11/01/2022 Rutgers University

Topological Data Analysis for Collider Events

ML4Jets2022 Workshop Session: Equivariance and New Architectures

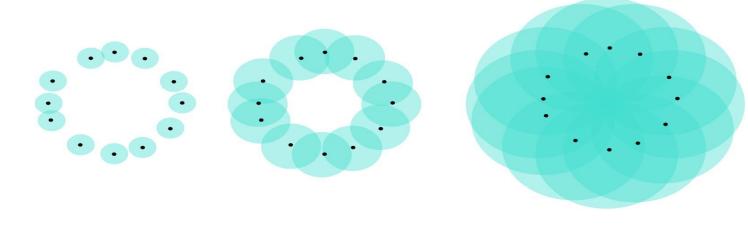
Speaker: Tianji Cai (UCSB)

Collaborators: Junyi Cheng (Harvard), Ian Dyckes (LBNL), Ben Nachman (LBNL).

Work in progress. Coming Soon!

Department of Physics

UC SANTA BARBARA



Contents

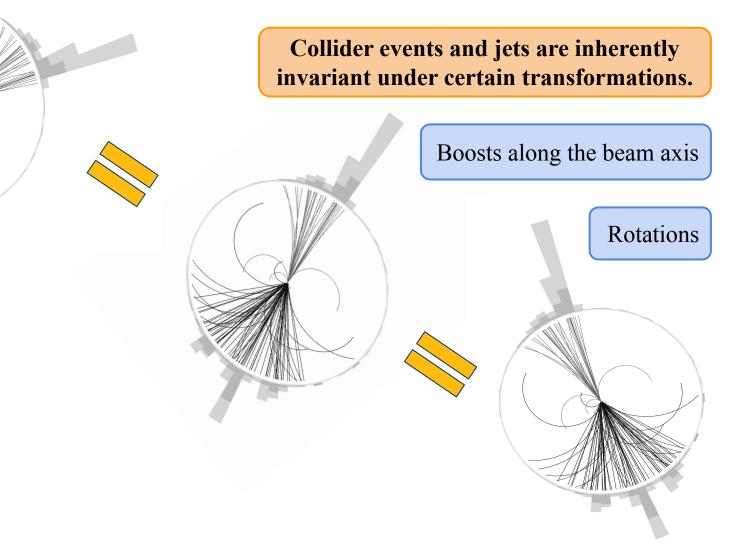
Figure from this blog.

UC SANTA BARBARA

- **Introduction** *Why, What, & How?*
- Persistence Homology in a Nutshell Not too scary math...
 Filtration; Persistence Diagram (PD); PD Representation; Metric on the PD Space.
- **TDA for Jet Tagging** *Data pre-processing not too much a trouble.*
- **TDA for Event Classification** *Data pre-processing now a real issue.*
- Summary & Outlook So what's next?

1. Introduction: *Why?*

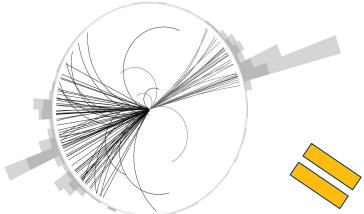
A Practical Nuisance...



Source: CMS website.

1. Introduction: *Why?*

A Practical Nuisance...



Usual Solution: Pre-process the events/jets to get rid of any artificial difference.

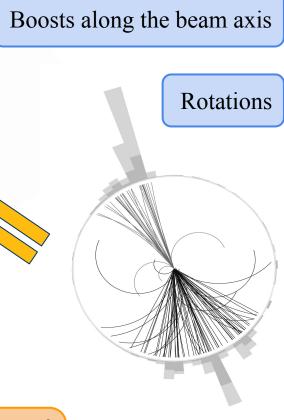
Problem: Such pre-processing is *ad-hoc* and only based on conventions!

Proposal: Design analysis frameworks that are invariant under these transformations, e.g., based on topology.

Bonus of Topology-based Framework: Can see the tagging power of topology alone when compared to the results of other geometry-based frameworks such as the optimal transport approach.

invariant under certain transformations.

Collider events and jets are inherently



Source: <u>CMS website</u>.

1. Introduction: *What*?

Topological Data Analysis (TDA) aims at studying the complex topological structure of the underlying data.

1. Introduction: What?

Topological Data Analysis (TDA) aims at studying the complex topological structure of the underlying data.

One great TDA tool is **Persistence Homology** (PH). PH builds continuous shapes for a point cloud at different *scales* and analyzes the *evolution* of these shapes.

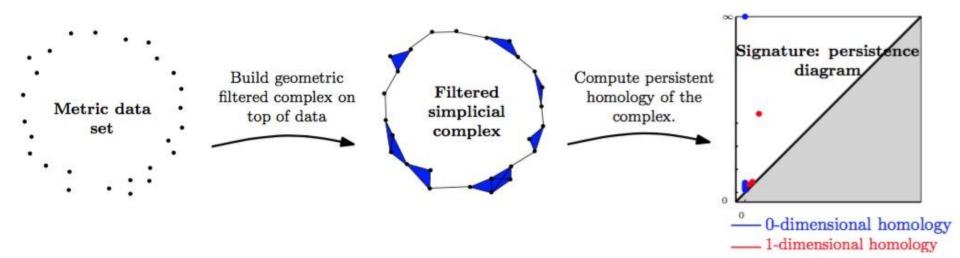
1. Introduction: What?

