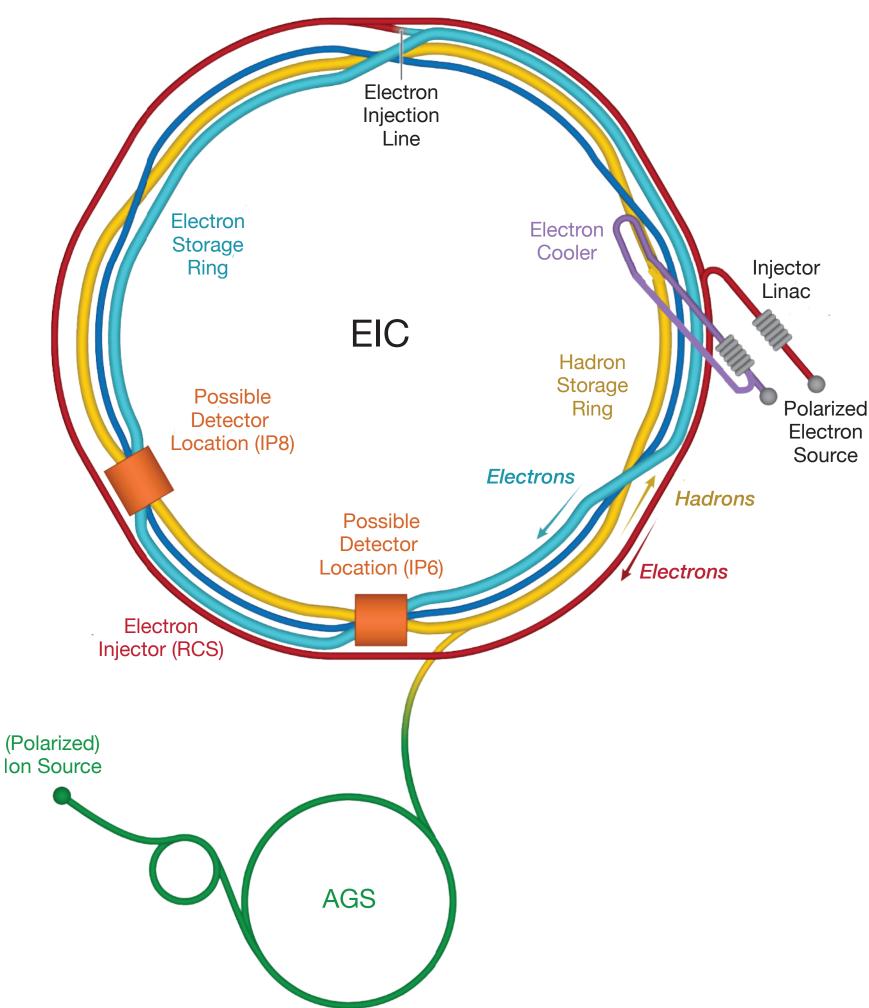
Machine learning based jet and event identification at the Electron-Ion Collider with applications to hadron structure and spin physics

arXiv 2210.06450 K. Lee, J. Mulligan, M. Płoskoń, F. Ringer, F. Yuan

James Mulligan UC Berkeley / LBNL ML4Jets Workshop **Rutgers University** Nov 3, 2022

The Electron-Ion Collider

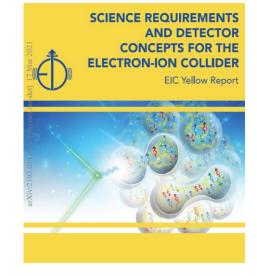


Precision QCD with *ep* and *eA* collisions in the 2030s

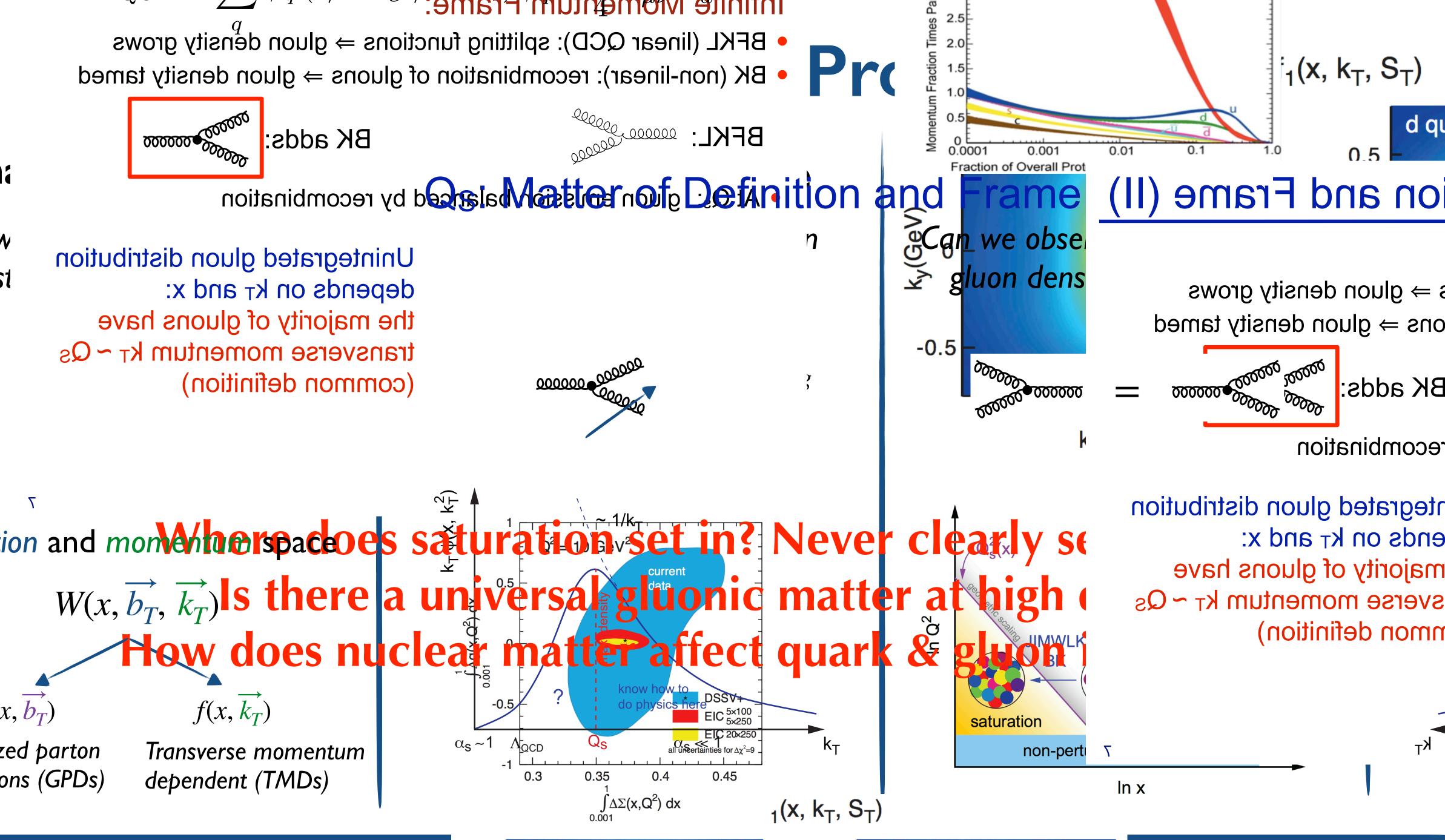
- Polarized electron and proton beams
- □ Variable ion species: Au, Pb, U
- \Box Variable CM energy: 20 140 GeV
- **High luminosity:** $10^{33} 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$ Finding 1: An Can uniquely address three profound questions about nucleons-cleons-onsprotons—and how they are assembled to form the nuclei of atoms:
 - How does the mass of the nucleon arise?
 - How does the spin of the nucleon arise?
 - What are the emergent properties of dense systems of gluons?

