

beam axis
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Lorentz transformations and symmetry
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➔ By HEP convention, a jet is represented on Δη-Δφ plane w.r.t. its axis 
❖ after the conventional pre-processing, we have four additional DoFs for Lorentz 

transformation! 

➔ If a network respects Lorentz symmetry… 
❖ it means the output score is invariant under any Lorentz transformation of the 

input jet 
❖ [solution 1] design a dedicated structure to maintain invariant/equivariant 
❖ [solution 2] only use those invariant features as input!

Original

(a)

–  boostx t–  rotationy z

–tiltz –tilty

(b) (c)

(d) (e)

Original

(a)

–  boostx t–  rotationy z

–tiltz –tilty

(b) (c)

(d) (e)≈ η-φ rotation z-boost + x-z rotation y-boost + x-y rotation
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Our proposal on network architecture
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pT η ⋯ Output

Input jet

Original network
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Our proposal on network architecture
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pT η ⋯ Output

Input jet

new 
features

data 
engineering!

additional 
network

Original network

Unchanged

A “patch” network
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Feature design
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Original

(a)

–  boostx t–  rotationy z

–tiltz –tilty

(b) (c)

(d) (e)

Original

(a)

–  boostx t–  rotationy z

–tiltz –tilty

(b) (c)

(d) (e)

Original

(a)

–  boostx t–  rotationy z

–tiltz –tilty

(b) (c)

(d) (e)

Original

(a)

–  boostx t–  rotationy z

–tiltz –tilty

(b) (c)

(d) (e)

ΔRij ΔRij

➔ First, let’s construct “pairwise” variables invariant under some or all Lorentz (sub)symmetries 

❖ pairwise mass  : invariant under all transformations 

❖ pairwise : approx. invariant under y-z rotation (≈ η-φ rotation)

m2
ij = pμ

i pj,μ

ΔRij
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Original

(a)

–  boostx t–  rotationy z

–tiltz –tilty

(b) (c)

(d) (e)

Original

(a)

–  boostx t–  rotationy z

–tiltz –tilty

(b) (c)

(d) (e)

ΔRij

➔ First, let’s construct “pairwise” variables invariant under some or all Lorentz (sub)symmetries 

❖ pairwise mass  : invariant under all transformations 

❖ pairwise : approx. invariant under y-z rotation (≈ η-φ rotation) 

❖ manually construct variable : can prove that it is also approx. invariant under x-
boost

m2
ij = pμ

i pj,μ

ΔRij

ΔRij(pT,i + pT, j)

 smaller,  
but  larger
ΔRij

pT

Original

(a)

–  boostx t–  rotationy z

–tiltz –tilty

(b) (c)

(d) (e)

Original

(a)

–  boostx t–  rotationy z

–tiltz –tilty

(b) (c)

(d) (e)

ΔRij
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Experiments on ParticleNet and LorentzNet
➔ Two baseline networks studied ParticleNet & LorentzNetbase:  

❖ how to combine pairwise features + additional patch network to the baseline 
network? 

➔ ParticleNet: integrate pairwise features into the network according to the 
intrinsic k-NN pairs

13

Element-wise 
embedding

Input

EdgeConv block

neighbouring 
nodes form 
the message 
(xi1, ⋯, xik)

pairwise 
features

Element-wise embedding

xi

xi1 xi3

xi2

Ui,i1 Ui,i2

Ui,i3

Linear

message 
constructed from 
pairwise features 
(Ui,i1, ⋯, Ui,ik)

xixi1

xi2

Ui,i1
Ui,i2Ui,i3

…

…

Linear

EdgeConv block

xi3

embedded 
pairwise 
features

Uij
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Experiments on ParticleNet and LorentzNet
➔ Two baseline networks studied ParticleNet & LorentzNetbase:  

❖ how to combine pairwise features + additional patch network to the baseline 
network? 

