Unsupervised Machine Learning-based Anomaly Detection in an ATLAS Dijet Resonance Search

[ATLAS-CONF-2022-045]

Julia Gonski

2 November 2022 ML4Jets @ Rutgers

COLUMBIA UNIVERSITY

ign energy machine = high momentum

nultiple decays may overlap & reco as a

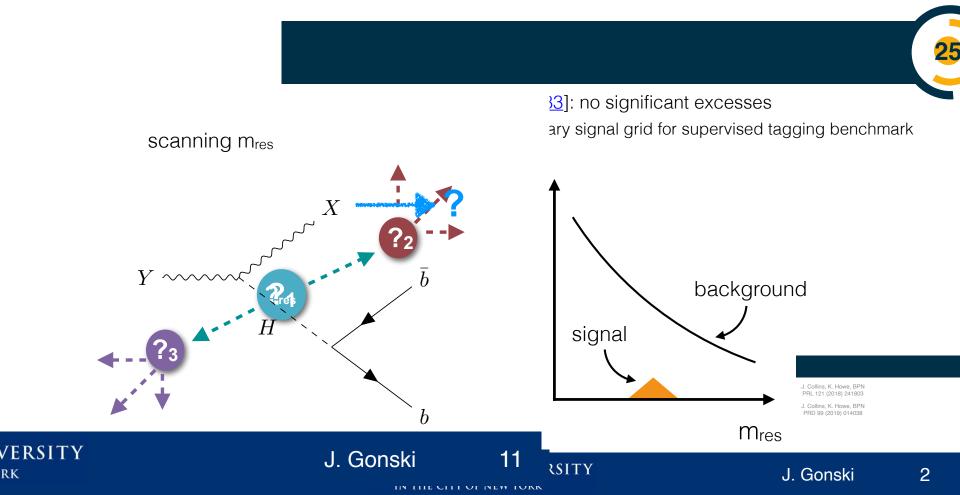
n jet constituents to determine particle

RK

erview

1 Higgs ($\rightarrow b\bar{b}$) and a new particle X

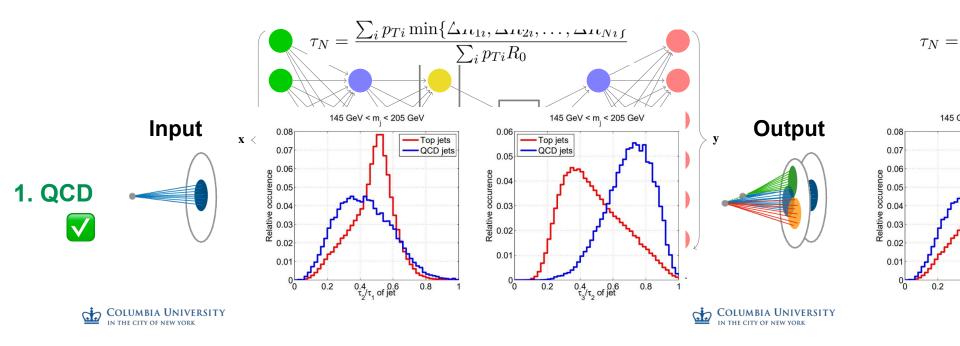
0)



Autoencoders for Jets

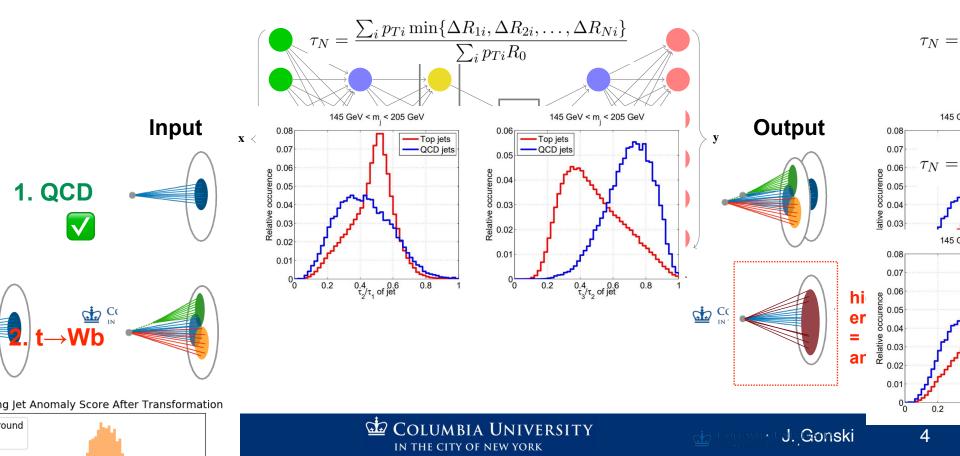
• Autoencoder: generative model that *encodes* input in lower-dimensional latent space, *decodes* from latent space, and checks reconstruction error