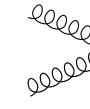
White paper

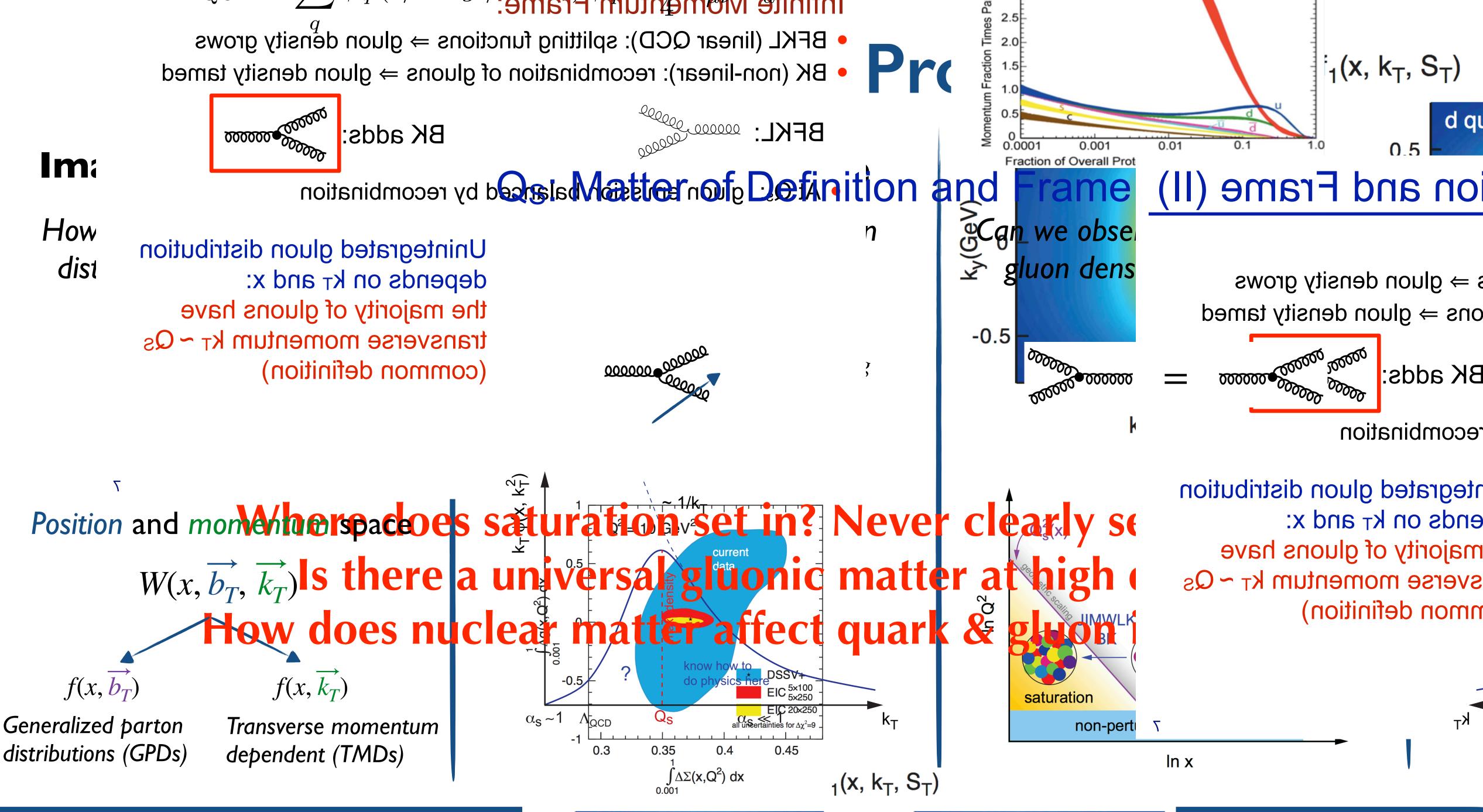
NAS report



Yellow report







James Mulligan, UC Berkeley

u quark

d qua

I. Is machine learning based jet classification useful for the science program of the EIC?

2. How will machine learning based jet taggers perform at the relatively low EIC energies?

James Mulligan, UC Berkeley

ML4Jets 2022, Rutgers University

Th

I. Is machine learning based jet classification useful for the science program of the EIC?

2. How will machine learning based jet taggers perform at the relatively low EIC energies?

James Mulligan, UC Berkeley

ML4Jets 2022, Rutgers University

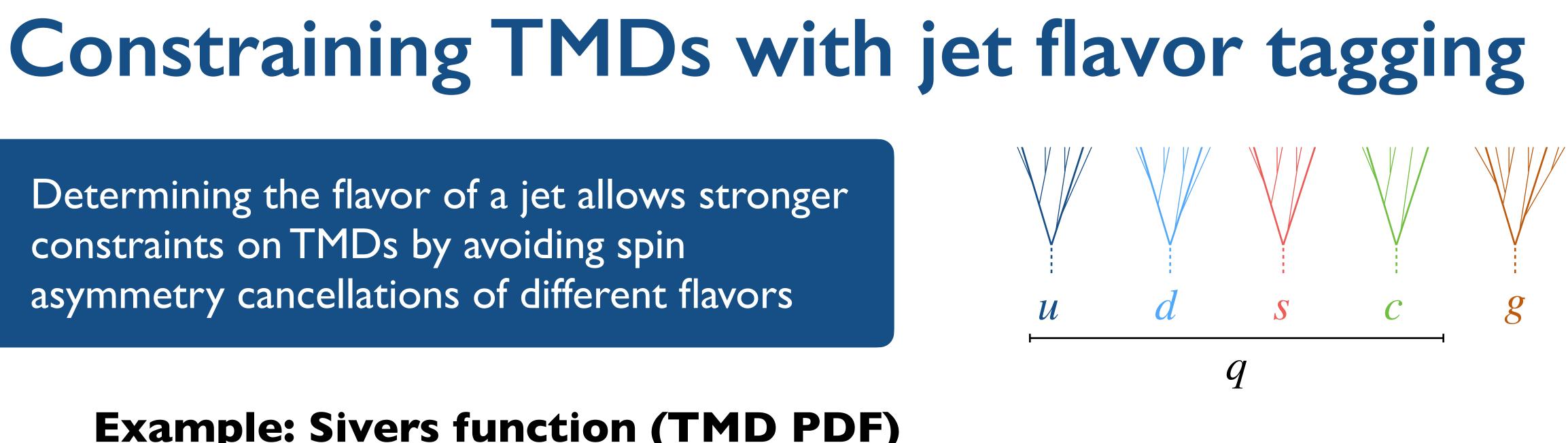


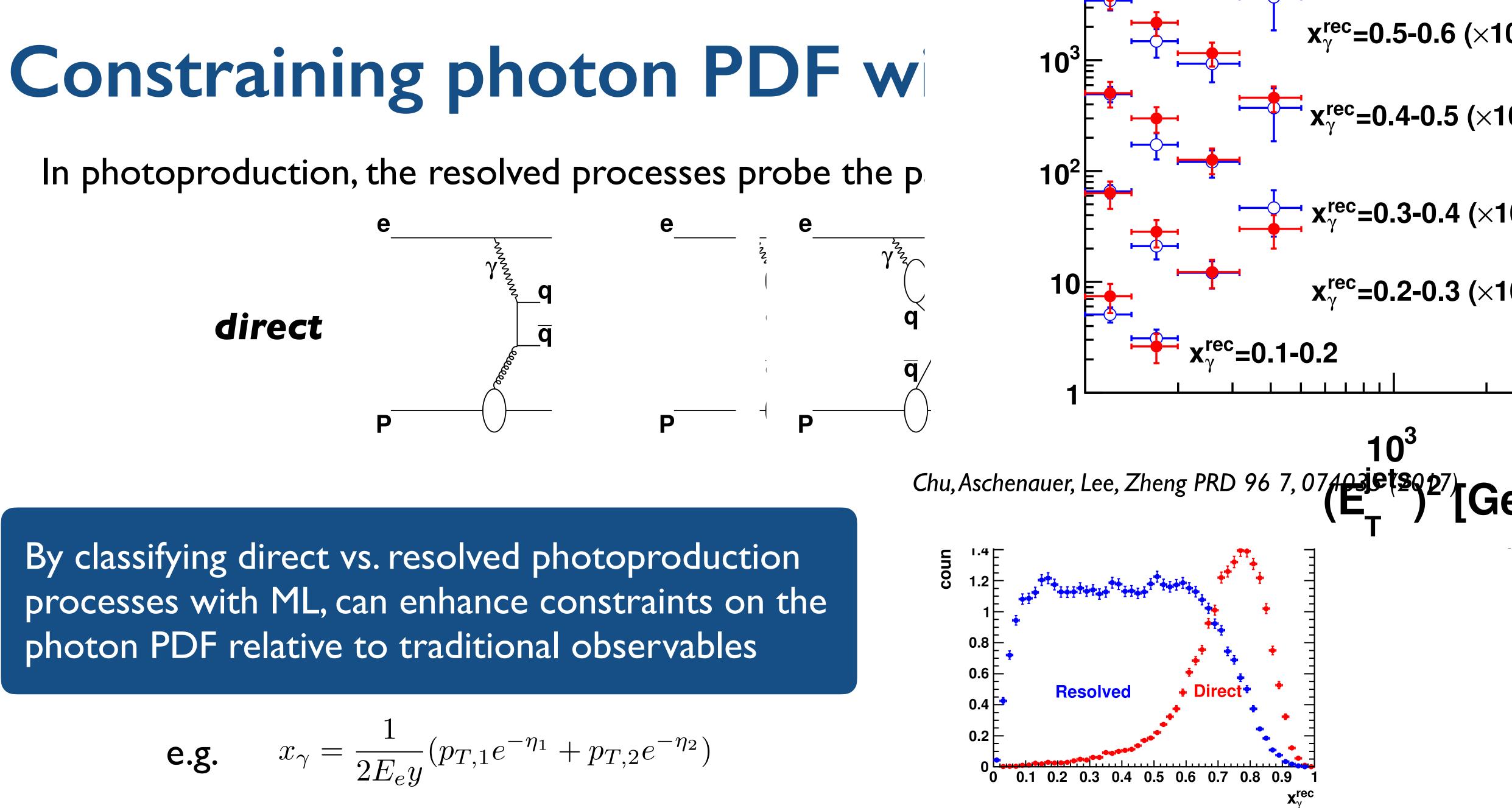
Determining the flavor of a jet allows stronger constraints on TMDs by avoiding spin asymmetry cancellations of different flavors

Example: Sivers function (TMD PDF) Burkhardt sum rule: $\sum_{\alpha = \alpha, \bar{\alpha}, \alpha} \int_0^1 dx f_{1T}^{\perp(1)\alpha}(x) = 0$

If valence quarks dominate, then u, d Sivers functions have large cancellation

Tagging u, d jets separately will allow stronger constraints on Sivers function Recent proposal: use jet charge Kang, Liu, Mantry, Shao PRL 125 242003 (2020) Using ML can further boost separation STAR, R. Fatemi EINN 2019



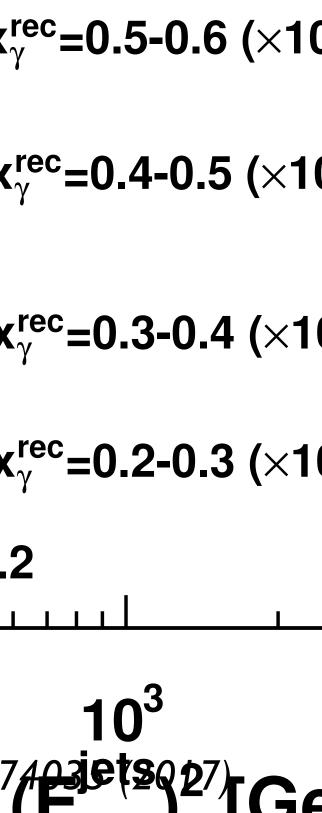


photon PDF relative to traditional observables

$$x_{\gamma} = \frac{1}{2E_e y} (p_{T,1}e^{-\eta_1} + p_{T,2}e^{-\eta_2})$$

James Mulligan, UC Berkeley

Nov 3, 2022



Maximizing cold nuclear matter effects

Goal: extract transport properties of nuclear matter e.g. \hat{q}

Ru, Kang, Wang, Xing, Zhang, PRD 103, L031901 (2021) Li, Liu, Vitev, PLB 816, 136261 (2021)

Train ML classifier to distinguish *ep* **vs.** *eA* **jets**

Can use interpretable ML:

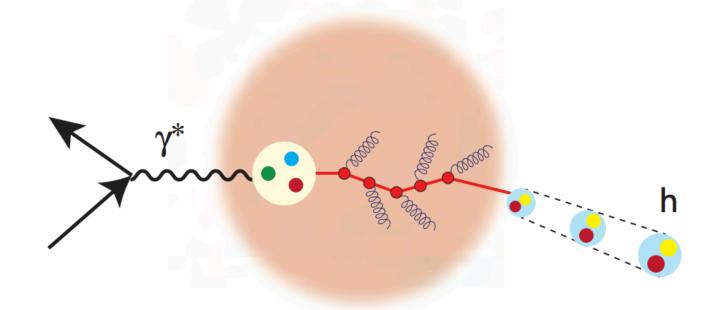
- Gain insight about type of information responsible for differences: IRC-safe vs. IRC-unsafe, hard vs. soft
- Design maximally discriminating observables that are calculable in pQCD

$$\max_{\theta} \left| \frac{d\sigma_{eA}}{d\sigma_{ep}}(\theta) - 1 \right| \longrightarrow \int_{\theta} \int_{\theta}$$

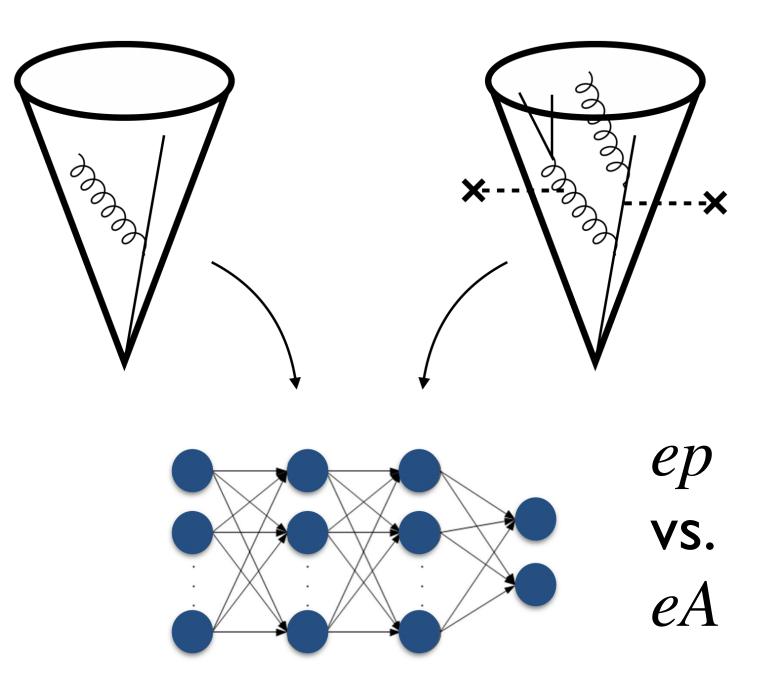
Can be applied directly on experimental data

James Mulligan, UC Berkeley

Lai, Mulligan, Płoskoń, Ringer JHEP 10 (2022) 011



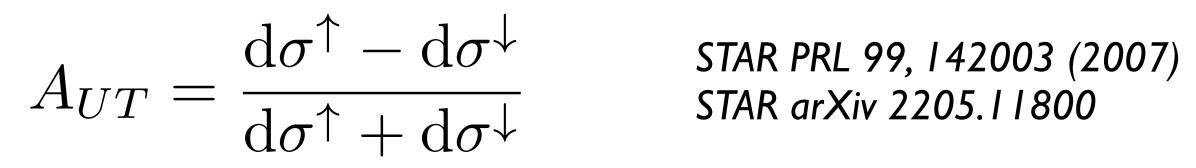
-2 0 2 4 6 $\mathcal{O}_{\text{EFP}}^{\text{ML}}$ (4 terms)