➔ LorentzNetbase: LorentzNet has already included “pairwise mass”: remove it 
to create our baseline (but complete all node features as the case of ParticleNet)
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Jet tagging algorithm respecting Lorentz group symmetry

Congqiao Li (Peking University) 2 September, 2022IHEP EPD Seminar

IHEP EPD Seminar
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LorentzNet architecture

23

Input Lorentz vectorInput Lorentz scalars

Figure 1. (left): The structure of the Lorentz Group Equivariant Block (LGEB). (right): The
network architecture of the LorentzNet.

Lorentz Group Equivariant Block. We use hl = (hl1, h
l
2, · · · , hln) to denote the node

embedding scalars, and xl = (xl1, x
l
2, · · · , xln) to denote the coordinate embedding vectors in

the l-th LGEB layer. When l = 0, x0 equals the input of the 4-momenta and h0i = si denotes
the input of the scalar variables. LGEB aims to learn deeper embeddings hl+1, xl+1 via
current hl, xl. Motivated by Equation (3.1), the message passing of LorentzNet is written
as follows. We use mij to denote the edge message between particle i and j, and it encodes
the scalar information of the particle i and j, i.e.,

ml
ij = �e

⇣
hli, h

l
j , (kxli � xljk2), (hxli, xlji)

⌘
, (3.2)

where �e(·) is a neural network and  (·) = sgn(·) log(| · | + 1) in Equation (3.2) is a
normalizing function to make the heavy tailed distributed quantities centralized for ease
of optimization. Except for the embedding of the scalar features hli and hlj , according
to Proposition 3.1, the input of the neural network contains the Minkowski dot product
hxi, xji. The kxli � xljk2 is also included because the interaction between particles relies on
this term and we include it as a prior feature for ease of learning.

According to Equation (3.1), we design Minkowski dot product attention as

xl+1
i = xli + c

X

j 6=i

�x(m
l
ij) · xlj (3.3)

where �x(·) 2 R is a scalar function modeled by neural networks. To ensure the equiv-
ariance, we can not arbitrarily apply the normalization trick to control the scale of xl+1

i .
Therefore, we introduce the hyperparameter c to control the forward stability together with
the shortcut connection. This step captures the interactions of the i-th particle with other
particles via the ensemble of the 4-momenta of all particles. Unlike most of the symmetry-
preserving neural networks such as LGN and EGNN [16] (for E(n) equivariance)1 which

1
The relation with EGNN is discussed in the Appendix.

– 6 –

from node 
to edge

Construct edge features from 
  (1) scalars from two nodes 
  (2) Lorentz inner product from two vectors

figure from https://distill.pub/2021/gnn-intro/

hence it’s a Lorentz scalar

LorentzNet @ BOOST2022

https://indico.cern.ch/event/1144064/timetable/?view=standard#76-jet-tagging-algorithm-respe
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Performance for adding pairwise features
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better 
compared 
to baselines

Training on 60k top tagging dataset (smaller dataset manifest the power of inductive bias)
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Performance for adding pairwise features

16

‣ Injecting ΔR to the 
network → more robust 
to y-z rotation 

‣ Injecting ΔR(pTi+pTj) 
or mass → more robust 
to y-z rotation and now 
also the x-boost

better
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A general solution?

➔ Pairwise features have limitations 
❖ only applicable to GNN/Transformer networks which intrinsically build “edges” 

➔ Upgrade to node-wise features 
❖ “mass features” carried per node, not edge between nodes

17

(1) for each node i

pT η ⋯

(2) find a friend group  :  
composed of k nodes 

 having 
largest 

Gi

im (m = 1,⋯, k)
pμ

i pimμ

this is a Lorentz 
invariant choice

(3) calculate mass 

 

m2
Gi

= (∑
j∈Gi

pj)
2

≈ 2
j<k

∑
j,k∈Gi

pμ
j pkμ

essentially, this is the pre-determined 
linear combination of all pairwise 
masses!
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A general patch structure design?