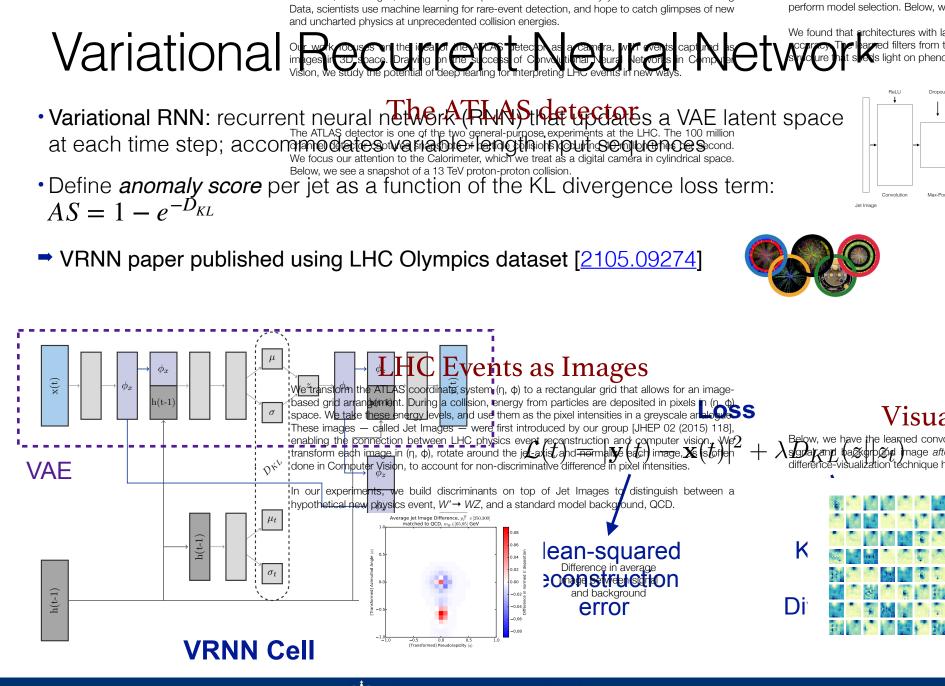
- Train over data (mostly QCD)



Autoencoders for Jets

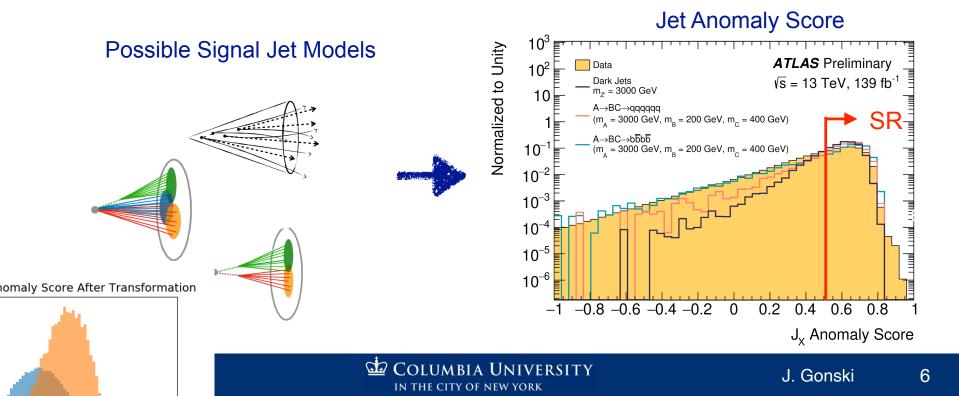
- Autoencoder: generative model that *encodes* input in lower-dimensional latent space, *decodes* from latent space, and checks reconstruction error
 - Train over data (mostly QCD)
 - Model jets by their constituent 4-vectors: jet substructure is an anomalous feature
 - Order constituents by clustering step: sequence information is relevant!