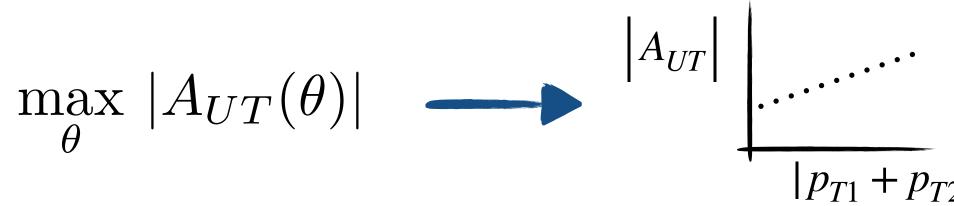
Nov 3, 2022

Maximizing spin asymmetries

Goal: Measure non-zero TSSAs associated with jets:



Train ML classifier to distinguish \uparrow **vs.** \downarrow **jets** Can use *interpretable* ML to design maximally discriminating observables that are calculable in pQCD

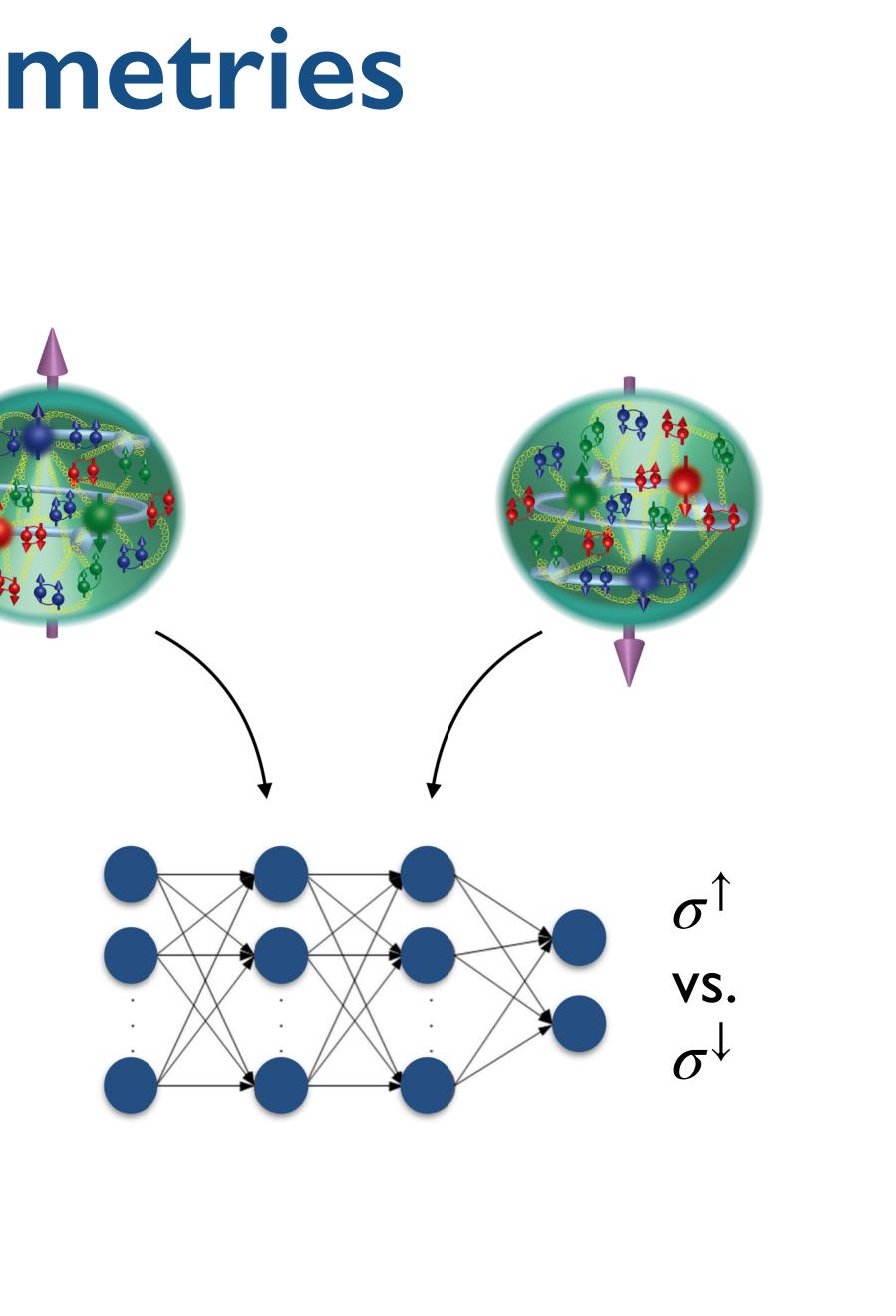


Can be applied directly on experimental data

Can be applied at RHIC now!

James Mulligan, UC Berkeley

 $|p_{T1} + p_{T2}|$



Th

I. Is machine learning based jet classification useful for the science program of the EIC?

2. How will machine learning based jet taggers perform at the relatively low EIC energies?

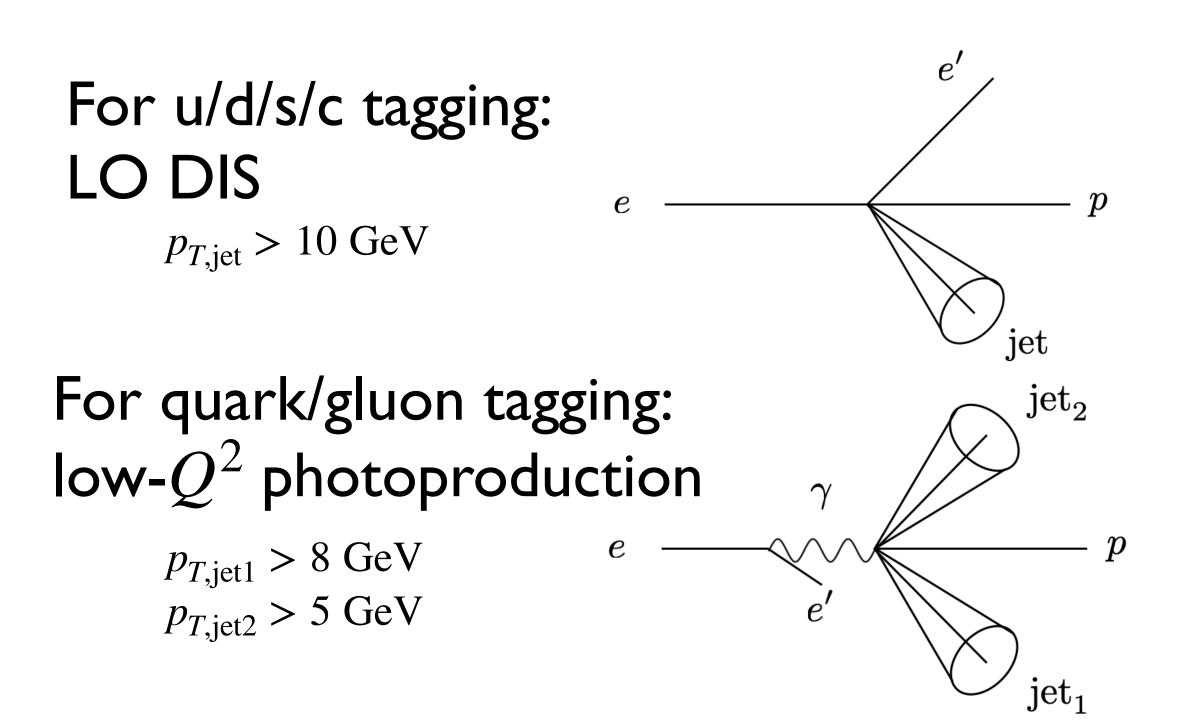
James Mulligan, UC Berkeley

ML4Jets 2022, Rutgers University

Event generation

PYTHIA6

- No detector simulation
- \square Vary minimum particle p_T , PID info



Machine learning model

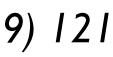
Binary classification: *u* vs. *d*, *ud* vs. *s*, ...

Architecture: Particle Flow Networks

$$f(p_1, \dots, p_M) = F\left(\sum_{i=1}^M \Phi\left(p_i\right)\right)$$

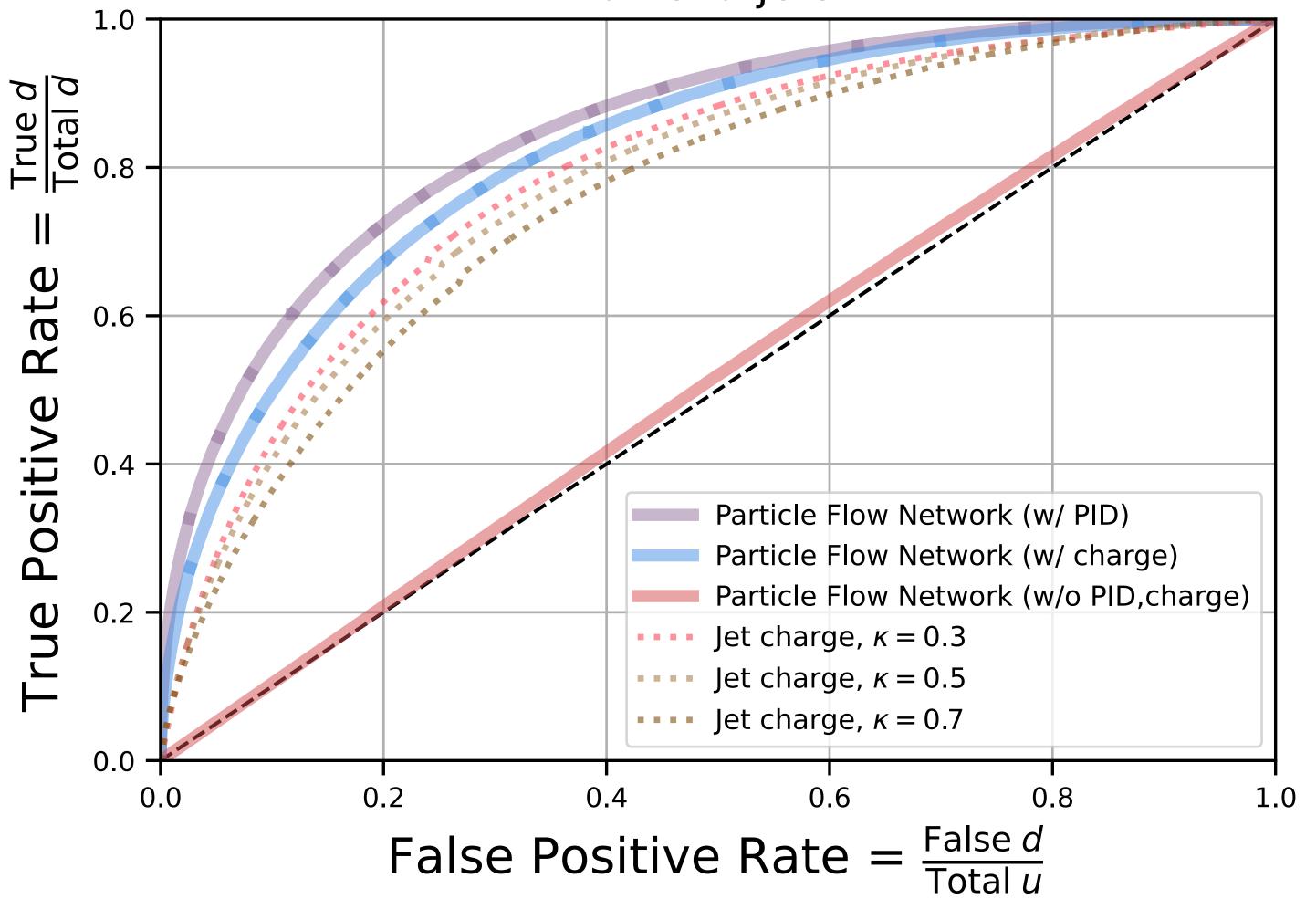
Classifier DNNs

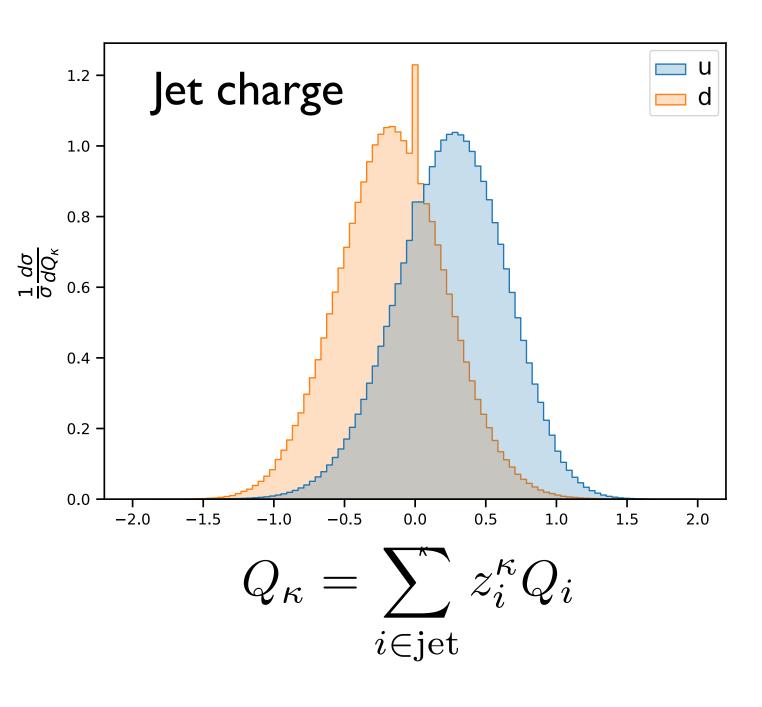
Komiske, Metodiev, Thaler JHEP 01 (2019) 121



