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Why Unfold?
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Unfolding

e Parameter tuning of theories
e Use of the data in the future

e Comparison to other experiments
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Basic Concept
Simulation Experiment
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"Classical" Unfolding Algorithms

Basics

Migration matrix:
Three main problems with matrix-based unfolding algorithms:
e Binning choice involves an information loss

e No high-dimensional unfolding (only up to three dimensions)

T
MC Truth

e Sensitivity to "hidden" observables”

= Use full phase space information with ML approaches.

MC Reco
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Conditional Invertible Neural Networks (CINN)

U out U
ur = (v1 — t1(uz2,c)) @ exp(s1(u2,c)) v = u1 ® exp(s1(uz,c)) + t1(uz,c)
uz = (v2 — t2(v1,c)) @ exp(sz2(v1,c)) v2 = u2 © exp(s2(ve,c)) + t2(v1, )

Source: arXiv [1907.02392]
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cINN Unfolding
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Source: arXiv [2006.06685]
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cINN Unfolding

Unfolding EFT

Single Event
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Unfolding EFT

Basics cINNs Iterative cINNs
x 10 x10*
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e Extreme toy example with large MC-data-differences and significant detector effects

e cINN unfolded distribution shows a strong bias towards the MC truth

pitn) = 2

_ p(rlt) - p(®)

)

with

t = truth, r = reco

= lterative approach needed
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lterative Approach

Simulation Experiment

D;:]Cetlor MC Reco U w Measured Advantages:

e Structures present in the data

. . implicitly in the
ﬁ are encoded imp y
1. Train ¢|NN 2. Predict MG Truth
Ic]NN

e General similarities to matrix
based iterative bayesian-like

unfolding

3. Reweight
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Unfolding EFT

Results for the Iterative Approach

x10*
—— MC Truth
44 — - lteration 1
.ﬁ — - Iteration 2
—
= o T Iteration 4
E —— Truth
o
=
22
=
~ 1
0 _
~|1=15
Z|£1.0
0.5
—10 -5 0 5 10 15 20
T

e Construct an analytically solvable toy model

e Use Bayes theorem to construct pseudo-
inverse:

plrlt) - p()
p(er) = B0

o Apply pseudo-inverse to measured distribu-
tion:

pult) = / p(tr)pag (r)dr
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Unfolding an EFT Process

e Simulating the process

pp — Zyy with Z — p~pt —— Data Truth

------ Data Reco < 250 GeV
—— MC Truth

e Data — SM 4 EFT contributionof = | | e 7T M Reco <250 Gev

e MC — pure SM
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e Applied detector smearing:
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Unfolding EFT
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Unfolding an EFT Process

e Simulating the process

pp — Zyy with Z — p~pt
||
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Unfolding EFT
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Unfolding an EFT Process

—— Data Truth
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Unfolding EFT
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Conclusion / Outlook

e Implementation of an iterative cINN unfolding algorithm and application to a physical example

e Central Idea: still obtain the cINN result of a probabilistic unfolded distribution while iteratively reducing the bias
towards the MC simulation

o Next step: application to real experimental data
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Thank you for your attention!
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Additional Material
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Single Event Unfolded

”””” Analytic prediction
150 — cINN unfolded distribution it. 3
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"Classical" Unfolding:

1. Choose an initial prior tEO)

2. Calculate the unfolding function
R (t5]ri) =

3. Recalculate the truth distribution

t;n) (t) = Z R<n> (tj |'f'k) TMeas, k
k

R(rift;) "™V
Sk Rlrelty) ")

terative cINNs

lterative Bayesian Unfolding

Uniolded Distributions

0.0

Truth
— Iteration 5
[teration 2

[teration 1

—— Iteration 0

= Balance between bias and uncertainties

8 10

Unfolding EFT

ML Unfolding based on cINNs using lterative Training

Mathias Backes

11/1



Basics cINNs Iterative cINNs Unfolding EFT

Reweighting Distributions
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Detector-level
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Step 1:
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cINNs Iterative cINNs Unfolding EFT

Omnifold

Particle-level

Problems:

e MC and data need to cover the same phase
space

Step 2:
Reweight Gen.

e E.g. observables based on high jet multiplicities
Un—1 25 vy = Not necessarily multi-jet-event in MC

Pull Weights

> Generation

e Range of validity?
e
Push Weights

Source: arXiv [1911.09107]
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Analytic Toy Example

e Gaussian smearing:

r— s))?
i) = g e (~ ).

p(rft) - p(t)
p(r)
Unfolding a measured distribution p s () using Gaussian functions for p(r), p(t) and ps(r):

1 r—(t+ps)? E—pw)?  (r—pr)? (r—pm)?
t) = t dr d — _
po®) = [ pampastiar = o |0 o [ares (<20 5

e Evaluating leads to gaussian unfolded distribution with:

2 2 2 .2 4
Pm0F + peo? — psod \Oioy T 0y05 + 050t

Hu = ) Ou =
02 + o2 02 + o2

e Bayes theorem:

p(tlr) =
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cINN Loss function

Minimize loss function:

L= _<10gp(0|$7y)>:v~f,y~g
—(logp(@10, y))a~ f,y~g — {logp(0ly))y~g + (log p(2|Y))anf,y~g
_<10gp(x‘97y)>z~f,y~g - >\92 + const.

7(10g])(2(1)|97 y)>z~f,y~g - <10g a >z/\/f,y~g —A 92 ~+ const.

6 = cINN parameter, x = Parton Level, y = Detector level, z = Latent space variable

Source: arXiv [1907.02392]
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