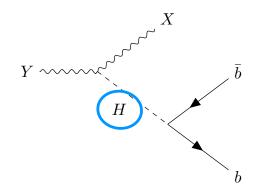
VRNN Jet Tagging in $Y \rightarrow XH$

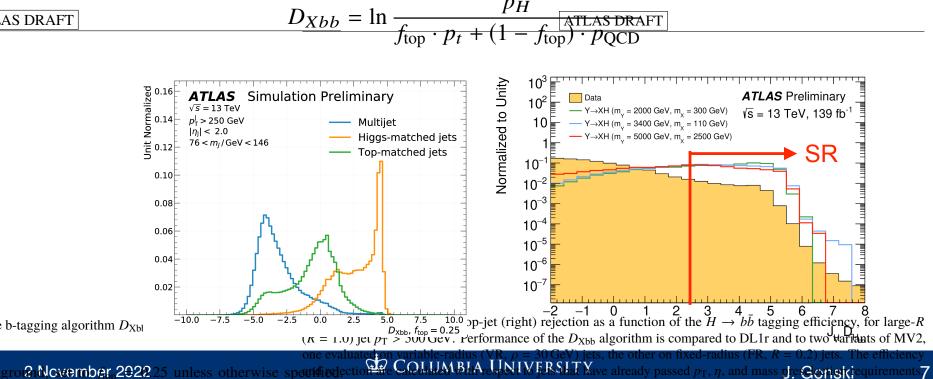
- Train over full Run 2 dataset of large-R jets (R=1.0) with $p_T > 1.2 \text{ TeV}$
 - Up to 20 constituents ordered by kt splitting + D2, τ 32, Split12, Split23
- Evaluate over four substructure hypotheses to verify degree of model dependence
 - 2 prong, 3 prong, heavy flavor $(b\bar{b})$, and dark jets (Pythia Hidden Valley Model A)
- Use a flat cut of AS > 0.5 as SR definition for broad sensitivity enhancement: competitive with D2 on 2-prong signals and ~10x better for dark jets



Neural Net $H \rightarrow b\bar{b}$ Tagging

- First use of ATLAS neural net-based double b-tag algorithm to select Higgs vs. dijet or top backgrounds [<u>ATL-PHYS-PUB-2020-019</u>]
 - Train over large-R jet p_T/η and up to 3 subjet b-tagging scores
 - Outputs: three class probabilities \rightarrow discriminant D_{Hbb}
- ➡ Tag Higgs boson using 60% WP and ftop=0.25 as per central FTag recommendation





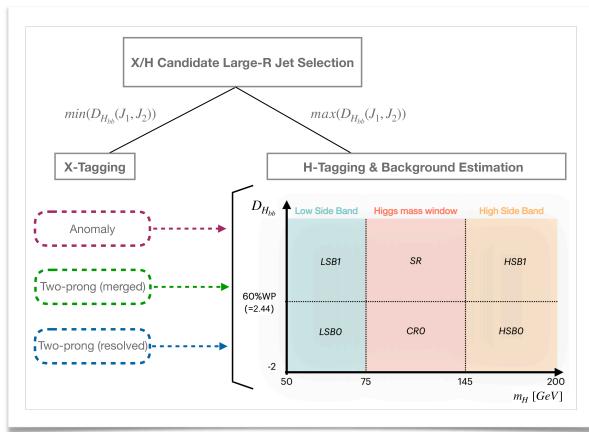
realarge R jet species in various proportions. Figure