Jet flavor tagging: u vs. d

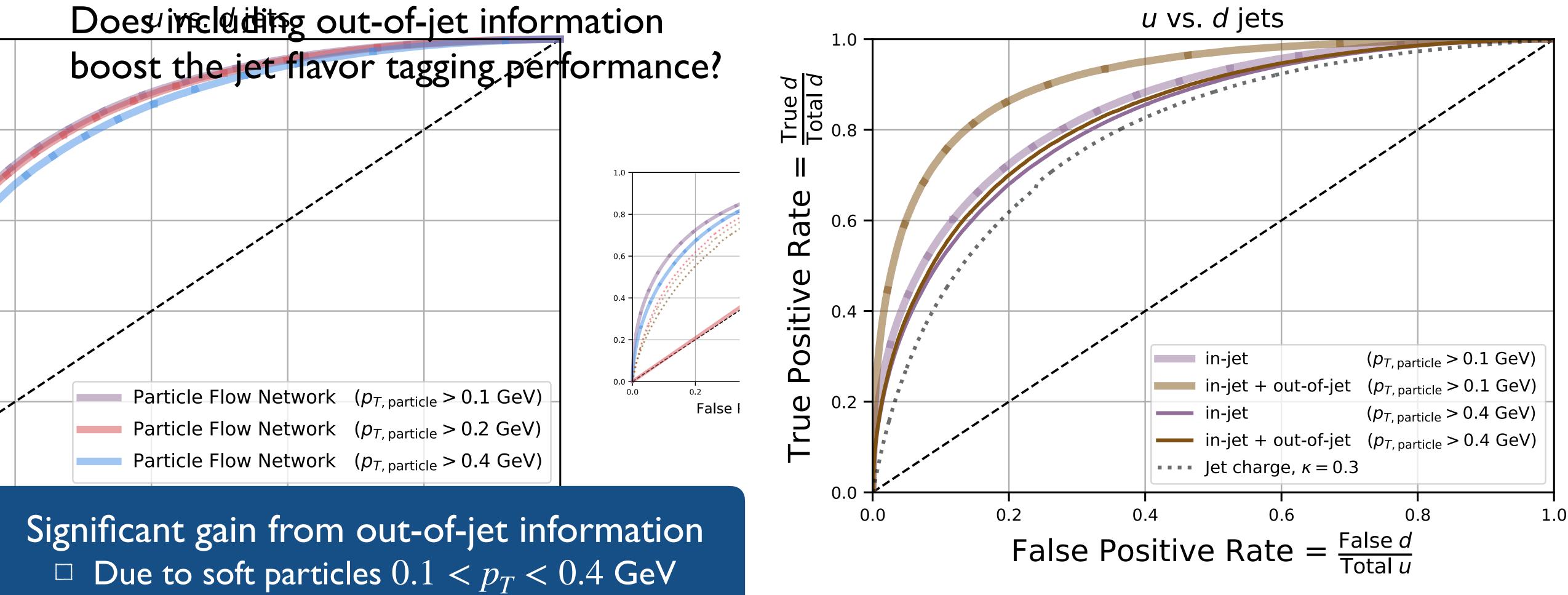
u vs. *d* jets

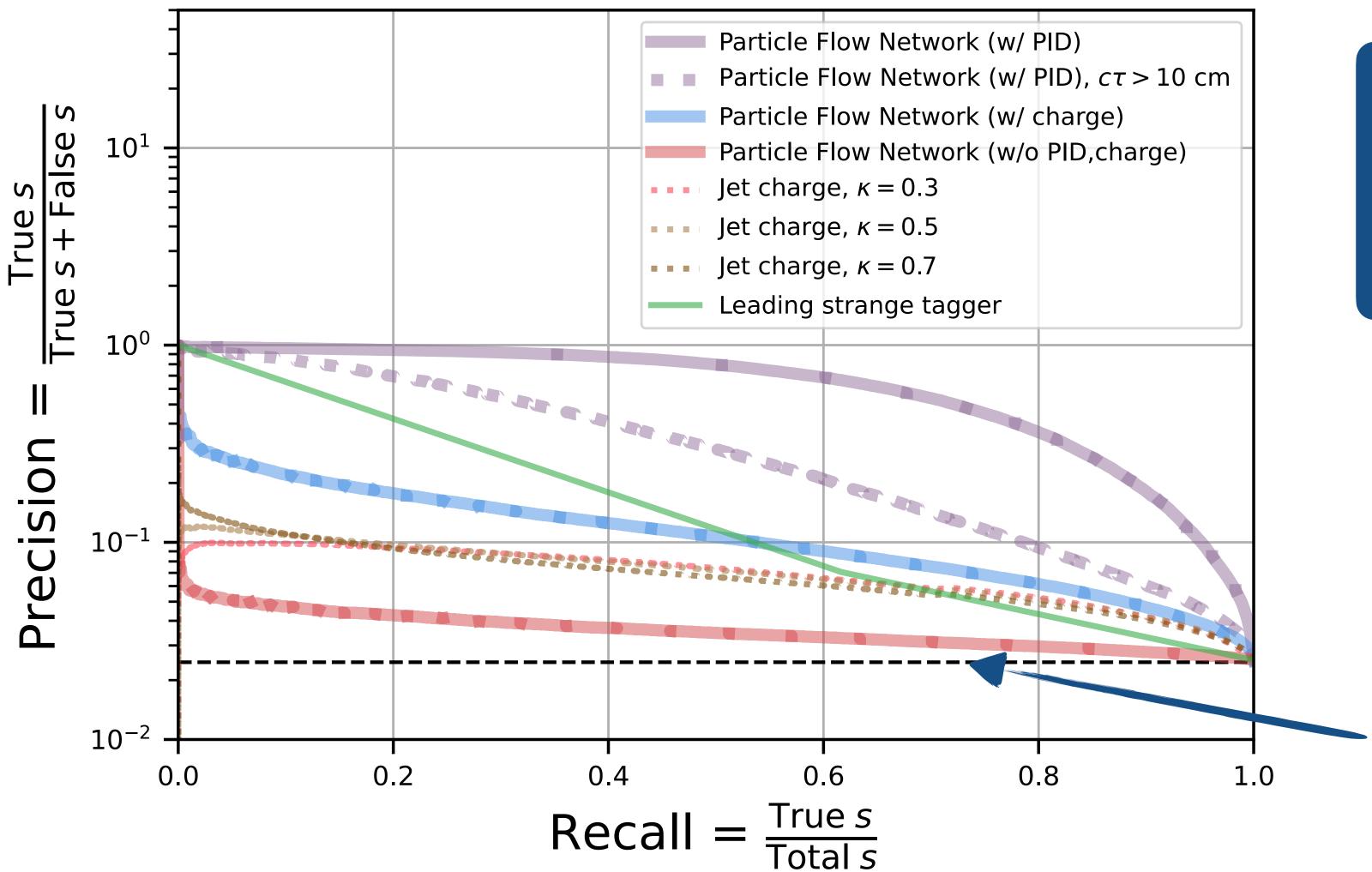




ML outperforms jet charge
Charge information is crucial
Full PID does not gain much