18

Input

Unit block

node-wise 
features

Element-wise embedding Linear

…embedded 
node-wise 
features

ui

xi

Unit block

Linear

xi

…

➔ Baseline networks can be any network that treats jet as a point cloud 
➔ Integrate new node-wise features layer-by-layer 

❖ unit block is  function for PFN, EdgeConv for ParticleNet, and LEGB for 
LorentzNet

Φ(x)

Any baseline network
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Performance for adding node-wise features
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Adding node-wise mass: 
(1) improve network performance 

(especially for PFN!) 
(2) more robust to Lorentz 

transformations on test data 
(3) smaller error bars (illustrate 

more generalization ability)

better
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Performance summary
➔ What do the results mean? 

❖ the full network tends to be more robust and performant, when we incorporate 
Lorentz-symmetry-preserved variables (pairwise/node-wise ones) into the 
network 

❖ even when we introduce a very small patch structure invariant under a certain 
symmetry (the original network is unaffected) helps the network to perform 
better 
‣ without need to let the network fully satisfy Lorentz symmetries 

‣ invariance property of the small sub-network has a big impact on the learning, and 
can be reflected in the entire network

20
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‣ The experiments show that “pairwise 
mass” is the key component in network 
design 
‣We reveal that the underlying logic lies 

in the Lorentz symmetry preservation 
‣ We make a successful attempt to 

understand the interpretability of the 
network in terms of symmetry 
preservation
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Short summary
➔ We have some new findings from our experiments, potentially helpful to the 

HEP × ML community 
‣

22

✦ Engineering on network? 
Engineering on data! 

Data engineering provides a 
more general solution for 
symmetry preservation - for 
that we simply construct some 
symmetry-invariant input, 
introduce a patch structure, 
and inject them into the 
baseline network of any kind

✦ Just a “hint” on 
symmetry will do

Creating a network to strictly 
obey a source of symmetry is a 
solution, but usually brings 
potential limitations to 
network designs; adding a 
small symmetry-preserving 
“patch” structure to the 
baseline networks can be a 
new solution

✦ Full Lorentz symmetry 
is better!

By delivering a fair comparison 
among networks respecting to 
full Lorentz symmetry or some 
of its sub-symmetries, we find 
that the former performs better

➔ One more thing… Some inspirations to other HEP × ML tasks?
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Inspirations
➔ One more thing… Some inspirations to other HEP × ML tasks?

23

Tasks Eamples Inspirations on network 
design? 🤔

object-based tasks • event-classifier (BDT/NN) for 
analysis, using e.g. jet/lep 
information 

• jet assignment tasks 
• autoencoders for event anomaly 

detection 
• …

consider adding “masses” between 
objects (jet–jet, jet–lep, etc) as 
additional input

particle-based tasks • jet tagging! 
• ML-based paticle-flow 

reconstruction 
• …

consider adding “pairwise mass” 
between particles

tasks using more primary input? • processing track hits 
• processing energy deposit on 

calorimeters (data on fixed grids)

fact: the essence of these data are 
still based on particles 
open question: can we somehow 
design a Lorentz-symmetry-
preserving (sub)network to adapt 
these sources of input to further 
improve network performance?

More 

possibilities 

ahead!



Does Lorentz-symmetric design boost network performance in jet physics?

Congqiao Li (Peking University) 1 November, 2022ML4Jets 2022

ML4Jets 2022

24

Backup
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Recap on ParticleNet and LorentzNet
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Recap on 

ParticleNet H.Qu, L.Gouskos. PRD 101 (2020) 056019

A powerful and popular model in the HEP community with a variety of applications

[image from link]

https://doi.org/10.1103/PhysRevD.101.056019
https://cms-ml.github.io/documentation/inference/particlenet.html
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Recap on ParticleNet and LorentzNet
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Recap on 

ParticleNet H.Qu, L.Gouskos. PRD 101 (2020) 056019

Point cloud representation of jet

A powerful and popular model in the HEP community with a variety of applications

[image from link]

https://doi.org/10.1103/PhysRevD.101.056019
https://cms-ml.github.io/documentation/inference/particlenet.html
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Recap on ParticleNet and LorentzNet