IN THE CITY OF NEW YORK

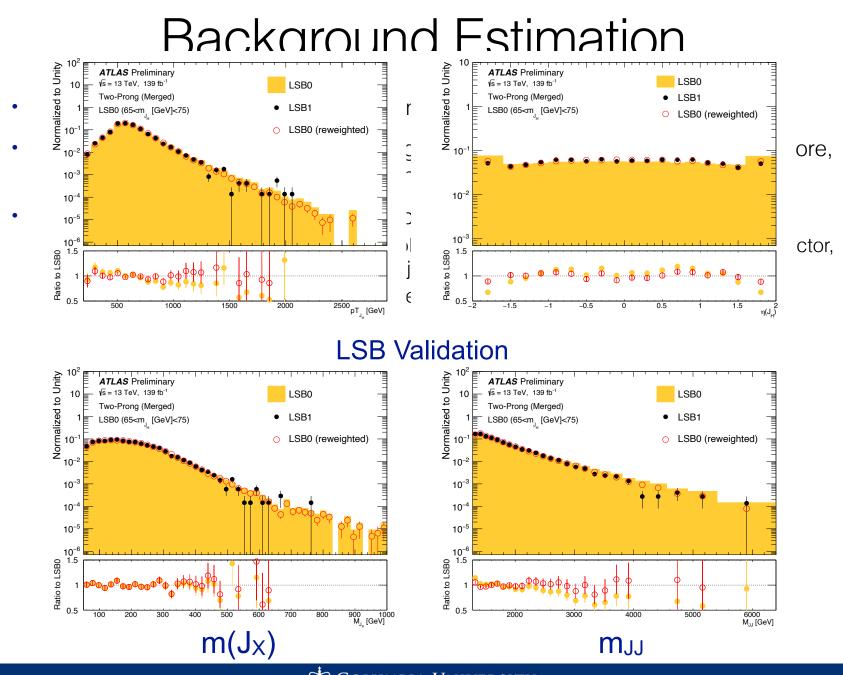
Analysis Flow

- 1. Large-R jet trigger: $J_1(p_T) > 500$ GeV and $m_{JJ} > 1.3$ TeV
- 2. Ambiguity resolution: jet with highest D_{Hbb} score is Higgs candidate
- 3. X-tagging: AS of X candidate > 0.5
 - Background estimation + SR in single bin of anomaly score
 - Separate 2-prong regions with D2

- SR selection:
 - Higgs tagging: D_{Hbb} of H candidate > 2.44
 - 75 < m_H < 145 GeV
- Background estimation: reweighted untagged high sideband (HSB0→HSB1)
- Validation: low sideband (LSB)



COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

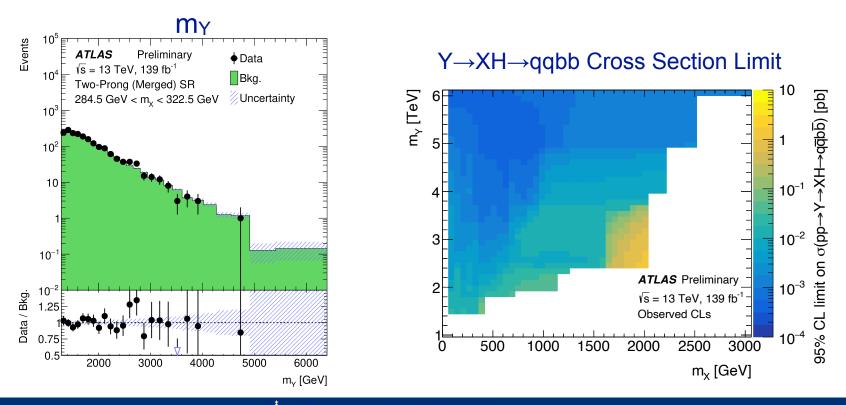


2 November 2022

COLUMBIA UNIVERSITY

Results

- Use <u>BumpHunter</u> for signal model-independence and fit m_Y in overlapping categories of m_X
- No significant deviations in anomaly region across m_X bins
 - No interpretation in anomaly region (no signal systematics); limits provided from 2-prong SRs
- Interpret in nominal X→qq: upper limit at 95% CL on Y→XH→qqbb cross section across signal grid
 - Sensitive up to 6 TeV in resonance mass



Discussion Topics & Future Outlook

How to interpret results from unsupervised taggers?

- We plan to provide cross section limits on signals injected in anomaly region, without signal systematics, only for the purpose of comparison to a supervised approach in this specific analysis context
- Is it a well-defined task to use anomaly regions to compare sensitivity for a given model to a dedicated supervised search?

How to provide appropriate analysis preservation?

- Can upload model files & post-training weights as HEP Data
- Depending on the tagger, this is still not sufficient to reinterpret with other models
 - Presence of signal model in training dataset could have unspecified consequences on tagger performance

Conclusions

• Demonstrated an application of the VRNN architecture to classify anomalous jets via data-driven unsupervised learning

- Integrated jet-level anomaly score into ATLAS search
 - Broadened sensitivity to a variety of new physics jet topologies

First application of unsupervised machine learning to an ATLAS analysis & many others in the works!

COLUMBIA UNIVERSITY

Background Systematic Uncertainties

• All background systematics are determined inclusively in m_x, and then applied to each exclusive m_xbin

1. DNN Source Systematic

- Difference in resulting mJJ distribution due to the choice of training region
- O(1-10)% effect across mJJ

2. DNN Bootstrap Systematic

- Statistical error from neural network performance determined via the bootstrap procedure
- O(1)% effect across mJJ

3. Non-Closure Systematic

- Determined in the LSB as the difference between reweighted LSB0 and LSB1 data, with smoothing
- Characterizes additional mis-estimation of data in the VR after determining weighting parameters from the HSB
- Negligible for low mJJ, O(10)% effect in the tails