Out-of-jet information



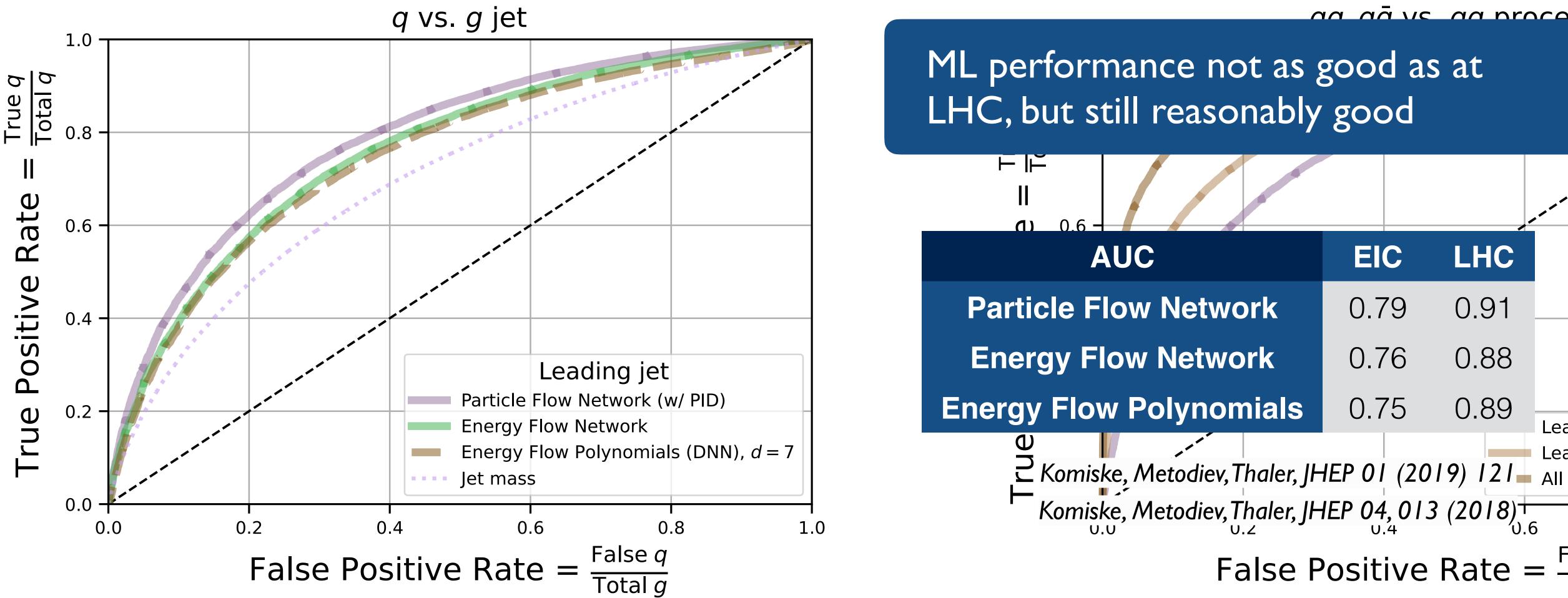


Jet flavor tagging: ud vs. s

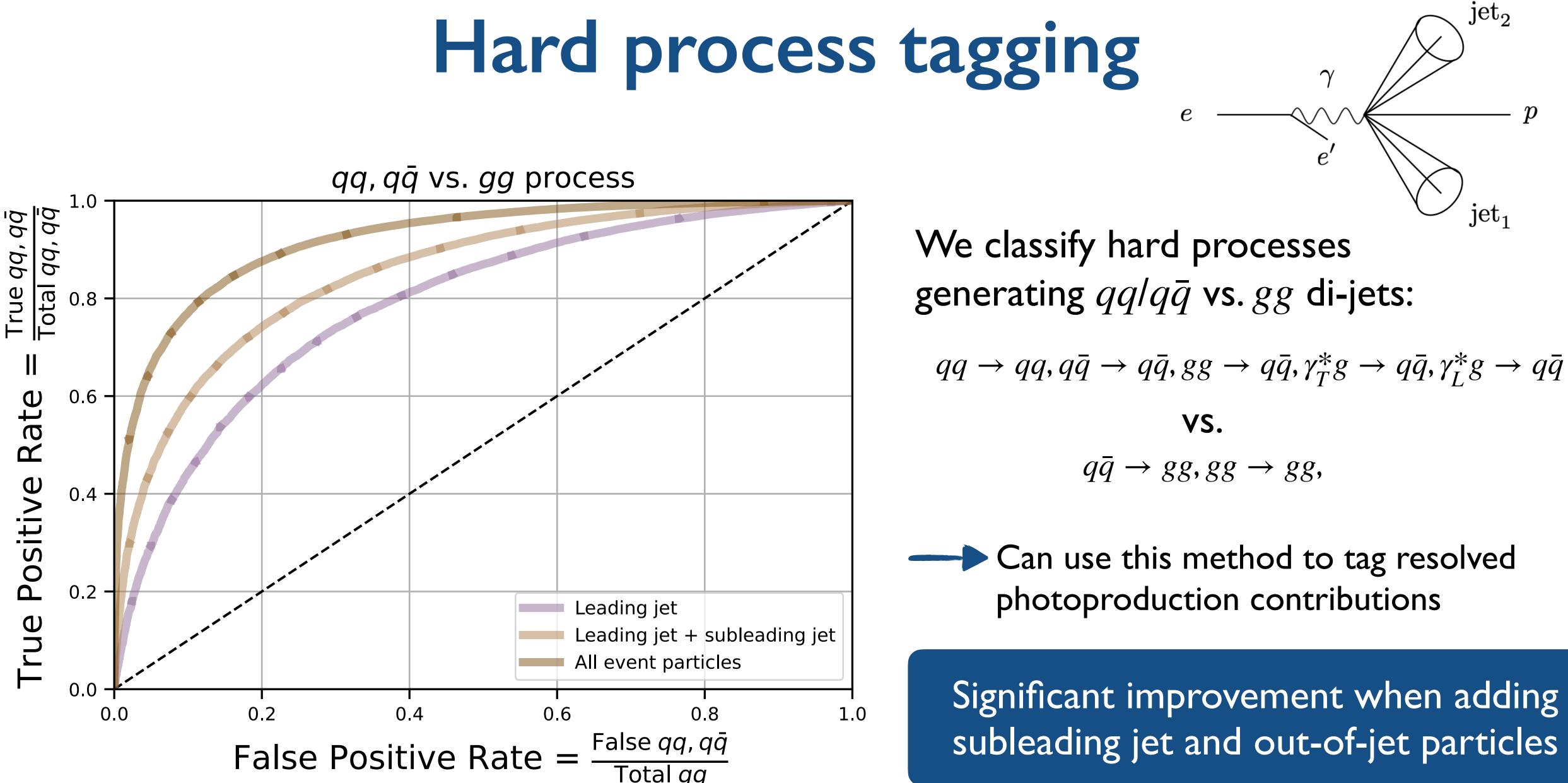
For strange: ML dramatically outperforms jet charge PID gives huge boost

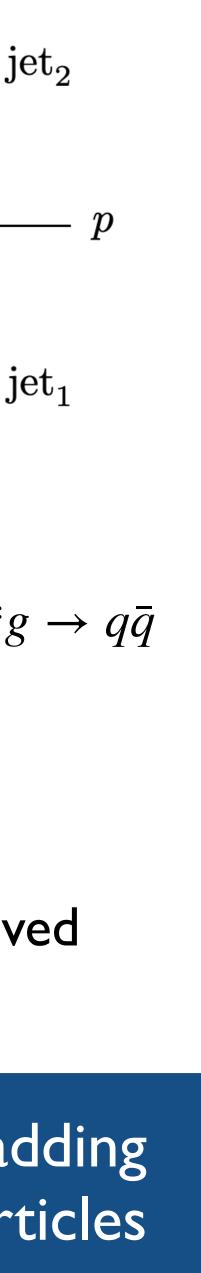
We use precision-recall metric since there are $\sim 40x$ more *ud* than s \square Precision \leftrightarrow Purity \square Recall \leftrightarrow Efficiency

Random classifier



Quark vs. gluon jet tagging





Machine learning can improve access to hadron structure and spin physics at the

- Improve jet flavor tagging performance: constrain TMDs, photon PDF, ...
- Maximize the size of spin asymmetries or cold nuclear matter effects train directly on data

PYTHIA6 indicates that classification performance remains reasonably good at El

- Large performance boost from ML for strange and charm tagging when PID is included Large performance boost by including soft, out-of-jet particles

Outlook: Study model-dependence and connect ML results to theory

- Design analytically tractable observables and/or incorporate classifiers into global fits Explore ML architectures — data set to be made public soon

Nov 3, 2022

EIC
a
С

James Mulligan, UC Berkeley

ML4Jets 2022, Rutgers University

backup

Determining the flavor of a jet allows stronger constraints on TMDs by avoiding spin asymmetry cancellations of different flavors

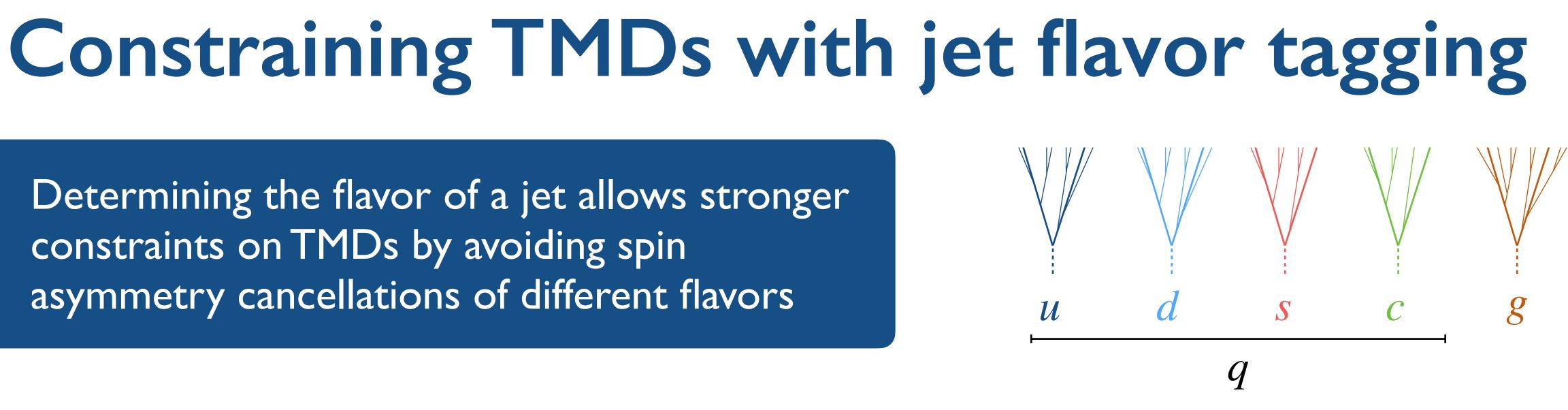
Example: Collins fragmentation function

Schäfer-Teryaev sum rule: $\sum_{n} \int_{0}^{n}$

One usually measures identified hadrons to avoid e.g. π^+ cancellation with π^- However the fragmentation functions still contain large parton flavor cancellations:

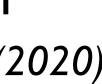
Tagging jet flavor will allow stronger constraints on Collins fragmentation function e.g. Arratia, Kang, Produkin, Ringer PRD 201 7, 074015 (2020)

JU



$$\int_{0}^{1} \mathrm{d}z \, H_{1,h/q}^{\perp(3)}(z) = 0$$

$$\left(H_{1,\pi^+/u}^{\perp(3)}(z) + H_{1,\pi^+/d}^{\perp(3)}(z)\right) \approx 0$$



Additional applications of jet flavor tagging

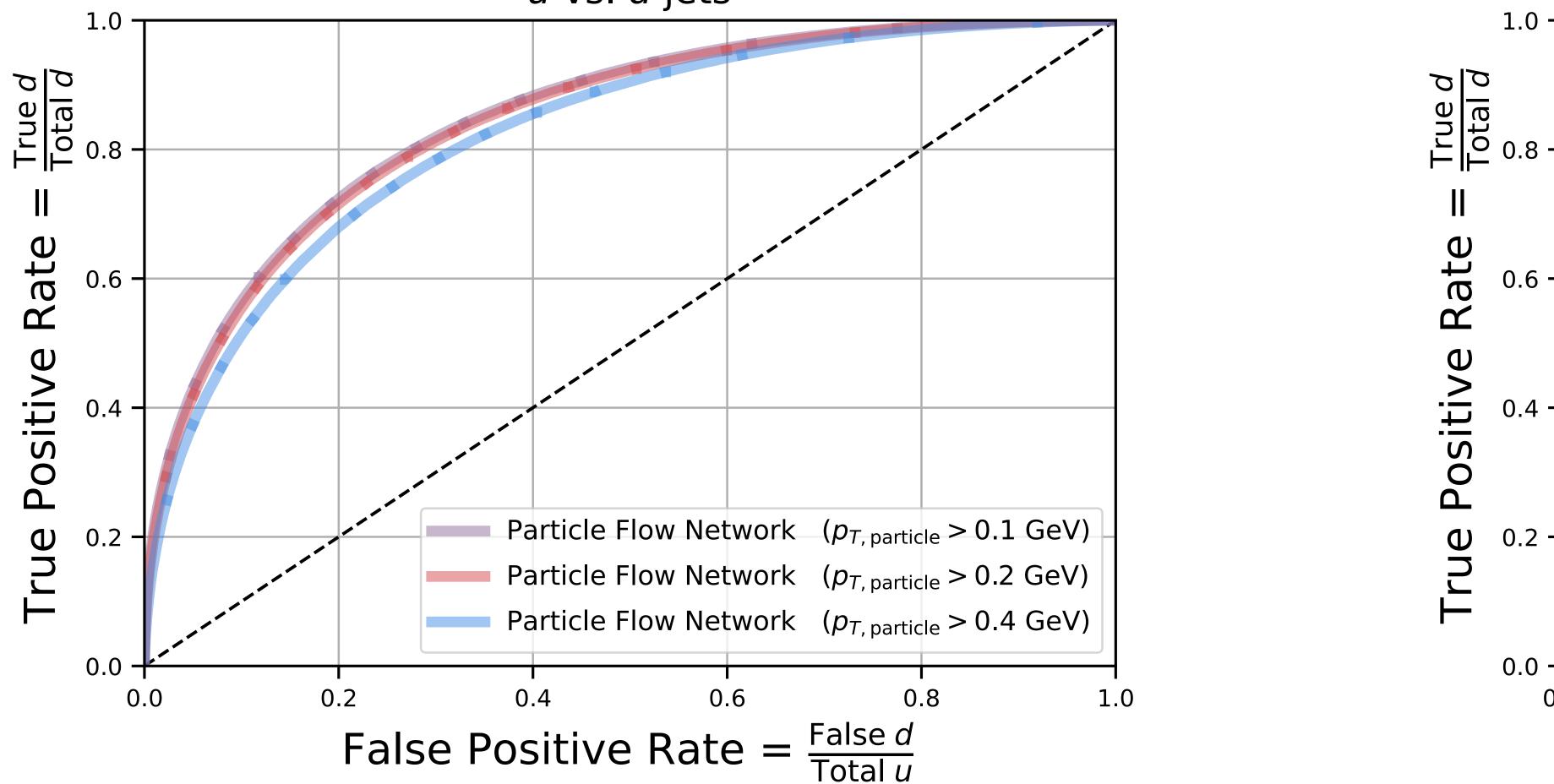
 \Box Longitudinally polarized gluon distribution Δg — quark flavor and quark vs. gluon Zhou, Sato, Melnitchouk (JAM), PRD 105, 074022 (2022)

