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Analysis Overview

- Search for new heavy resonance Y (~TeV) decaying to an SM Higgs ( — bB) and a new particle X
(~100s GeV)

- Xand H are highly boosted: reconstruct as large-R jets (R=1.0)

* Machine learning highlights
1. Unsupervised learning for signal model-agnostic X tagging
2. Neural net-based tagging of boosted H—bb topology
3. DNN-based reweighting procedure for data-driven background estimation

* Previous search in Y—=XH signature using 36 fb-1 [1709.06783]: no significant excesses
- Assumed X decays to gg: generated this final state as our primary signal grid for supervised tagging benchmark
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Autoencoders for Jets

- Autoencoder: generative model that encodes input in lower-dimensional latent
space, decodes from latent space, and checks reconstruction error

- Train over data (mostly QCD)

Input Output

1. QCD
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Autoencoders for Jets

- Autoencoder: generative model that encodes input in lower-dimensional latent
space, decodes from latent space, and checks reconstruction error

- Train over data (mostly QCD)
- Model jets by their constituent 4-vectors: jet substructure is an anomalous feature

- Order constituents by clustering step: sequence information is relevant!

Input Output
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Variational Recurrent Neural Network

* Variational RNN: recurrent neural network (RNN) that updates a VAE latent space
at each time step; accommodates variable-length input sequences

- Define anomaly score per jet as a function of the KL divergence loss term:
AS=1-ePr

= VRNN paper published using LHC Olympics dataset [2105.09274]
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VRNN Jet Tagging in Y—=XH

* Train over full Run 2 dataset of large-R jets (R=1.0) with pt > 1.2 TeV
- Up to 20 constituents ordered by kt splitting + D2, 132, Split12, Split23

* Evaluate over four substructure hypotheses to verify degree of model dependence
- 2 prong, 3 prong, heavy flavor (bb), and dark jets (Pythia Hidden Valley Model A)

= Use a flat cut of AS > 0.5 as SR definition for broad sensitivity enhancement:
competitive with D2 on 2-prong signals and ~10x better for dark jets

Jet Anomaly Score
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Neural Net H—bb Tagging

- First use of ATLAS neural net-based double b-tag algorithm to select X
Higgs vs. dijet or top backgrounds [ATL-PHYS-PUB-2020-019] Wﬁj
- Train over large-R jet pt/n and up to 3 subjet b-tagging scores Y g b
- Outputs: three class probabilities — discriminant Dpo @
= Tag Higgs boson using 60% WP and ftop=0.25 as per central FTag A
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Analysis Flow

1. Large-R jet trigger: J1(pt) > 500
GeV and myy > 1.3 TeV

2. Ambiguity resolution: jet with
highest Db score is Higgs
candidate

3. X-tagging: AS of X candidate >
0.5

- Background estimation + SR in
single bin of anomaly score

- Separate 2-prong regions with D2

» SR selection:
- Higgs tagging: Dnpp of H
candidate > 2.44
- 75 <mu < 145 GeV

» Background estimation:
reweighted untagged high
sideband (HSBO—HSB1)

» Validation: low sideband (LSB)
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X/H Candidate Large-R Jet Selection
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Background Estimation

* Fully data-driven background estimation (~97% multijet processes)

* Derived from data template in high Higgs mass sideband that fails H tagger score,
reweighted to shape in H-tagged region

 Build DNN to provide a reweight for each event

- Train inclusively in X-tagging over variables associated to the Higgs large-R jet (4 vector,
4-vectors of leading & subleading track jets associated to Higgs, # tracks)

- Minimized on log-likelihood ratio of tagged to untagged regions
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Results

- Use BumpHunter for signal model-independence and fit my in overlapping categories of mx

- No significant deviations in anomaly region across mx bins
=No interpretation in anomaly region (no signal systematics); limits provided from 2-prong SRs

* Interpret in nominal X—qq: upper limit at 95% CL on Y—=>XH—qgqgbb cross section across signal grid
- Sensitive up to 6 TeV in resonance mass
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Discussion Topics & Future Outlook

<+ How to interpret results from unsupervised taggers?