Signal Systematic Uncertainties

- Flat luminosity uncertainty of 1.7% (as measured with LUCID)
- Jet uncertainties implemented with standard variations from jet/E^{miss} CP group
 - Included for both large-R (merged and resolved) and small-R (resolved only) jets
 - Rtrk Baseline, Modeling, Tracking, TotalStat, Closure uncertainties
 - JER Mass and p, variations
- PDF variation uncertainties
 - ISR/FSR included as flat 3% uncertainty
- XbbSF uncertainties

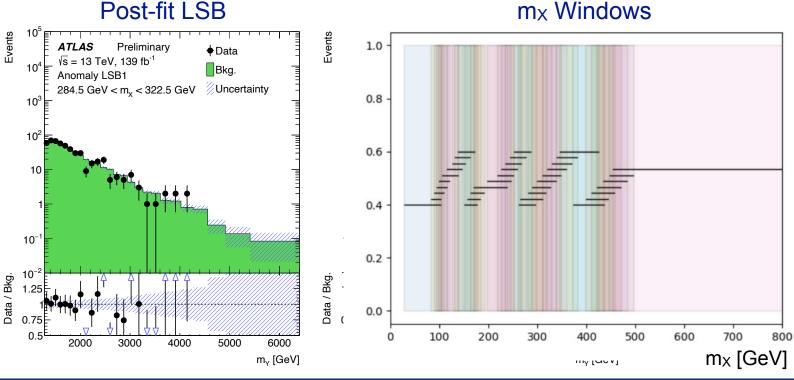
Statistical Analysis

• Fit my across overlapping categories of mx

10⁵ ⊨⊤

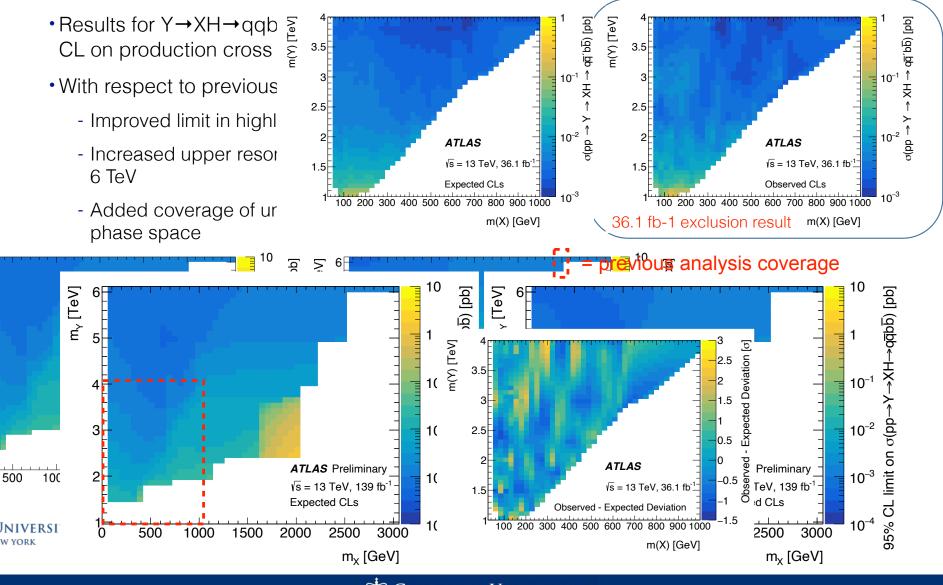
ŝ

- Bins chosen based on signal mass resolution
- Use BumpHunter as signal model-independent "excess finder" [<u>1101.0390</u>]
 - No significant (p-val < 0.01) excess across m_X bins in the LSB VR



m_X Windows

2-Prong Interpretation



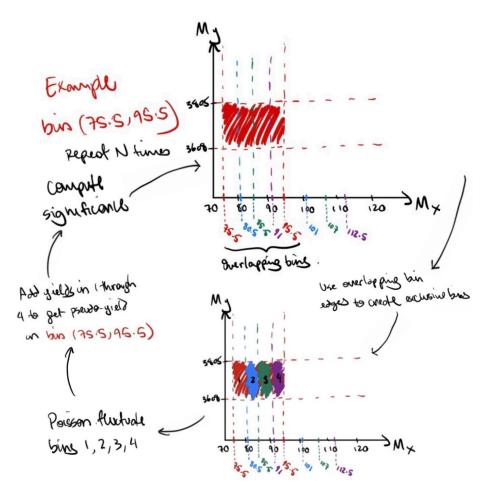
2 November 2022

COLUMBIA UNIVERSITY

Global Significance Calculation

- Goal: Determine an overall global significance difficulty arises from overlapping m_x windows
- 27 Exclusive m_y bins and 57 overlapping m_x bins = 1539 analysis bins
 - Make exclusive m_x bins from each overlapping window
 - Draw N events in each exclusive m_x bin where N is drawn from a Poisson distribution whose mean is the expected background yield in the exclusive bin
 - Sum the yields from each exclusive bin to arrive at the yield for each analysis bin
 - The p-value is determined for each analysis bin, and the maximum significance recorded
 - This process is repeated N times, where N is the total number of events in the SR
- The global p-value is the fraction of toys with maximum significance greater than that observed in data

COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK



Comparing to VV Searches

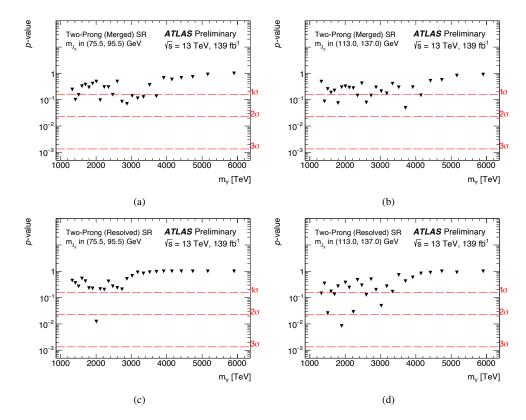


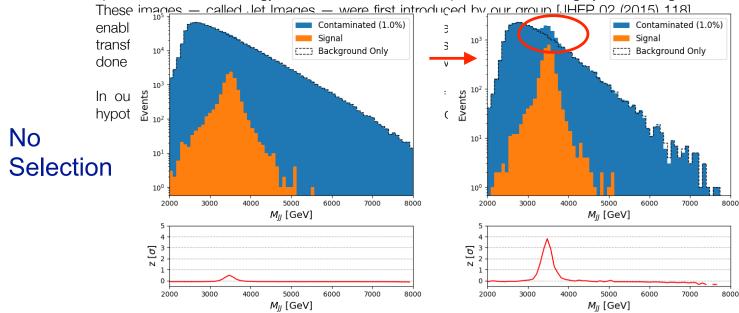
Figure 10: The *p*-value per m_Y bin for both two-prong SRs, calculated using only statistical uncertainties. Two m_X bins are shown, [75.5, 95.5] and [113.0, 137.0] GeV, which corresponds to a window containing the W/Z and Higgs boson mass respectively. Events are thus split into merged W/Z window (a), merged Higgs window (b), resolved W/Z window (c), and resolved Higgs window (d). The background is determined by a background-only fit to the data with all statistical and systematic uncertainties included. In both m_X windows, the *p*-value approximates a constant value of 0.5 for the high Y mass region of the resolved SR, as this region of phase space is far more likely to produce a highly boosted J_X that falls in the merged SR selection.

COLUMBIA UNIVERSITY

Below, we see a snapshot of a 13 TeV proton-proton collision.

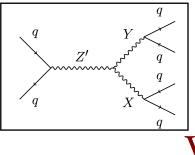
VRNN in the LHC Olympics

- Developed in simulation via the LHC Olympics community anomaly detection challenge [2101.08320]
- <u>LHC Olympics dataset</u>: Pythia generated + Delphes detector simulation (no pileup)
- Signal: 3.5 TeV Z' → 500 GeV X + 100 GeV Y
 - Two substructure hypotheses: 2-pronged and 3-pronged X/Y decays
- · Reconstruction = two largeradus Eventsleasng mages
- →VRNN paper published Using this dataset (2, 4) to acceptangular grid that allows for an imagebased grid arrangement. During a collision, energy from particles are deposited in pixels in (n, ¢) space. We take these energy levels, and use them as the pixel intensities in a greyscale analogue.