Gluon Sivers function — quark vs. gluon Zheng, Aschenauer, Lee, Xiao, Yin, PRD 98, 034011 (2018) Liu, Ringer, Vogelsang, Yuan, PRL122, 192003 (2019)

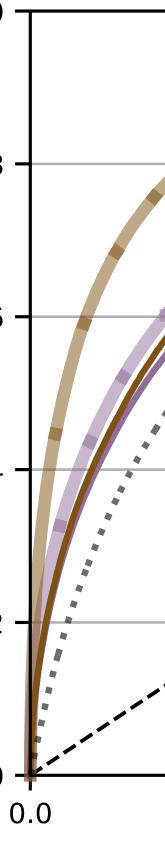
□ Strange quark PDF — charm tagging Arratia, Furletova, Hobbs, Olness, Sekula, PRD 103, 074023 (2021)

□ BSM searches — quark flavor Li, Yan, Yuan, arXiv:2112.07747

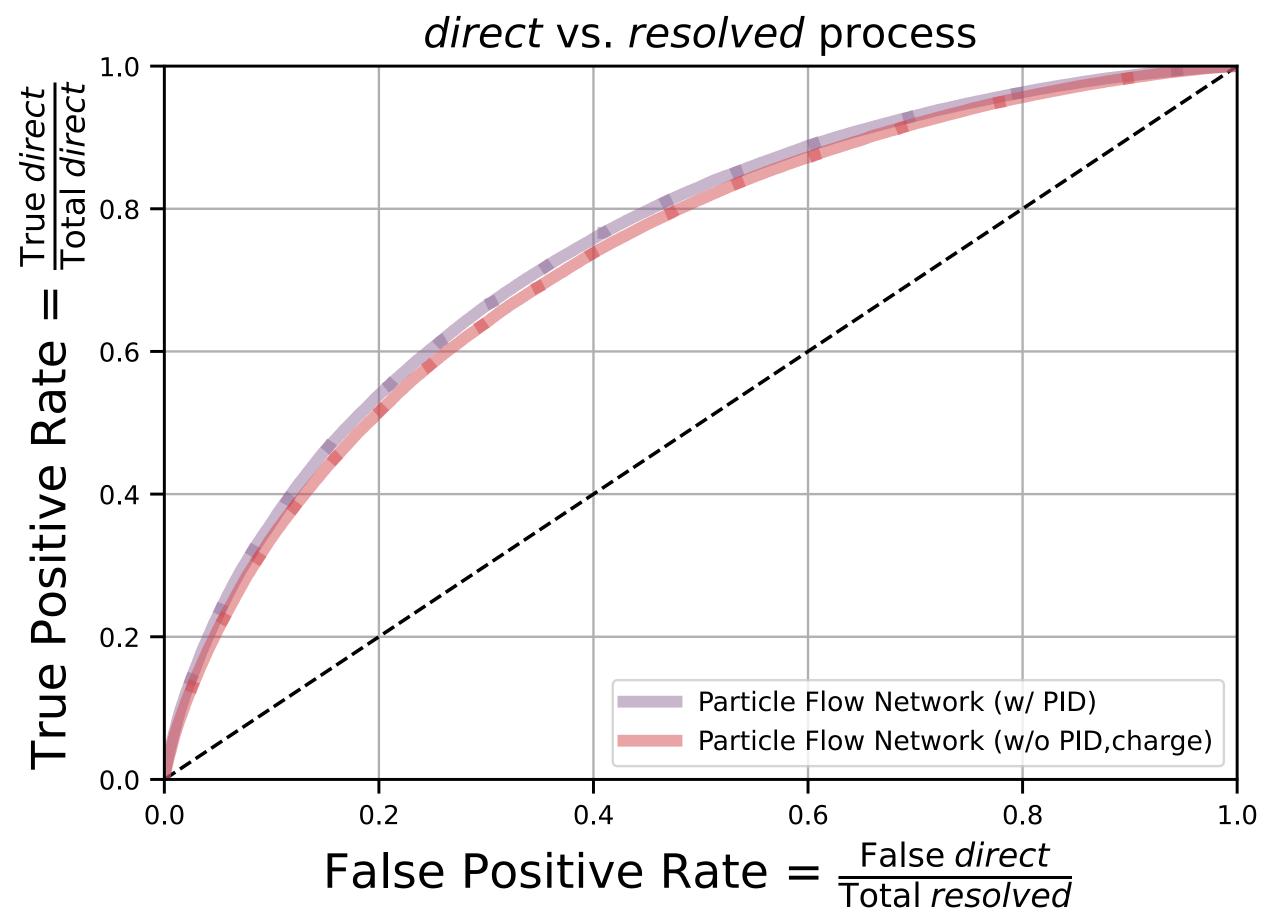
Dependence on minimum particle p_T



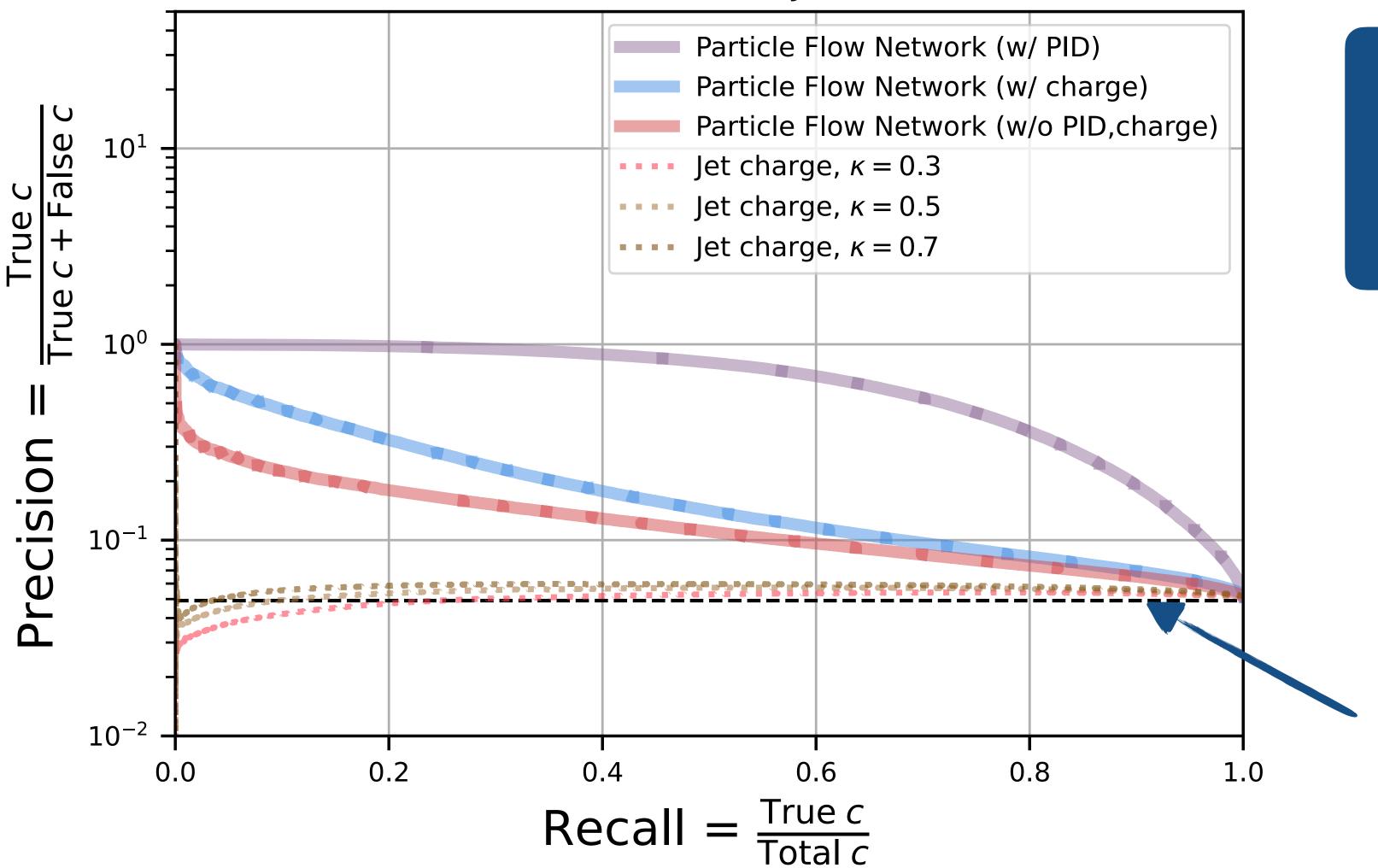
u vs. *d* jets



Direct vs. resolved photon tagging



u, *d*, *s* vs. *c* jets



James Mulligan, UC Berkeley

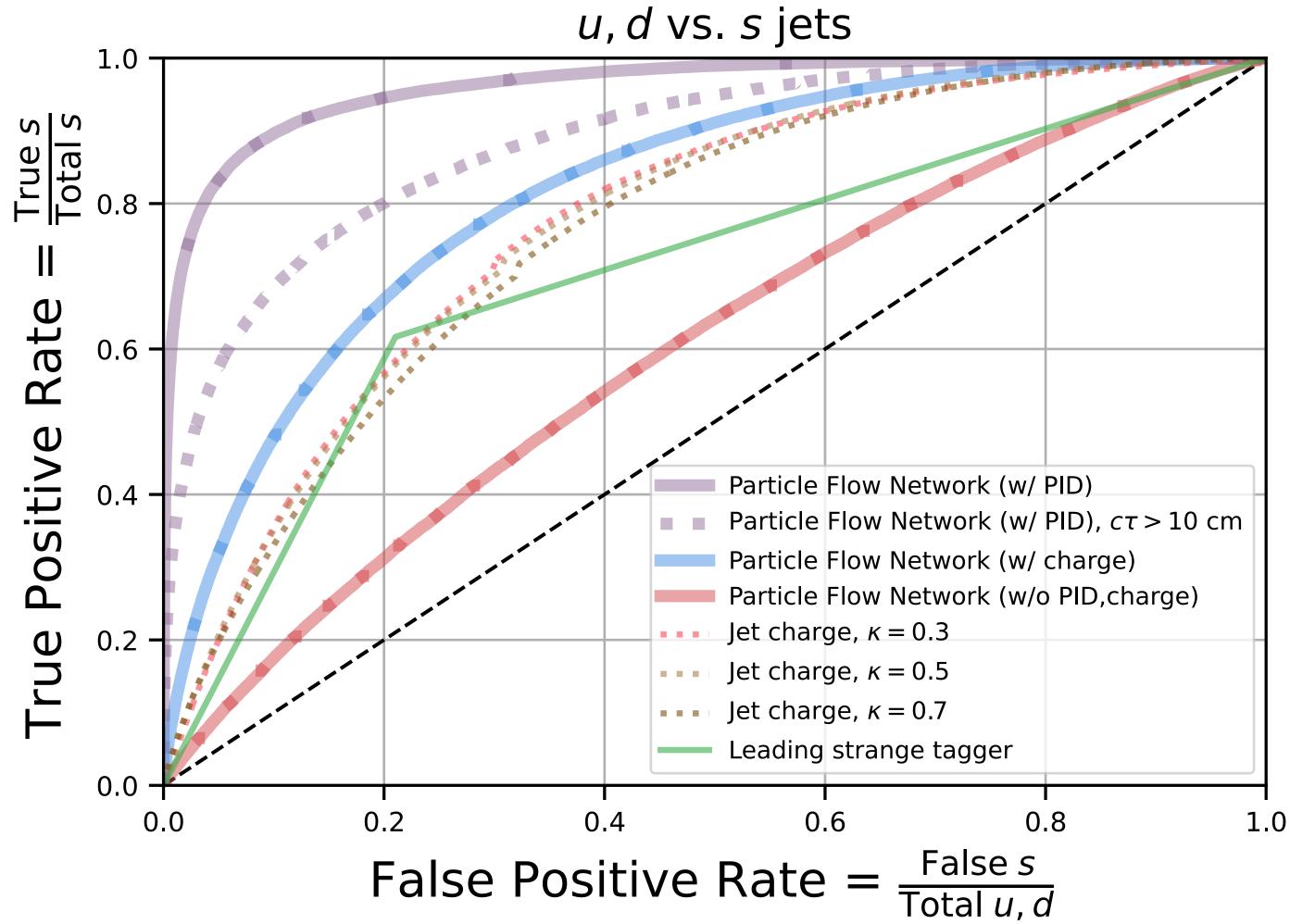
ML4Jets 2022, Rutgers University

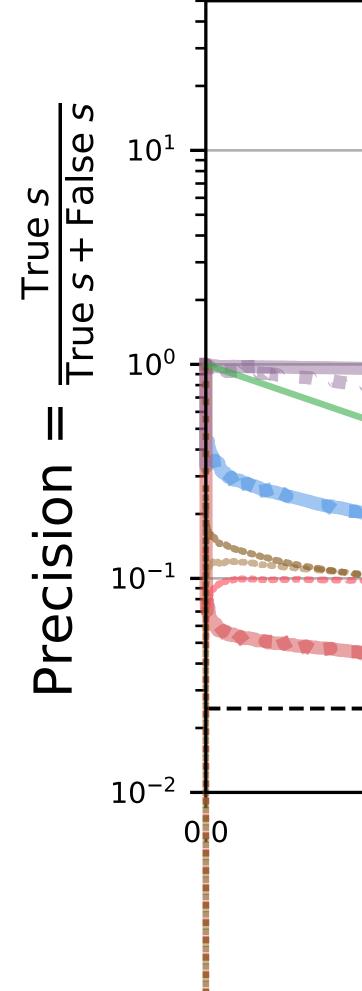