Topological Data Analysis (TDA) aims at studying the complex topological structure of the underlying data.

One great TDA tool is **Persistence Homology** (PH). PH builds continuous shapes for a point cloud at different *scales* and analyzes the *evolution* of these shapes.

PH is great because (i) well-understood theoretical framework based on algebraic geometry; (ii) efficient to compute; (iii) robust against small perturbations in input data.

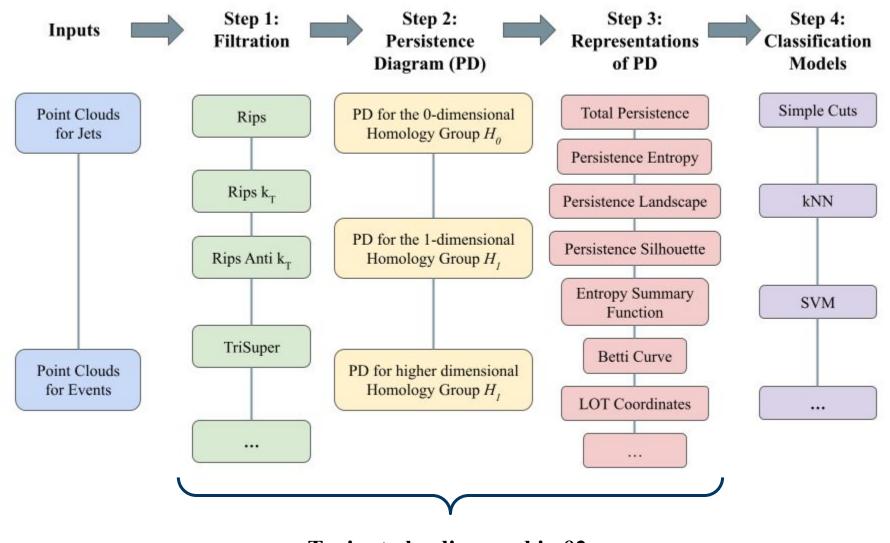
Suitable data types for PH: **finite metric spaces (point clouds)**, digital images, networks.



1. Introduction: *How*?

Related works: 2006.12446.

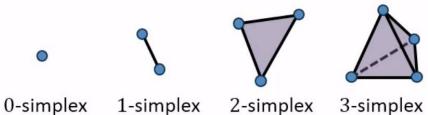
TDA Workflow



Topics to be discussed in §2. Still under active research on the math side.

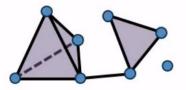
2. Persistence Homology in a Nutshell: Filtration

Build a "simplicial complex" from a point cloud.



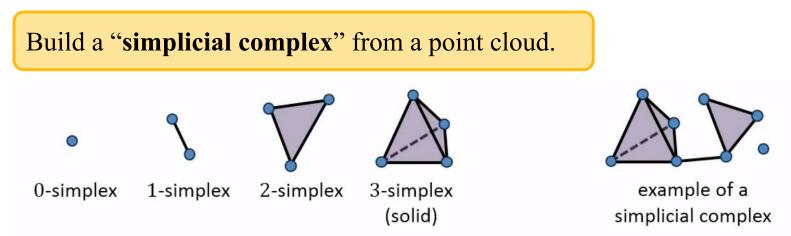
0

3-simplex (solid)

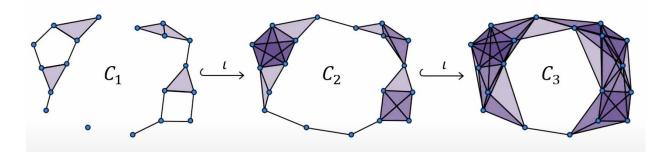


example of a simplicial complex

2. Persistence Homology in a Nutshell: Filtration

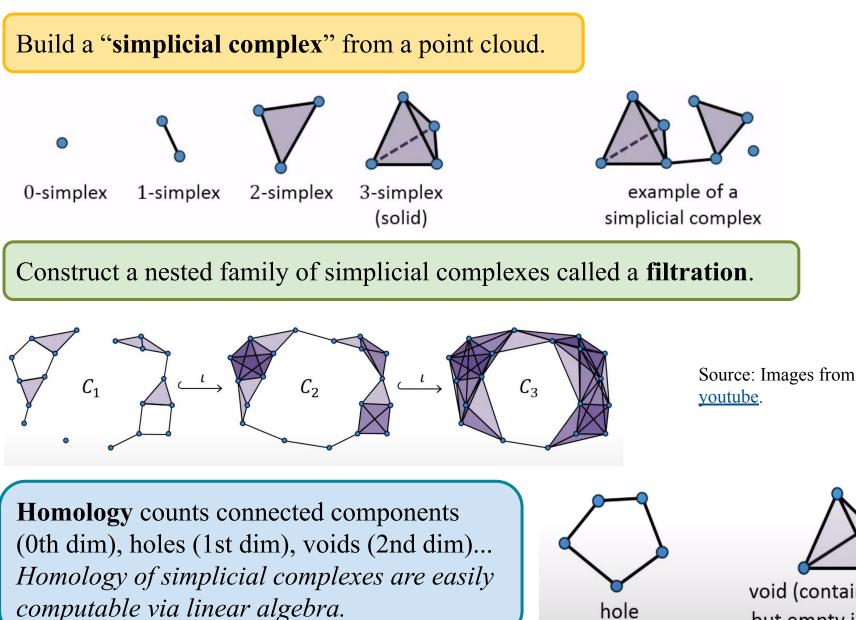


Construct a nested family of simplicial complexes called a filtration.