27

Recap on 

ParticleNet H.Qu, L.Gouskos. PRD 101 (2020) 056019

build “edges” by finding k-nearest 
neighbours of each particle, and 
gather features from them

A powerful and popular model in the HEP community with a variety of applications

[image from link]

https://doi.org/10.1103/PhysRevD.101.056019
https://cms-ml.github.io/documentation/inference/particlenet.html
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Recap on ParticleNet and LorentzNet
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Recap on 

ParticleNet

A powerful and popular model in the HEP community with a variety of applications

H.Qu, L.Gouskos. PRD 101 (2020) 056019

do linear transformation

fe
at

ur
e 

di
m

en
si

on
 C

then aggregate over k-
nearest neighbours

[image from link]

https://doi.org/10.1103/PhysRevD.101.056019
https://cms-ml.github.io/documentation/inference/particlenet.html
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Recap on ParticleNet and LorentzNet
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Recap on 

LorentzNet
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Input Lorentz vectorInput Lorentz scalars

Figure 1. (left): The structure of the Lorentz Group Equivariant Block (LGEB). (right): The
network architecture of the LorentzNet.

Lorentz Group Equivariant Block. We use hl = (hl1, h
l
2, · · · , hln) to denote the node

embedding scalars, and xl = (xl1, x
l
2, · · · , xln) to denote the coordinate embedding vectors in

the l-th LGEB layer. When l = 0, x0 equals the input of the 4-momenta and h0i = si denotes
the input of the scalar variables. LGEB aims to learn deeper embeddings hl+1, xl+1 via
current hl, xl. Motivated by Equation (3.1), the message passing of LorentzNet is written
as follows. We use mij to denote the edge message between particle i and j, and it encodes
the scalar information of the particle i and j, i.e.,

ml
ij = �e

⇣
hli, h

l
j , (kxli � xljk2), (hxli, xlji)

⌘
, (3.2)

where �e(·) is a neural network and  (·) = sgn(·) log(| · | + 1) in Equation (3.2) is a
normalizing function to make the heavy tailed distributed quantities centralized for ease
of optimization. Except for the embedding of the scalar features hli and hlj , according
to Proposition 3.1, the input of the neural network contains the Minkowski dot product
hxi, xji. The kxli � xljk2 is also included because the interaction between particles relies on
this term and we include it as a prior feature for ease of learning.

According to Equation (3.1), we design Minkowski dot product attention as

xl+1
i = xli + c

X

j 6=i

�x(m
l
ij) · xlj (3.3)

where �x(·) 2 R is a scalar function modeled by neural networks. To ensure the equiv-
ariance, we can not arbitrarily apply the normalization trick to control the scale of xl+1

i .
Therefore, we introduce the hyperparameter c to control the forward stability together with
the shortcut connection. This step captures the interactions of the i-th particle with other
particles via the ensemble of the 4-momenta of all particles. Unlike most of the symmetry-
preserving neural networks such as LGN and EGNN [16] (for E(n) equivariance)1 which

1
The relation with EGNN is discussed in the Appendix.

– 6 –

from node 
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Construct edge features from 
  (1) scalars from two nodes 
  (2) Lorentz inner product from two vectors
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Input Lorentz vectorInput Lorentz scalars

Construct node features (vector): 
  essentially the linear combination of all vectors, 
  where edge features are “weights”

from edge 
to node 
(step-1)

Figure 1. (left): The structure of the Lorentz Group Equivariant Block (LGEB). (right): The
network architecture of the LorentzNet.