Jet flavor tagging: uds vs. c

For charm: fragmentation pattern increasingly important, but PID is crucial

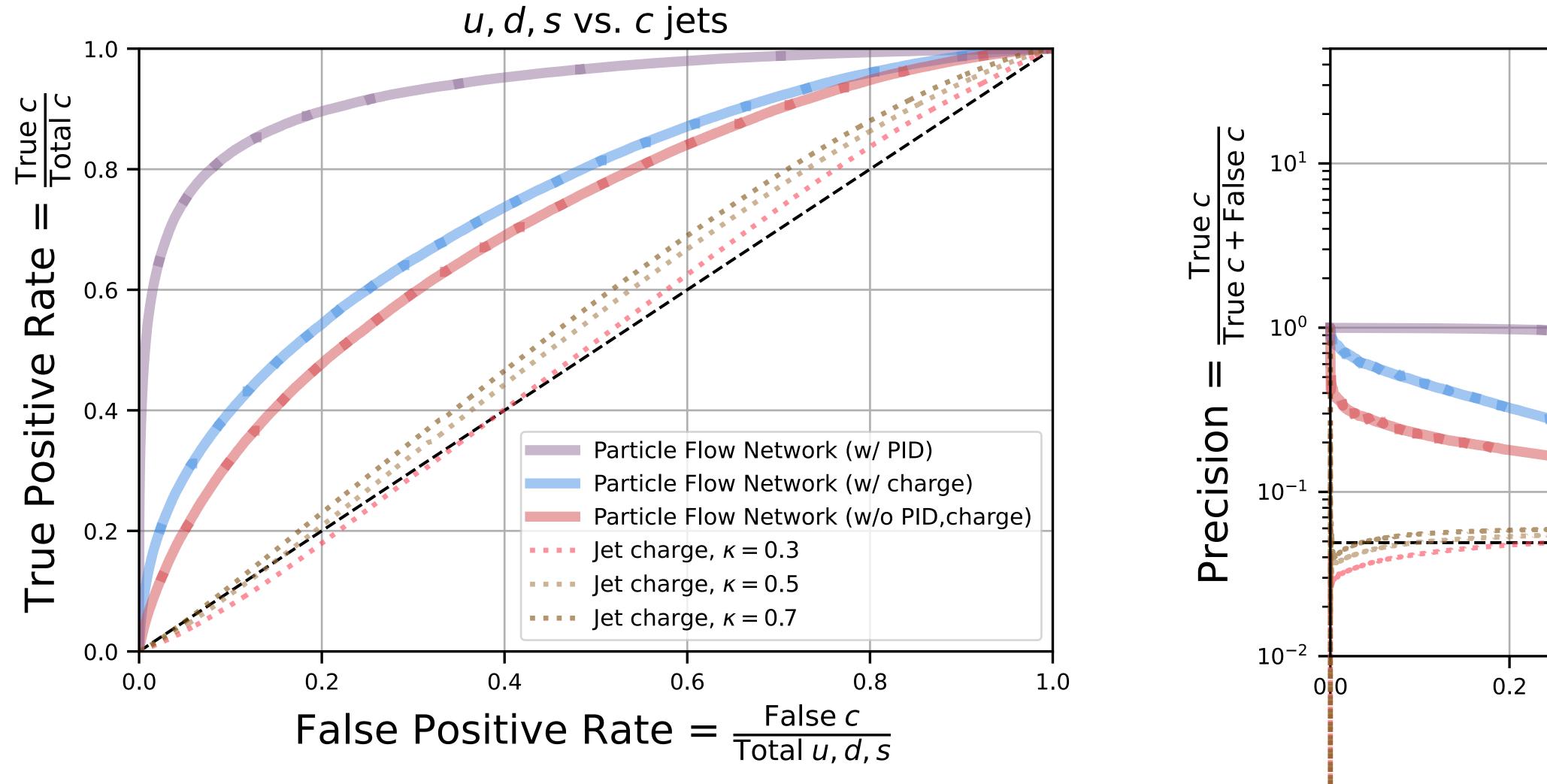
We use precision-recall metric since there are $\sim 20x$ more *uds* than *c* \square Precision \leftrightarrow Purity \Box Recall \leftrightarrow Efficiency

Random classifier





0.2	



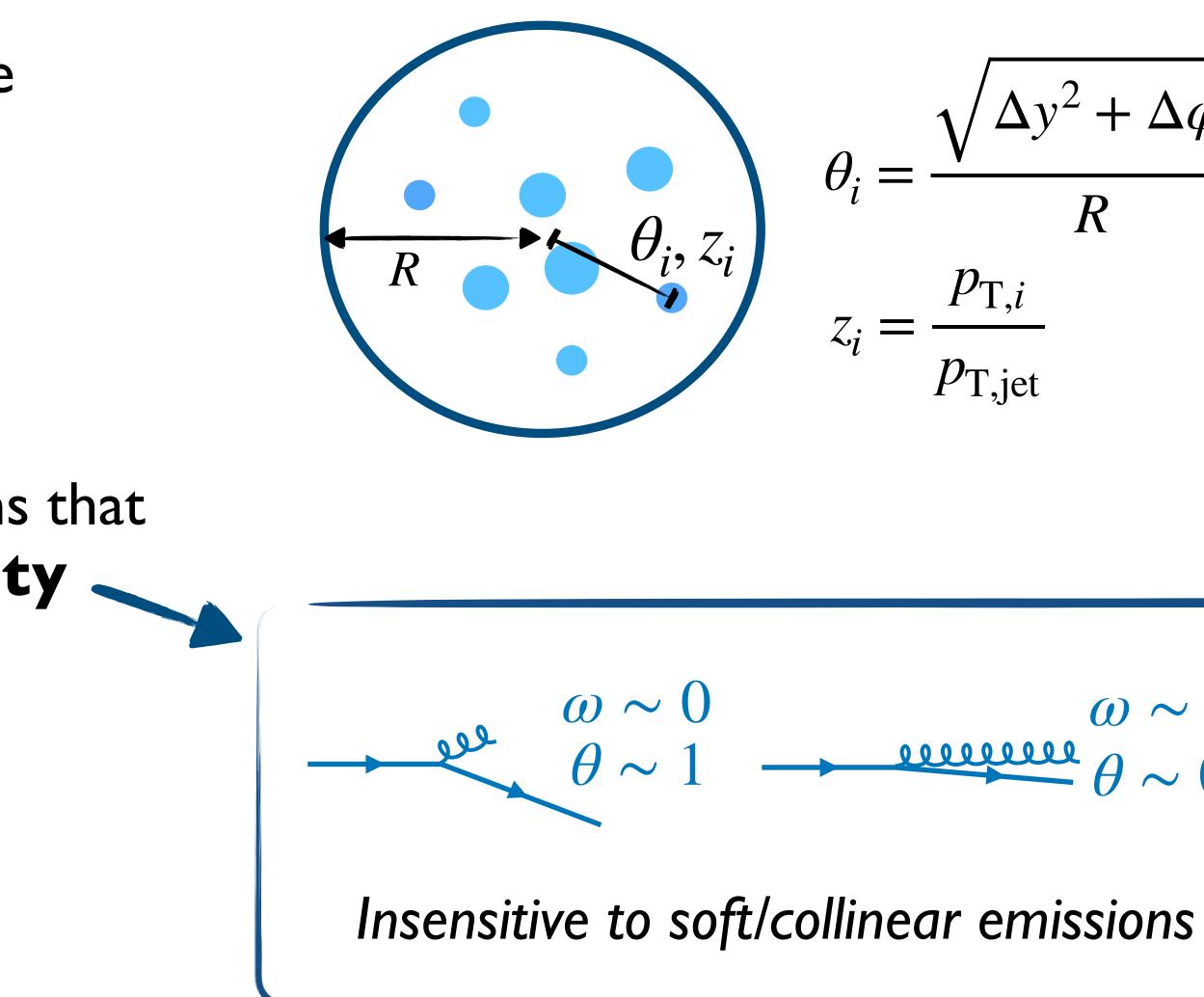
uds vs. c

We are free to construct any observable from the jet's constituents

e.g.
$$\lambda_{\alpha}^{\kappa} = \sum_{i \in jet} z_i^{\kappa} \theta_i^{\alpha}$$

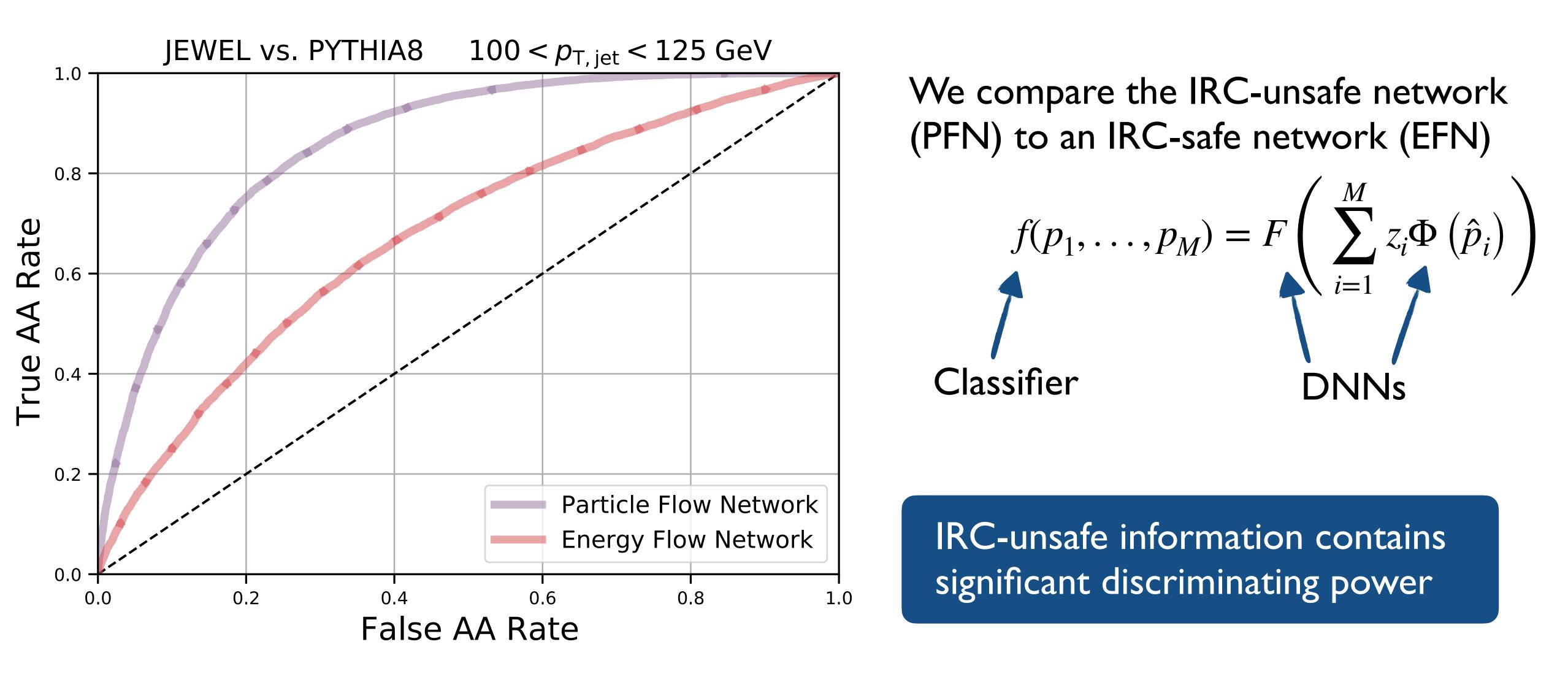
However, usually only those combinations that obey infrared-collinear (IRC) safety are calculable in perturbative QCD