Source: Images from <u>voutube</u>.

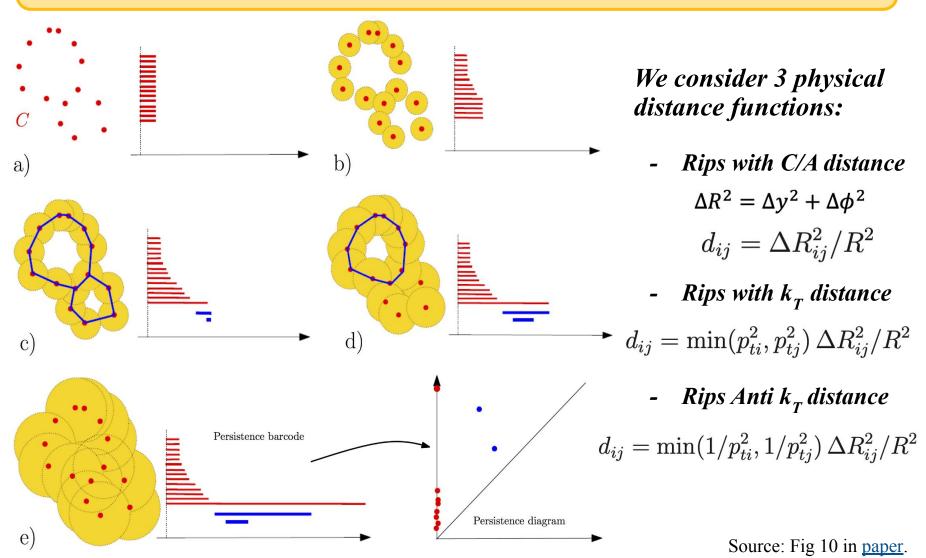
2. Persistence Homology in a Nutshell: Filtration



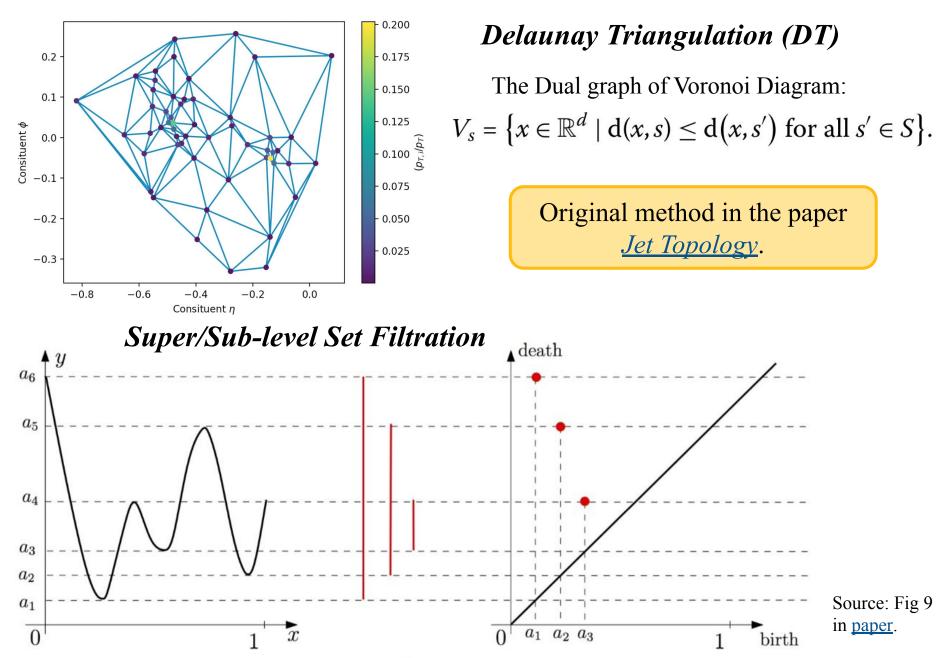
void (contains faces but empty interior)

2. Persistence Homology in a Nutshell: Rips Filtration & PD

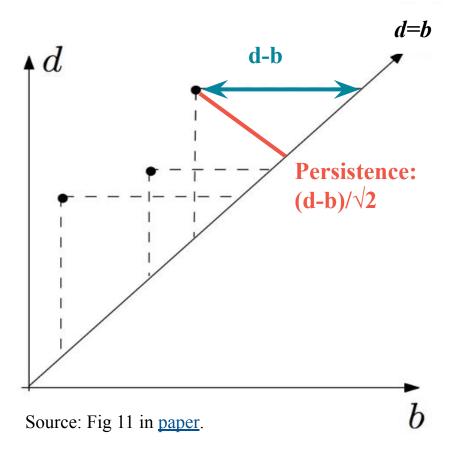
Include simplex if the pairwise distances between all its vertices satisfy $d_{ij} < a$. Can be computed efficiently.