Convolut

Jet Image

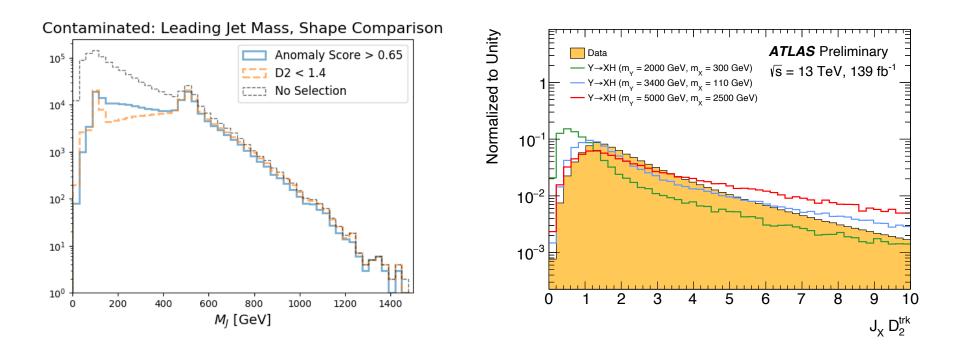


Below, we have the lear signal and background difference-visualization te

COLUMBIA UNIVERSITY

Comparison to D2

- Dataset = 2-prong % contaminated
 - Selections: D2 < 1.4 / AS > 0.65 (equivalent background rejection)
 - AS creates less mass sculpting than substructure variables
- In Y \rightarrow XH \rightarrow qqbb, cut on D2_{trk} < 1.2 (merged) or > 1.2 (resolved)



Alignment

• Goal: remove mass and pT information from input jets to avoid tagging on kinematics alone

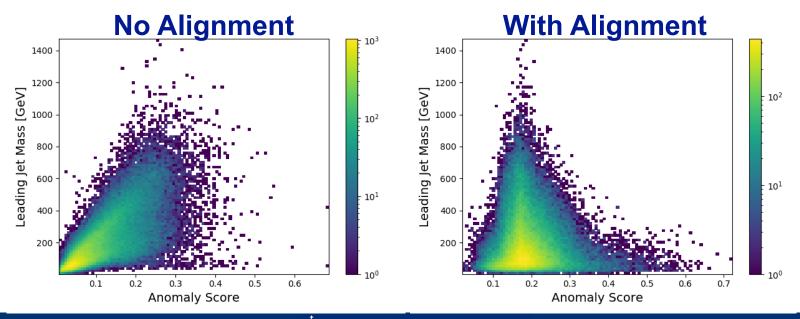
• Procedure:

- 1. Rescale each jet to the same mass
- 2. Boost each jet to the same energy
- 3. Rotate each jet to the same η/Φ orientation
- Result: anomaly score far less correlated with mass in background jets

Start

```
Boost jet in z direction until \eta_{Jet} = 0
Rotate jet about z axis until \phi_{Jet} = 0
Rescale jet four-vector such that m_{Jet} = 0.25 \text{ GeV}
Boost jet along its axis until E_{Jet} = 1 \text{ GeV}
Rotate jet about x axis until hardest constituent has \eta_1 = 0, \phi_1 > 0
if Any constituents have \Delta R > 1^a then
    Remove all constituents with \Delta R > 1
    Rebuild jet with remaining constituents
   Repeat from start
else
1 continue
end
if Number of constituents > 20 then
    Keep up-to the first 20 constituents, ordered in p_T
   Rebuild jet with remaining constituents
   Repeat from start
else
| continue
end
Reflect constituents about \phi axis such that the second hardest constituent has \eta_2 > 0
```

 $^{a}\Delta R$ is computed as $\sqrt{\eta^{2} + \phi^{2}}$ for each constituent, where η and ϕ are measured relative to the x axis.



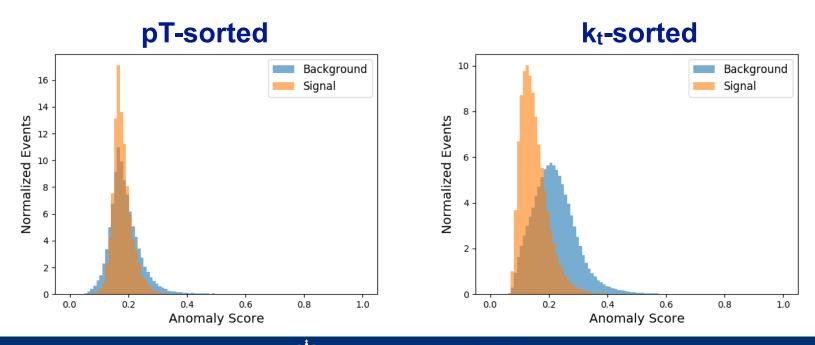
COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

Sequence Ordering

- In a recurrent architecture, apt sequence modeling of jets (eg. order of constituents) can highlight importance sequence features & boost performance
- Select kt-distance ordering to highlight substructure: nth constituent has highest kt-distance relative to previous, starting with highest pT constituent