Lorentz Group Equivariant Block. We use hl = (hl1, h
l
2, · · · , hln) to denote the node

embedding scalars, and xl = (xl1, x
l
2, · · · , xln) to denote the coordinate embedding vectors in

the l-th LGEB layer. When l = 0, x0 equals the input of the 4-momenta and h0i = si denotes
the input of the scalar variables. LGEB aims to learn deeper embeddings hl+1, xl+1 via
current hl, xl. Motivated by Equation (3.1), the message passing of LorentzNet is written
as follows. We use mij to denote the edge message between particle i and j, and it encodes
the scalar information of the particle i and j, i.e.,

ml
ij = �e

⇣
hli, h

l
j , (kxli � xljk2), (hxli, xlji)

⌘
, (3.2)

where �e(·) is a neural network and  (·) = sgn(·) log(| · | + 1) in Equation (3.2) is a
normalizing function to make the heavy tailed distributed quantities centralized for ease
of optimization. Except for the embedding of the scalar features hli and hlj , according
to Proposition 3.1, the input of the neural network contains the Minkowski dot product
hxi, xji. The kxli � xljk2 is also included because the interaction between particles relies on
this term and we include it as a prior feature for ease of learning.

According to Equation (3.1), we design Minkowski dot product attention as

xl+1
i = xli + c

X

j 6=i

�x(m
l
ij) · xlj (3.3)

where �x(·) 2 R is a scalar function modeled by neural networks. To ensure the equiv-
ariance, we can not arbitrarily apply the normalization trick to control the scale of xl+1

i .
Therefore, we introduce the hyperparameter c to control the forward stability together with
the shortcut connection. This step captures the interactions of the i-th particle with other
particles via the ensemble of the 4-momenta of all particles. Unlike most of the symmetry-
preserving neural networks such as LGN and EGNN [16] (for E(n) equivariance)1 which

1
The relation with EGNN is discussed in the Appendix.

– 6 –
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Input Lorentz vectorInput Lorentz scalars

Construct node features (scalar): 
  attentive pooling on all connecting edges

only include the radial distance kxi � xik2 as the only scalars extracted from the vector
representation, we include the dot product hxi, xji in mij to recover the information of
angles according to Equation (3.1) which can not be captured by the radial distance.

The scalar features for particle i is forward as

hl+1
i = hli + �h(h

l
i,
X

j 6=i

wijm
l
ij), (3.4)

where �h(·) is also modeled by neural networks whose output dimension equals the dimen-
sion of hl+1

i . For efficient computation, we operate summation
P

j 6=iwijml
ij to aggregate

ml
ij . This can both ensure the permutation invariance but also ease the implementation

for jets with different number of particles. This operation is also widely adopted in other
types of graph neural networks [14, 16].

Decoding layer. After stacks of LGEB for L layers, we decode the node embedding
hL = (hL1 , · · · , hLN ). Note that the information of xL�1 has been included in hL through
the mL�1

ij . Therefore, to avoid redundant information, we only decode hL. First we use
average pooling to get

hav =
X

i

hLi . (3.5)

A subsequent dropout layer is applied to hav to prevent overfitting. A decoding block with
two fully connected layers, followed by a softmax function, is used to generate the output
for the binary classification task.

3.2 Theoretical Analysis

In this section, we analyze the Lorentz group equivariance of LorentzNet.

Proposition 3.2. The coordinate embedding xl = (xl1, x
l
2, · · · , xlN ) are Lorentz group equiv-

ariant and the node embedding hl = (hl1, · · · , hlN ) are Lorentz group invariant.

Proof: We denote Q as the Lorentz transformation. If ml
ij are invariant under Q for

all i, j, l, xl+1
i will be Lorentz group equivariant because

Qxl+1
i = Q(xli + c

X

j 6=i

(xli � xlj)�x(mij))

= Qxli + c
X

j 6=i

(Qxli �Qxlj)�x(mij)).

Then we illustrate the invariance of ml
ij . We start from the input. Since the 4-momentum

vector are Lorentz group equivariant, we have kx0i � x0jk2 = kQx0i � Qx0jk2 because the
determinant of Q equals 1, and similar for hx0i , x0j i. Therefore, the input of �e are invari-
ant variables under transformation Q and then m0

ij are invariant. Recursively using the
invariance of ml

ij and the equivariance of xli, we can get the conclusion. ⇤
As for the expressiveness of the LGEB structure, we have the following discussions.

Because hi is a function of the aggregation of mij , it contains the information of all the

– 7 –
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