2. Persistence Homology in a Nutshell: TriSuper Filtration & PD



2. Persistence Homology in a Nutshell: PD Representations



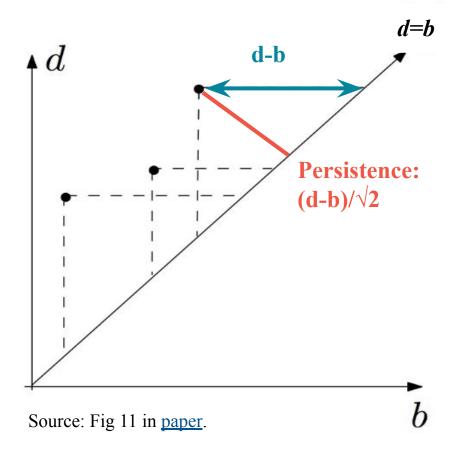
A PD with n_a off-diagonal points

 $p_i = (b_i, d_i) \in \mathbb{R}^2$ $i = 1, \dots, n_a$.

Define the persistence of each point as

$$m_i = \frac{l_i}{\sqrt{2}}, \qquad l_i = d_i - b_i$$

2. Persistence Homology in a Nutshell: PD Representations



A PD with n_a off-diagonal points $p_i = (b_i, d_i) \in \mathbb{R}^2$ $i = 1, \dots, n_a$. Define the persistence of each point as

$$m_i = \frac{l_i}{\sqrt{2}}, \qquad l_i = d_i - b_i$$

Total Persistence *T***: Scalar**

$$T[A] = \sum_{i=1}^{n_a} m_i = \frac{L}{\sqrt{2}}$$

Betti Curve *β*(*t*): Vector

$$\beta_p[A](t) = \sum_{i=1}^{n_a} w_i(t)$$

$$w_i(t) = \begin{cases} 1 & b_i \le t \le d_i \\ 0 & \text{otherwise} \end{cases}$$

Persistence Entropy E: Scalar

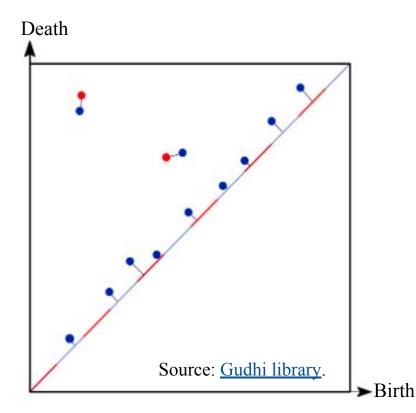
$$\begin{split} E[A] &= -\sum_{i=1}^{n_a} \frac{l_i}{L} \log\left(\frac{l_i}{L}\right) \\ &= -\sum_{i=1}^{n_a} \frac{m_i}{T} \log\left(\frac{m_i}{T}\right) \end{split}$$

2. Persistence Homology in a Nutshell: Metric on the PD Space

Existing Method: The pth Wasserstein (W_{r}) distance

$$W_p[\mathbf{d}](X,Y) := \inf_{\phi: X \to Y} \left[\sum_{x \in X} \mathbf{d} [x,\phi(x)]^p \right]^{1/p}$$

 $\Rightarrow The Bottleneck distance W_{\infty}[L_{\infty}] with W_{\infty}[d](X,Y) := \inf_{\phi: X \to Y} \sup_{x \in X} d[x,\phi(x)]$

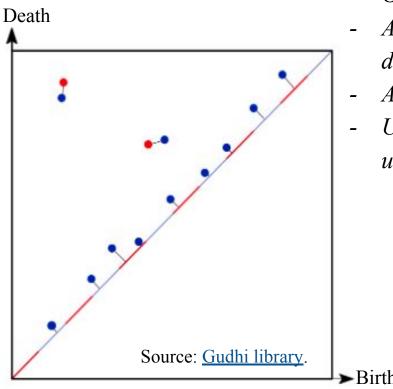


2. Persistence Homology in a Nutshell: Metric on the PD Space

Existing Method: The pth Wasserstein (W_n) distance

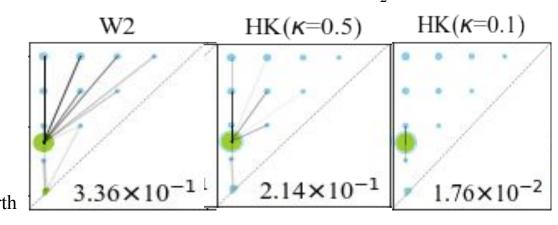
$$W_p[\mathbf{d}](X,Y) := \inf_{\phi: X \to Y} \left[\sum_{x \in X} \mathbf{d} [x,\phi(x)]^p \right]^{1/p}$$

 $\Rightarrow The Bottleneck distance W_{\infty}[L_{\infty}] with W_{\infty}[d](X,Y) := \inf_{\phi: X \to Y} \sup_{x \in X} d[x,\phi(x)]$



Our Proposal:

- Get rid of the diagonal.
- Assign mass to points based on their distances to the diagonal.
- Allow mass creation & destruction.
- Use Hellinger-Kantorovich (HK) distance, an unbalanced OT generalization of the W, distance.