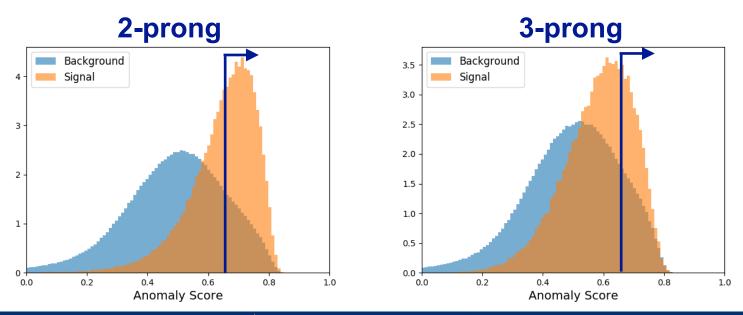
$$c_n = max(p_{Tn}\Delta R_{n,n-1})$$

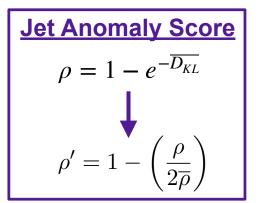
 Result: better separation of two-prong signal from diffuse QCD background than pT-sorting



Analysis Application

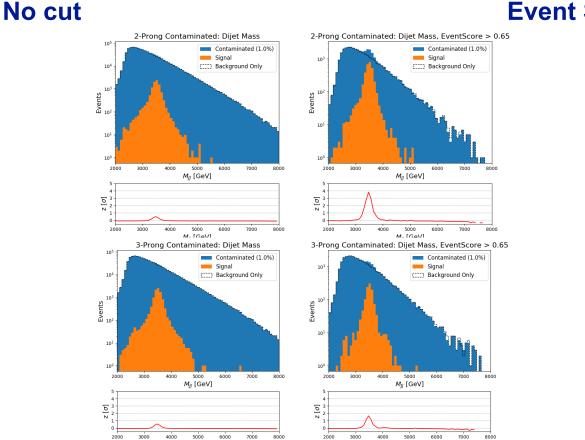
- Compute anomaly score for each jet
 - Higher KL divergence = higher loss = lower anomaly score
 - Transform such that higher AS corresponds to more anomalous jets
- Analysis strategy: cut-and-count on $\rho' > 0.65$ as sole signal region selection & test signal significance in bins of mJJ





Results: 2 and 3-Prong Signal

- Perform bump hunt on m_{JJ} with selection on *Event Score* = max of two leading jet Anomaly Scores
- Dataset = background + 1% signal contamination
- Enhance a 0.5σ two-prong signal excess to 4.0σ solely from an Event Score cut at 0.65
- Enhance a 0.5σ three-prong excess to 1.5σ using the same score



Event Score > 0.65

COLUMBIA UNIVERSITY

*M*_{//} [GeV]

M_{JJ} [GeV]

Performance vs. Contamination

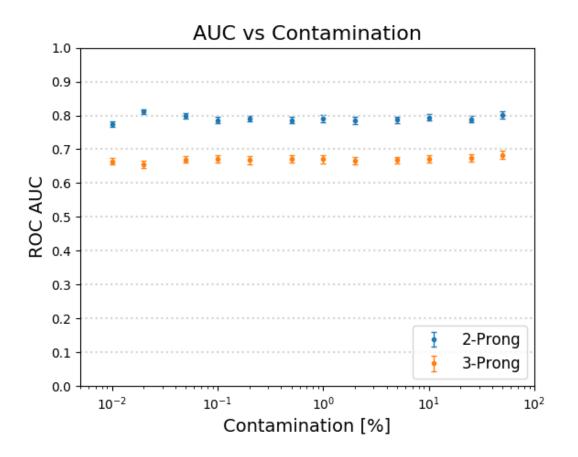


Figure 11. ROC AUC vs. percent signal contamination in training datasets. The performance of the Anomaly Score is consistent across a wide range of contamination levels.

COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

Performance vs. Training Time

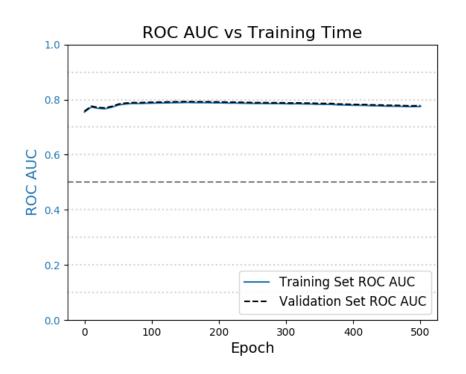


Figure 6. Area Under the Curve (ROC AUC) vs. training time in epochs on a 1% signal-contaminated dataset. The VRNN reaches an optimal performance quickly, and retains this performance over a long training period. The difference in performance between the training and validation sets is a result of the former containing elements of signal.