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Figure from this blog.

https://towardsdatascience.com/a-concrete-application-of-topological-data-analysis-86b89aa27586
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Collider events and jets are inherently 
invariant under certain transformations.

Rotations

Boosts along the beam axis

Source: CMS website.

1. Introduction: Why? A Practical Nuisance… 

http://cms.web.cern.ch/news/jets-cms-and-determination-their-energy-scale
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Collider events and jets are inherently 
invariant under certain transformations.

Rotations

Boosts along the beam axis

Usual Solution: Pre-process the 
events/jets to get rid of any 
artificial difference.

Problem: Such pre-processing is 
ad-hoc and only based on conventions!

Source: CMS website.

Proposal: Design analysis frameworks that are invariant 
under these transformations, e.g., based on topology. 

1. Introduction: Why? A Practical Nuisance… 

Bonus of Topology-based Framework: Can see the tagging power of 
topology alone when compared to the results of other geometry-based 
frameworks such as the optimal transport approach.

http://cms.web.cern.ch/news/jets-cms-and-determination-their-energy-scale
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1. Introduction: What? 

Topological Data Analysis (TDA) aims at studying the complex 
topological structure of the underlying data. 
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1. Introduction: What? 

Topological Data Analysis (TDA) aims at studying the complex 
topological structure of the underlying data. 

One great TDA tool is Persistence Homology (PH). PH builds continuous shapes for a 
point cloud at different scales and analyzes the evolution of these shapes. 

PH is great because (i) well-understood theoretical framework based on algebraic 
geometry; (ii) efficient to compute; (iii) robust against small perturbations in input 

data.

Suitable data types for PH: finite metric spaces (point clouds), digital images, 
networks. 
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1. Introduction: How? 
TDA Workflow

Topics to be discussed in §2. 
Still under active research on the math side.

Related works: 2006.12446. 

https://arxiv.org/abs/2006.12446
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2. Persistence Homology in a Nutshell: Filtration

Build a “simplicial complex” from a point cloud. 
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2. Persistence Homology in a Nutshell: Filtration

Build a “simplicial complex” from a point cloud. 

Source: Images from 
youtube.

Construct a nested family of simplicial complexes called a filtration. 

https://www.youtube.com/watch?v=h0bnG1Wavag
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2. Persistence Homology in a Nutshell: Filtration

Build a “simplicial complex” from a point cloud. 

Source: Images from 
youtube.

Construct a nested family of simplicial complexes called a filtration. 

Homology counts connected components 
(0th dim), holes (1st dim), voids (2nd dim)...
Homology of simplicial complexes are easily 
computable via linear algebra.  

https://www.youtube.com/watch?v=h0bnG1Wavag
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2. Persistence Homology in a Nutshell: Rips Filtration & PD

We consider 3 physical 
distance functions:

- Rips with C/A distance

- Rips with kT  distance

- Rips Anti kT distance

Source: Fig 10 in paper.

Include simplex if the pairwise distances between all its vertices satisfy dij < ɑ.
Can be computed efficiently.

https://arxiv.org/abs/1710.04019
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2. Persistence Homology in a Nutshell: TriSuper Filtration & PD
Delaunay Triangulation (DT) 

Source: Fig 9 
in paper.

Super/Sub-level Set Filtration

The Dual graph of Voronoi Diagram:

Original method in the paper 
Jet Topology. 

https://arxiv.org/abs/1710.04019
https://arxiv.org/abs/2006.12446
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2. Persistence Homology in a Nutshell: PD Representations

A PD with na off-diagonal points

d=b
d-b

Persistence: 
(d-b)/√2

Define the persistence of each point as

Source: Fig 11 in paper.

https://arxiv.org/abs/1710.04019
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2. Persistence Homology in a Nutshell: PD Representations

Persistence Entropy E: ScalarA PD with na off-diagonal points

d=b
d-b

Persistence: 
(d-b)/√2

Total Persistence T: Scalar

Define the persistence of each point as

Betti Curve 𝛃(t): Vector

Source: Fig 11 in paper.

https://arxiv.org/abs/1710.04019
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2. Persistence Homology in a Nutshell: Metric on the PD Space
Existing Method: The pth Wasserstein (Wp) distance

Birth

Death

=> The Bottleneck distance  with

Under Active Research!

Source: Gudhi library.

https://gudhi.inria.fr
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2. Persistence Homology in a Nutshell: Metric on the PD Space
Existing Method: The pth Wasserstein (Wp) distance

Birth

Death

=> The Bottleneck distance  with

Under Active Research!

Source: Gudhi library.

Our Proposal: 
- Get rid of the diagonal.
- Assign mass to points based on their distances to the 

diagonal.
- Allow mass creation & destruction.
- Use Hellinger-Kantorovich (HK) distance, an 

unbalanced OT generalization of the W2 distance. 

https://gudhi.inria.fr
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3. TDA for Jet Tagging: TriSuper Filtration & Its PD 

Dataset: 10k light QCD jets 
with total pT in [100, 350] GeV.

Simulation: pp collisions at 
√s=14 TeV; anti-kt jet 
clustering with R=0.6; jets 
selected with |y| < 1.7.

Filtration: Delaunay 
Triangulation+Superlevel Set 
Filtration (TriSuper). 

Dimension: 0th homological 
dimension.

We also examined Rips filtration 
with C/A, kT, and Anti kT 
distances for 0th-dim.  
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3. TDA for Jet Tagging: Result for TriSuper
Topology-based observables: TriSuper of 0th-dim with various PD representations.