3. TDA for Jet Tagging: TriSuper Filtration & Its PD

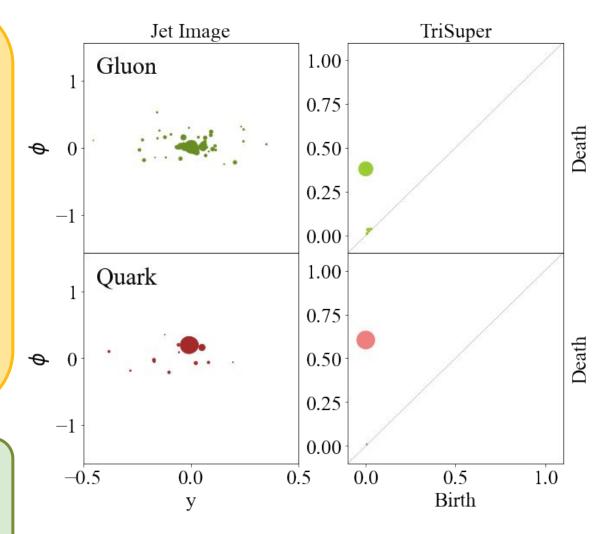
Dataset: 10k light QCD jets with total p_T in [100, 350] GeV.

Simulation: pp collisions at $\sqrt{s=14}$ TeV; anti-kt jet clustering with R=0.6; jets selected with |y| < 1.7.

Filtration: Delaunay Triangulation+Superlevel Set Filtration (*TriSuper*).

Dimension: 0th homological dimension.

We also examined **Rips filtration** with C/A, k_T , and Anti k_T distances for 0th-dim.



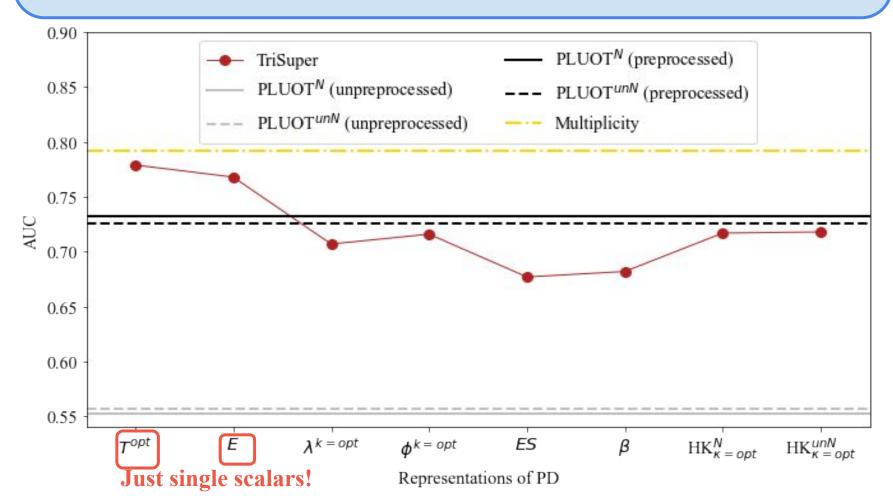
3. TDA for Jet Tagging: Result for TriSuper

Topology-based observables: TriSuper of 0th-dim with various PD representations.

Geometry-based observables: PLUOT framework.

Traditional observable: Multiplicity—optimal observable.

Classifiers: Simple cuts for scalars; kNN for vectors.