e.g.
$$\lambda_{\alpha>0}^{\kappa=1} = \sum_{i \in jet} z_i \theta_i^{\alpha}$$



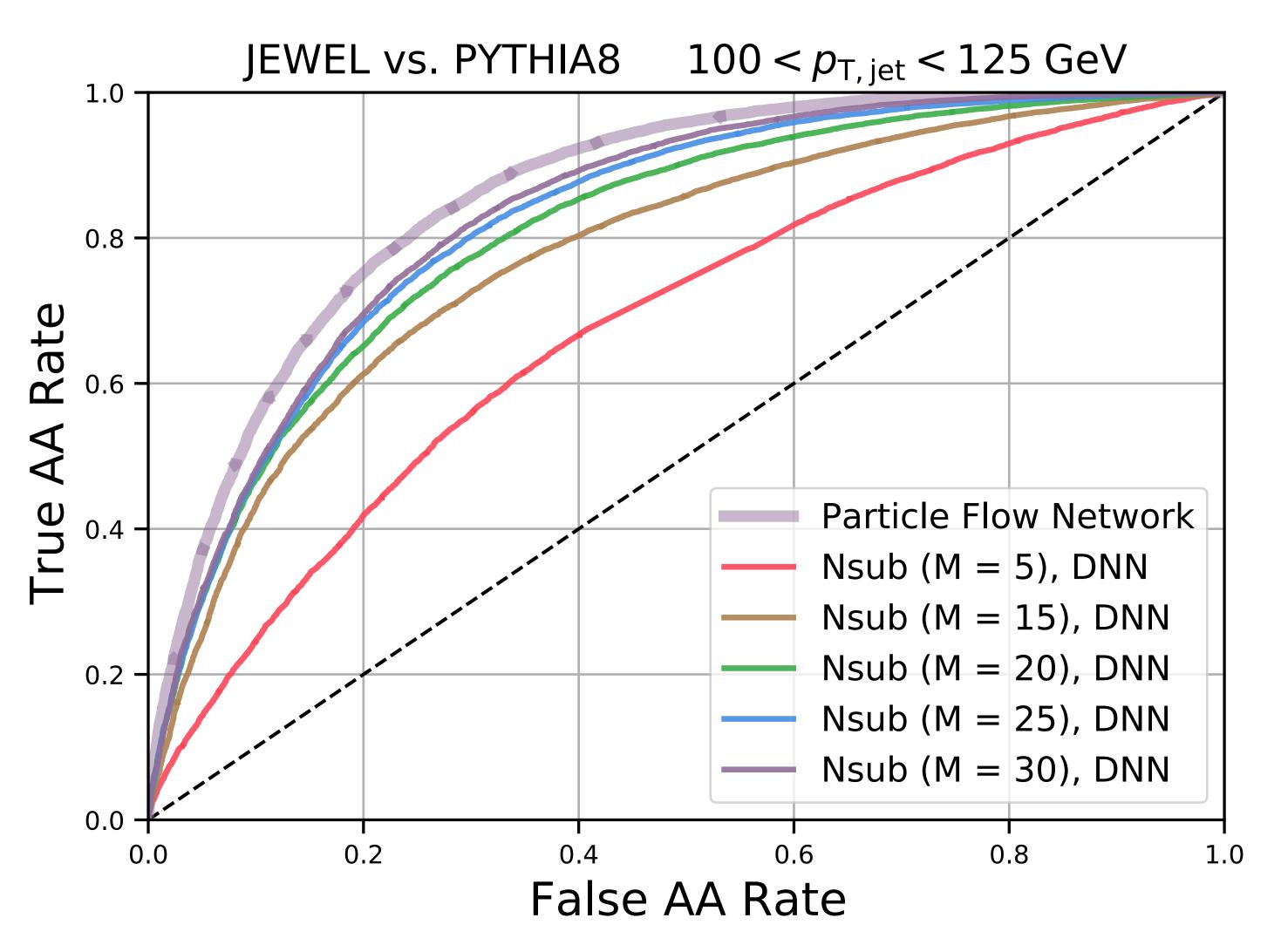
March 31, 2022

IRC-safe vs. IRC-unsafe physics Lai, Mulligan, Płoskoń, Ringer JHEP 10 (2022) 011



March 31, 2022

Hard vs. soft physics Lai, Mulligan, Płoskoń, Ringer JHEP 10 (2022) 011

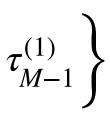


How many observables does one need to measure to saturate information?

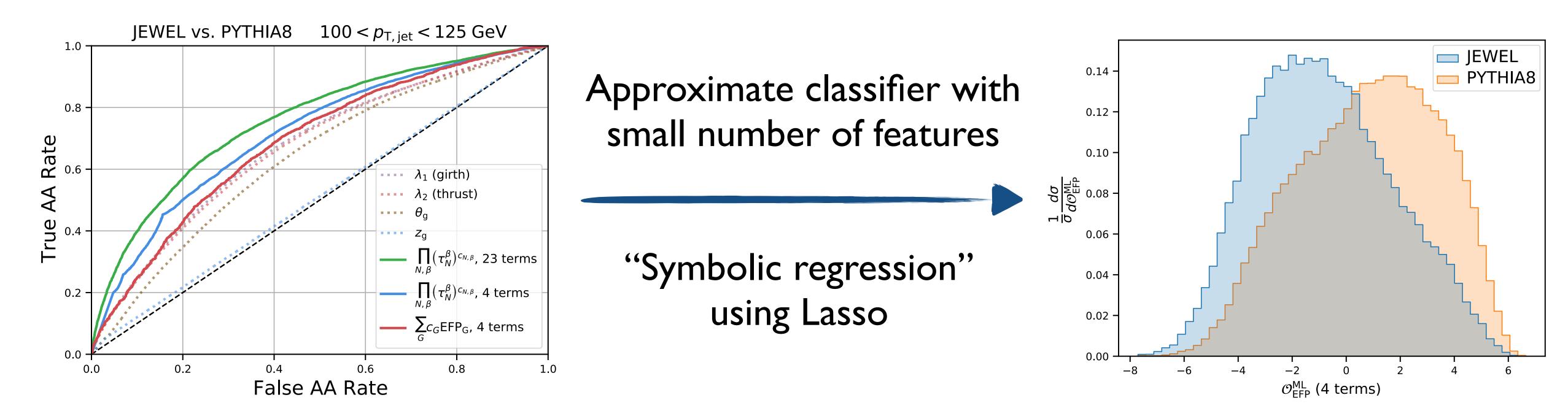
DNN with 3M - 4 N-subjettiness basis observables as input:

 $\left\{ \tau_1^{(0.5)}, \tau_1^{(1)}, \tau_1^{(2)}, \tau_2^{(0.5)}, \tau_2^{(1)}, \tau_2^{(2)}, \dots, \tau_{M-2}^{(0.5)}, \tau_{M-2}^{(1)}, \tau_{M-1}^{(2)}, \tau_{M-1}^{(0.5)}, \tau_{M-1}^{(1)} \right\}$

Significant information in quenched jets up to $M \approx 25$



By balancing the tradeoff of discriminating power and complexity, we can design the most strongly modified calculable observable



ML-assisted observable design provides guidance to experiments and theory — can then measure and calculate designed observables using traditional methods

James Mulligan, LBNL

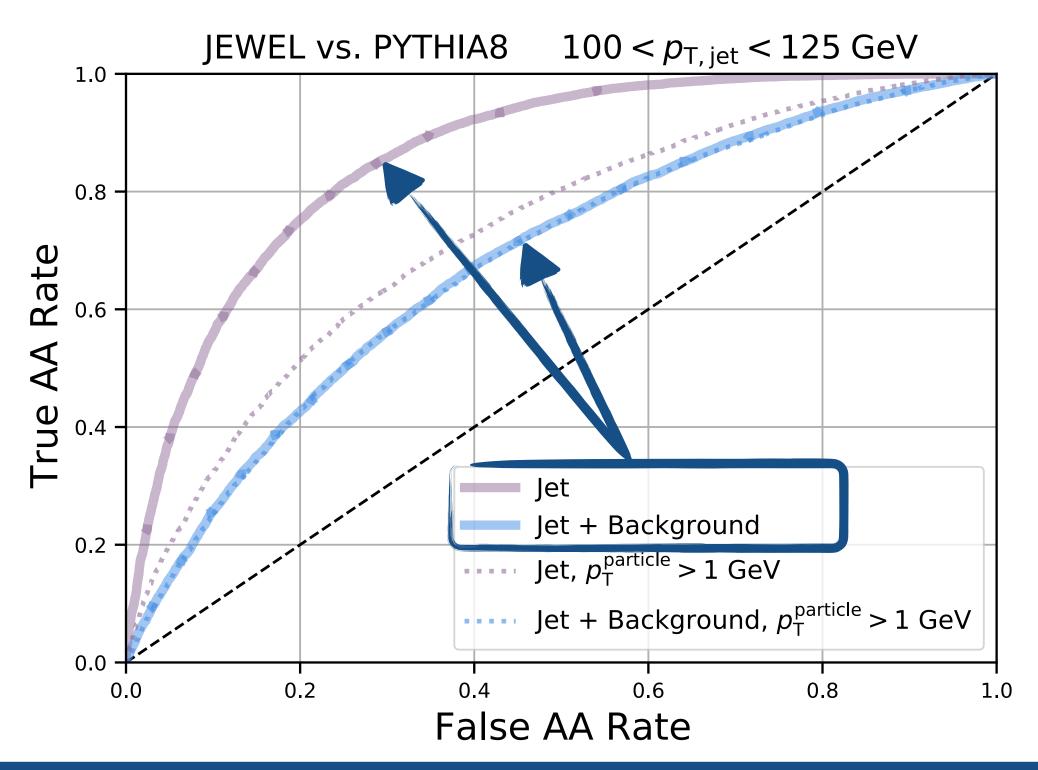
INT Workshop on Machine Learning for Nuclear Theory

March 31, 2022

Information loss due to background

Lai, Mulligan, Płoskoń, Ringer JHEP 10 (2022) 011

Discriminating power is highly reduced by the fluctuating underlying event



Delicate challenge: soft information crucial, yet background prevents from being accessed

James Mulligan, LBNL

INT Workshop on Machine Learning for Nuclear Theory

Background subtraction algorithms remove small but significant information JEWEL vs. PYTHIA8 $100 < p_{T, jet} < 125 \text{ GeV}$ 1.0 0.8 Rate 0.6 True AA Jet Jet + Background ($R_{max} = 0.25$) 0.2 Jet + Background ($R_{max} = 1.0$) Jet + Background (before subtraction) 0.0 0.0 0.2 0.8 0.4 0.6 1.0 False AA Rate

> New metric to assess background subtraction algorithms

> > March 31, 2022