Geometry-based observables: PLUOT framework.

Traditional observable: Multiplicity—optimal observable.

Classifiers: Simple cuts for scalars; kNN for vectors.

Just single scalars!



Department of Physics

4. TDA for Event Classification: Issue of Preprocessing

Which is the best rotation scheme? 
A priori unknown & all ad-hoc!

Dataset: 10k dijet W boson and QCD events with √s=14 TeV.

Simulation Highlights: Anti-kt algorithm for jet clustering with R=1; individual jet 
with a pT in [500, 550] GeV and |y| < 1.7 cut.

Preprocessing: (i) Boost the events to their CM frames (centered) ✅; (ii) Rotate the 
events according to three different schemes (Rotated 1, 2, 3).
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4. TDA for Event Classification: Result for TriSuper

0th Homological 
Dimension:
Connected 
components

1st Homological 
Dimension:
Holes
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5. Summary: What have we done in this study?
● Physics side:

○ We introduced the TDA framework to get rid of ad-hoc pre-processing of LHC events.

○ We examined several filtrations with the 0th and 1st homological dimensions 

○ We compared tagging performance of various PD representations with standard 
observables and geometry-based optimal transport framework.

○ Even a single scalar representation of PD achieves close to optimal performance for jet 
tagging.  

○ The topology of an event is more complex; therefore more sophisticated PD 
representations are preferred. 

○ TDA-based taggers (0th-dim) perform consistently better than geometry-based 
frameworks without pre-processing. This is especially important for event analysis.        

● Math side:
○ We proposed a new way to present homology in a persistence diagram, getting rid of 

the diagonal. 

○ This enabled the full use of HK distances to define a metric on the space of PDs.

○ Linearized HK offers a novel way to represent a PD, potentially useful for topologically 
more challenging datasets. 
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5. Outlook: What’s next?

● Math side:
○ To rigorously prove that our proposed unbalanced HK distance is a good metric for 

the PD space (convergence, stability, etc).

○ To fully develop linearized HK embedding as a more sophisticated representation of 
a PD for statistical analysis.

○ To find more topologically challenging datasets that may showcase the power of our 
novel PD representation.        

● Physics side:
○ To fully understand why certain combinations of filtrations and PD representations 

perform better for a given jet/event tagging task. 

○ To find a non-trivial way to combine the tagging powers of the 0th and 1st 
homological dimensions. 

○ To explore other filtrations based on physics considerations.

○ To apply PH on datasets with more complex topological structures, e.g., top events.  

○ To explore further TDA tools for collider physics.   
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THANKS!
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Presented by Tianji Cai
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2. Persistence Homology in a Nutshell: PD Representations
Persistence Entropy E

Persistence Landscape 𝝺k(t)

Persistence 
Silhouette 𝝓k(t)

Entropy Summary 
Function ES(t)

A PD with n off-diagonal points

d=b
d-b

(d-b)/√2

Total Persistence T

Define the persistence of each 
point as

Betti Curve 𝛃(t)

Source: Fig 11 in paper.

https://arxiv.org/abs/1710.04019
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3. TDA for Jet Tagging: Different Types of Filtrations & PDs 
Dataset: 10k light QCD jets with total pT in [100, 350] GeV.

Simulation Highlights: pp collisions at √s=14 TeV; anti-kt algorithm for jet clustering 
with R=0.6; jets selected with |y| < 1.7.

Filtrations: (i) Delaunay Triangulation+Superlevel Set Filtration (TriSuper); (ii) Rips 
Filtration with C/A distance (Rips); (iii) Rips with kT distance (Rips kT); (iv) Rips with 
anti-kT distance (Rips Anti kT). 
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3. TDA for Jet Tagging: Results
Topology-only observables: Four filtrations with various PD representations (colorful 
lines for filtrations; marks on x-axis for PD representations).

Geometry-based observables: PLUOT framework (gray & black).

Traditional observable: N-subjettiness 𝛕1 (brown); Multiplicity (yellow).

Classifiers: Simple cuts for scalars; kNN for vectors.

Just a single scalar!
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3. TDA for Jet Tagging: Shrinking the Size of the Training Set

Filtration: TriSuper
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4. TDA for Event Classification: 
Persistence Diagrams for 0th & 1st Homological Dimensions
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4. TDA for Event Classification: Results for dim-0 & dim-1 

0th Homological 
Dimension:
Connected 
components

1st Homological 
Dimension:
Holes
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5. Summary: What have we done in this study?
● Motivation: Get rid of the ad-hoc pre-processing for LHC jets and events.    

● Proposal: Study the topology of jets/events (invariant under pre-processing) via the 
framework of Topological Data Analysis (TDA).

● Tool: Persistence homology to encode the evolution of topological features of certain 
filtration of a point cloud in persistence diagrams (PD). 

○ Topological Features: Connected components (0th dim) for jets; Connected components (0th 
dim) & holes (1st dim) for events.

○ Filtrations: TriSuper; Rips; Rips kT; Rips Anti kT. 

● Statistical Analysis: Simple cuts or kNN on various PD representations.

○ Studied six existing PD repres.

○ Proposed a new way to metricize the space of PDs via unbalanced optimal transport (OT) and 
introduced linearized OT as a novel PD representation.    

● Results: The TDA framework achieve comparable or even better tagging performance than 
geometry-based approaches without the need of pre-processing.  

○ A simple cut on a scalar PD repre for certain filtration performs surprisingly well. 

○ Certain filtrations are more stable than others across different choices of PD repres. 

○ The performance of the new HK repre is not so impressive.       