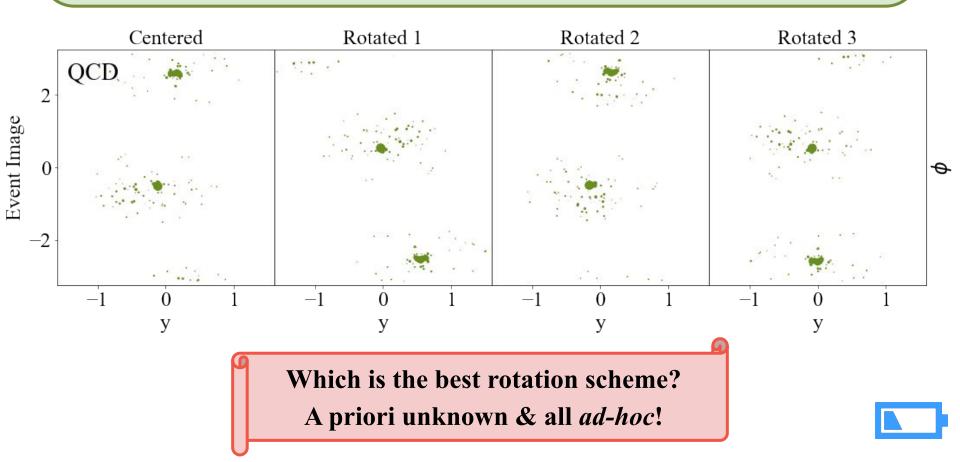


4. TDA for Event Classification: Issue of Preprocessing

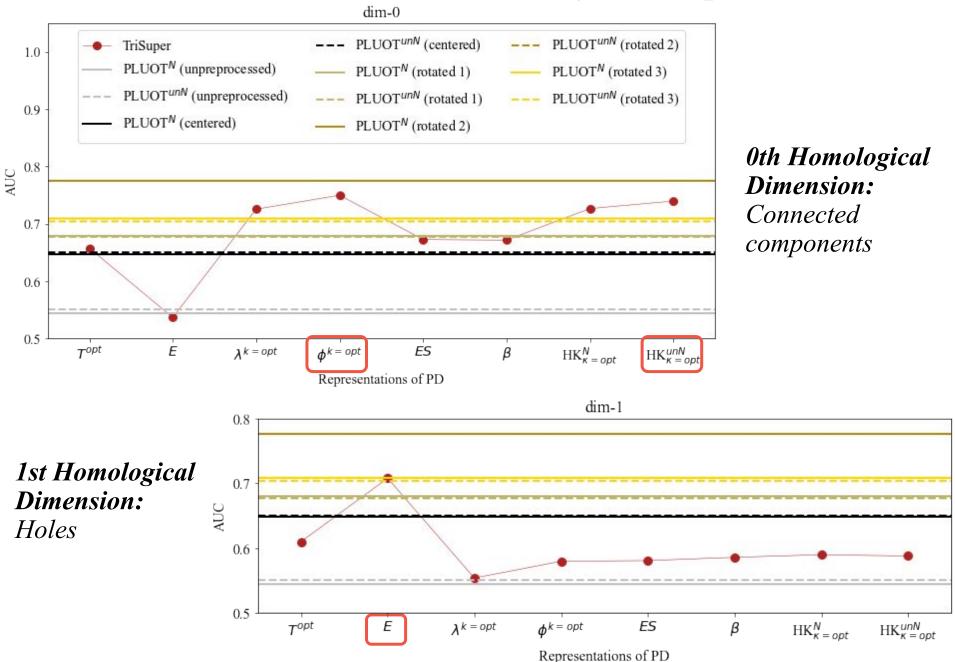
Dataset: 10k dijet W boson and QCD events with $\sqrt{s}=14$ TeV.

Simulation Highlights: Anti-kt algorithm for jet clustering with R=1; individual jet with a p_T in [500, 550] GeV and |y| < 1.7 cut.

Preprocessing: (i) Boost the events to their CM frames (*centered*) \mathbf{V} ; (ii) Rotate the events according to three different schemes (*Rotated 1, 2, 3*).



4. TDA for Event Classification: Result for TriSuper



5. Summary: What have we done in this study?

• Physics side:

- We introduced the TDA framework to get rid of *ad-hoc* pre-processing of LHC events.
- We examined several filtrations with the 0th and 1st homological dimensions
- We compared tagging performance of various PD representations with standard observables and geometry-based optimal transport framework.
- Even a single scalar representation of PD achieves close to optimal performance for jet tagging.
- The topology of an event is more complex; therefore more sophisticated PD representations are preferred.
- TDA-based taggers (0th-dim) perform consistently better than geometry-based frameworks without pre-processing. This is especially important for event analysis.

• Math side:

- We proposed a new way to present homology in a persistence diagram, getting rid of the diagonal.
- This enabled the full use of HK distances to define a metric on the space of PDs.
- Linearized HK offers a novel way to represent a PD, potentially useful for topologically more challenging datasets.

5. Outlook: What's next?

• Math side:

- To rigorously prove that our proposed unbalanced HK distance is a good metric for the PD space (convergence, stability, etc).
- To fully develop linearized HK embedding as a more sophisticated representation of a PD for statistical analysis.
- To find more topologically challenging datasets that may showcase the power of our novel PD representation.

• Physics side:

- To fully understand why certain combinations of filtrations and PD representations perform better for a given jet/event tagging task.
- To find a non-trivial way to combine the tagging powers of the 0th and 1st homological dimensions.
- To explore other filtrations based on physics considerations.
- To apply PH on datasets with more complex topological structures, e.g., top events.
- To explore further TDA tools for collider physics.

THANKS!