- We plan to provide cross section limits on signals injected in anomaly region,

without signal systematics, only for the purpose of comparison to a supervised
approach in this specific analysis context

- Is it a well-defined task to use anomaly regions to compare sensitivity for a given
model to a dedicated supervised search?

<+ How to provide appropriate analysis preservation?
- Can upload model files & post-training weights as HEP Data
- Depending on the tagger, this is still not sufficient to reinterpret with other models

» Presence of signal model in training dataset could have unspecified consequences
on tagger performance

2 November 2022 GQ COLUMBIA UNIVERSITY

J. Gonski
IN THE CITY OF NEW YORK


https://lhco2020.github.io/homepage/
https://lhco2020.github.io/homepage/

Conclusions

- Demonstrated an application of the VRNN architecture to
classity anomalous jets via data-driven unsupervised learning

- Integrated jet-level anomaly score into ATLAS search

- Broadened sensitivity to a variety of new physics jet topologies

= First application of unsupervised machine learning to an
ATLAS analysis & many others in the works!
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Background Systematic Uncertainties

* All background systematics are determined inclusively in m, and then applied to
each exclusive m bin

1. DNN Source Systematic
- Difference in resulting mdJJ distribution due to the choice of training region

- O(1-10)% effect across mJJ

2. DNN Bootstrap Systematic
- Statistical error from neural network performance determined via the bootstrap procedure
- O(1)% effect across mJJ

3. Non-Closure Systematic

- Determined in the LSB as the difference between reweighted LSB0 and LSB1 data, with
smoothing

- Characterizes additional mis-estimation of data in the VR after determining weighting
parameters from the HSB

- Negligible for low mJdd, O(10)% effect in the tails
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Signal Systematic Uncertainties

- Flat luminosity uncertainty of 1.7% (as measured with
LUCID)

- Jet uncertainties implemented with standard variations from
jet/ E»»CP group
- Included for both large-R (merged and resolved) and small-R
(resolved only) jets

- Rtrk Baseline, Modeling, Tracking, TotalStat, Closure
uncertainties

- JER Mass and p,variations
- PDF variation uncertainties
- ISR/FSR included as flat 3% uncertainty

« XbbSF uncertainties
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Statistical Analysis

- Fit my across overlapping categories of mx
- Bins chosen based on signal mass resolution

- Use BumpHunter as signal model-independent “excess finder” [1101.0390]
- No significant (p-val < 0.01) excess across mx bins in the LSB VR
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2-Prong Interpretation

* Results for Y—=>XH—=qgqgbb given as upper limit at 95%
CL on production cross section across signal grid

m(Y) [Tem
opp =Y = XH— qﬁ'bb)[py
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<

* With respect to previous result:
- Improved limit in highly boosted regime by ~10x
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- Increased upper resonance mass sensitivity from 4 to o= 13 Tev. 361
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- Added coverage of unexplored resolved X decay
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Global Significance Calculation

*  Goal: Determine an overall global significance — difficulty
arises from overlapping m_windows

« 27 Exclusive m bins and 57 overlapping m, bins = 1539 1, ERE
I |
analysis bins EW(XLJ W,‘__\' o /5 A —
; g, 3 |
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omparing to VV Searches
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Figure 10: The p-value per my bin for both two-prong SRs, calculated using only statistical uncertainties. Two
my bins are shown, [75.5, 95.5] and [113.0, 137.0] GeV, which corresponds to a window containing the W/Z and
Higgs boson mass respectively. Events are thus split into merged W/Z window (a), merged Higgs window (b),
resolved W/Z window (c), and resolved Higgs window (d). The background is determined by a background-only fit
to the data with all statistical and systematic uncertainties included. In both mx windows, the p-value approximates a
constant value of 0.5 for the high ¥ mass region of the resolved SR, as this region of phase space is far more likely to
produce a highly boosted Jx that falls in the merged SR selection.