Presented by Tianji Cai

Department of Physics

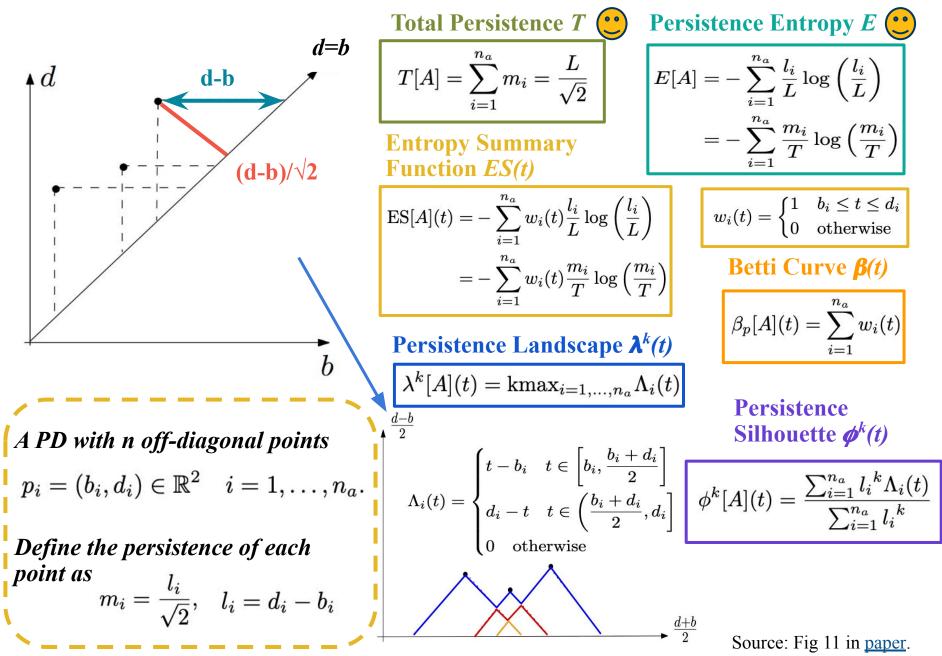
UC SANTA BARBARA

Backup Slides

Department of Physics

UC SANTA BARBARA

2. Persistence Homology in a Nutshell: PD Representations

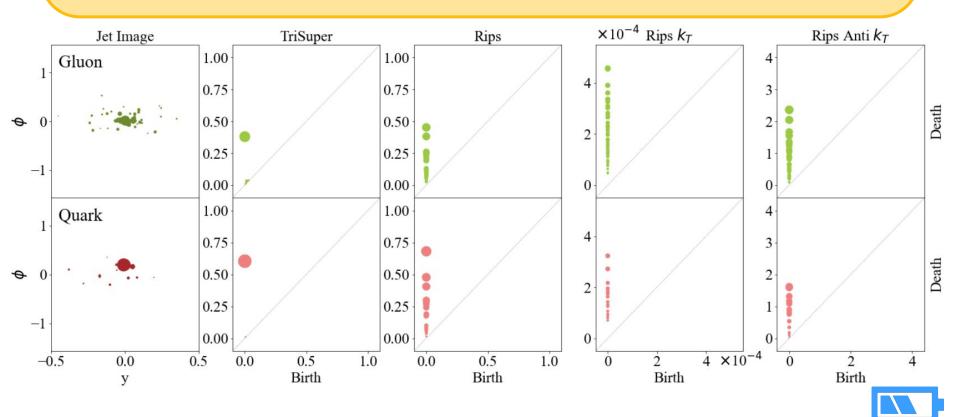


3. TDA for Jet Tagging: Different Types of Filtrations & PDs

Dataset: 10k light QCD jets with total p_T in [100, 350] GeV.

Simulation Highlights: pp collisions at $\sqrt{s}=14$ TeV; anti-kt algorithm for jet clustering with R=0.6; jets selected with |y| < 1.7.

Filtrations: (i) Delaunay Triangulation+Superlevel Set Filtration (*TriSuper*); (ii) Rips Filtration with C/A distance (*Rips*); (iii) Rips with k_T distance (*Rips k_T*); (iv) Rips with anti- k_T distance (*Rips Anti k_T*).



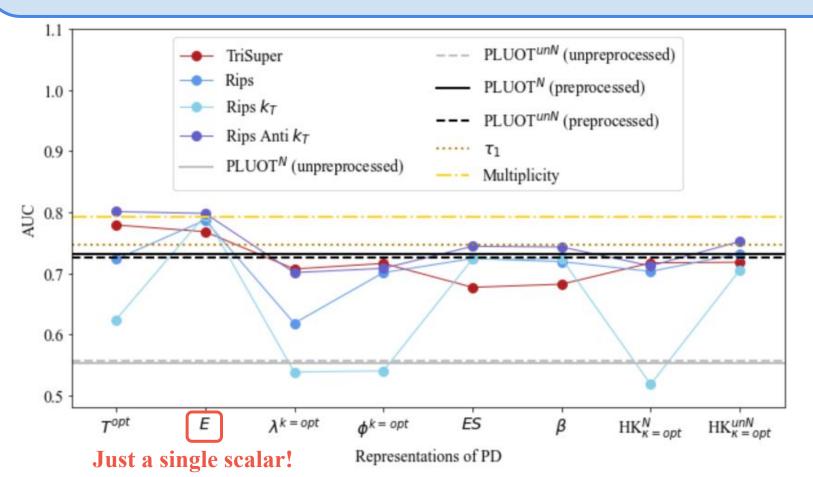
3. TDA for Jet Tagging: Results

Topology-only observables: Four filtrations with various PD representations (*colorful lines for filtrations; marks on x-axis for PD representations*).

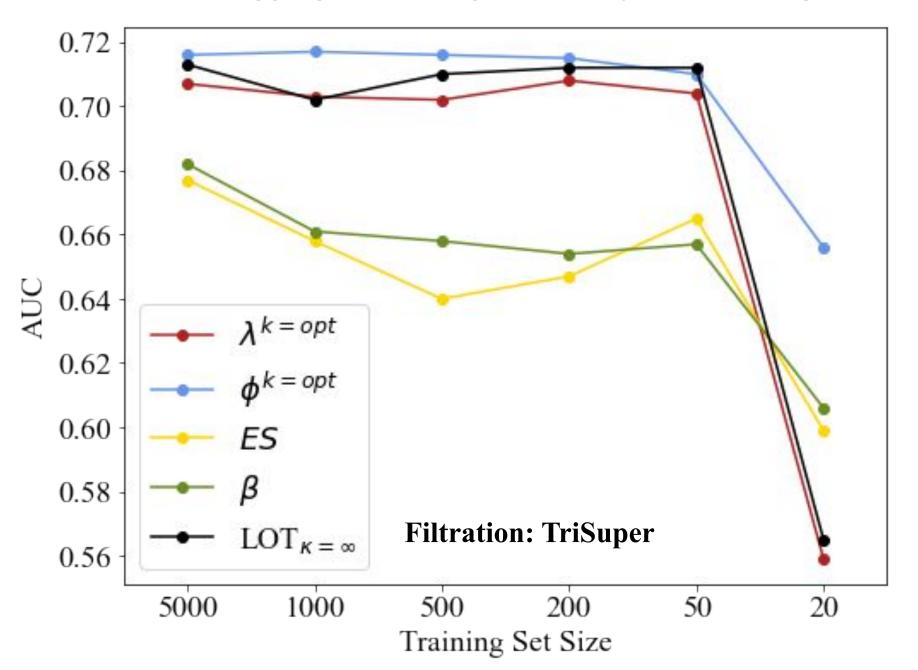
Geometry-based observables: PLUOT framework (gray & black).