&2 COLUMBIA UNIVERSITY

2 November 2022 J. Gonski

IN THE CITY OF NEW YORK



V

* Developed in simulation via the LHC Olympics community anomaly detection
challenge [2101.08320]

- LHC Olympics dataset: Pythia generated + Delphes detector simulation (no
pileup)

RNN in the LHC Olympics

- Signal: 3.5 TeV Z' = 500 GeV X + 100 GeV Y
- Two substructure hypotheses: 2-pronged and 3-pronged X/Y decays

* Reconstruction = two large-radius (R=1.0) jet, leading pr> 1.2 TeV
=\/RNN paper published using this dataset [2105.09274]
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Comparison to D2

- Dataset = 2-prong % contaminated
- Selections: D2 < 1.4 / AS > 0.65 (equivalent background rejection)
- AS creates less mass sculpting than substructure variables

*In Y=2>XH—=qgbb, cut on D21« < 1.2 (merged) or > 1.2 (resolved)

Contaminated: Leading Jet Mass, Shape Comparison
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Alignment

* Goal: remove mass and pT information from

Boost jet in z direction until 7¢; = 0
H 1 1 1 1 H Rotate jet about 2 axis until ¢ ¢ = 0
input jets to avoid tagging on kinematics alone
Boost jet along its axis until £, =1 GeV

* Procedure: oy oot e AL et
1. Rescale each jet to the same mass

Remove all constituents with AR > 1
Rebuild jet with remaining constituents
Repeat from start

2. Boost each jet to the same energy  continue
. . . end
3. Rotate each jet to the same n/® orientation it Number of constituents > 20 then

Keep up-to the first 20 constituents, ordered in py
Rebuild jet with remaining constituents
Repeat from start

* Result: anomaly score far less correlated with |
mass in background jets 1 ontine

end
Reflect constituents about ¢ axis such that the second hardest constituent has 7 > 0

“AR is computed as /7% + ¢ for each constituent, where 7 and ¢ are measured relative to the x axis.

With Alignment
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Sequence Ordering

*In a recurrent architecture, apt sequence modeling of jets (eg. order of
constituents) can highlight importance sequence features & boost performance

- Select ki-distance ordering to highlight substructure: nth constituent has highest
ki-distance relative to previous, starting with highest pT constituent

Cp = Max (anARn,n—l)

- Result: better separation of two-prong signal from diffuse QCD background
than pT-sorting
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Analysis Application

- Compute anomaly score for each jet Jet Anomaly Score
- Higher KL divergence = higher loss = lower anomaly p=1—eDPu
score
= Transform such that higher AS corresponds to more ¢
anomalous jets pr=1- (%)

. Analysis strategy: cut-and-count on p’ > 0.65 as sole signal region
selection & test signal significance in bins of mdJ
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Background > Background ’
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Results: 2 and 3-Prong Signal

 Perform bump hunt on myy with selection on Event Score = max of two leading jet Anomaly Scores

- Dataset = background + 1% signal contamination
= Enhance a 0.50 two-prong signal excess to 4.00 solely from an Event Score cut at 0.65

= Enhance a 0.50 three-prong excess to 1.50 using the same score

No cut Event Score > 0.65

2-Prong Contaminated: Dijet Mass 2-Prong Contaminated: Dijet Mass, EventScore > 0.65
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Performance vs. Contamination

Lo AUC vs Contamination
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Figure 11. ROC AUC vs. percent signal contamination in training datasets. The performance of the
Anomaly Score is consistent across a wide range of contamination levels.
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Performance vs. Training Time

ROC AUC vs Training Time
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Figure 6. Area Under the Curve (ROC AUC) vs. training time in epochs on a 1% signal-contaminated
dataset. The VRNN reaches an optimal performance quickly, and retains this performance over a long
training period. The difference in performance between the training and validation sets is a result of the
former containing elements of signal.
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