Traditional observable: *N*-subjettiness τ_1 (*brown*); Multiplicity (*yellow*).

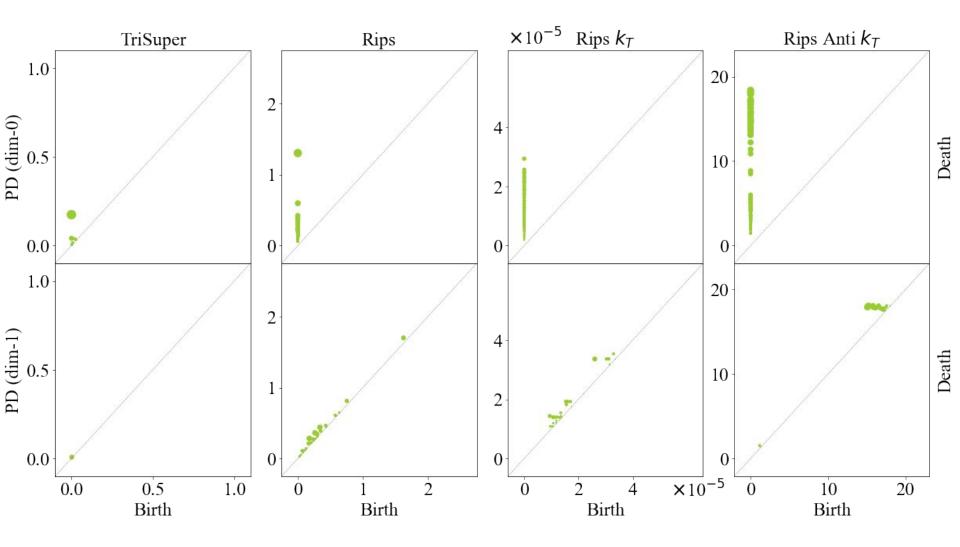
Classifiers: Simple cuts for scalars; kNN for vectors.



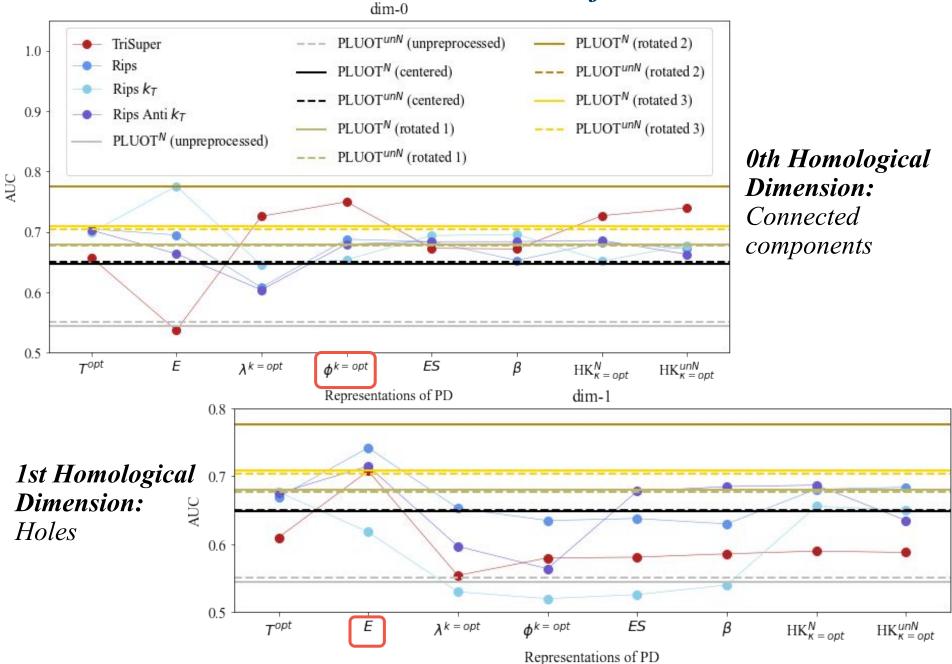
3. TDA for Jet Tagging: *Shrinking the Size of the Training Set*



4. TDA for Event Classification: *Persistence Diagrams for 0th & 1st Homological Dimensions*



4. TDA for Event Classification: Results for dim-0 & dim-1



5. Summary: What have we done in this study?

- Motivation: Get rid of the *ad-hoc* pre-processing for LHC jets and events.
- **Proposal:** Study the topology of jets/events (invariant under pre-processing) via the framework of Topological Data Analysis (TDA).
- **Tool:** Persistence homology to encode the evolution of topological features of certain filtration of a point cloud in persistence diagrams (PD).
 - **Topological Features:** Connected components (0th dim) for jets; Connected components (0th dim) & holes (1st dim) for events.
 - **Filtrations:** TriSuper; Rips; Rips k_T ; Rips Anti k_T .
- Statistical Analysis: Simple cuts or kNN on various PD representations.
 - Studied six existing PD repres.
 - Proposed a new way to metricize the space of PDs via unbalanced optimal transport (OT) and introduced linearized OT as a novel PD representation.
- **Results:** The TDA framework achieve comparable or even better tagging performance than geometry-based approaches without the need of pre-processing.
 - A simple cut on a scalar PD repre for certain filtration performs surprisingly well.
 - Certain filtrations are more stable than others across different choices of PD repres.
 - The performance of the new HK repre is not so impressive.