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SIFT: Scale-Invariant Filtered Tree

Low top pt High top PT

boost

(Gregor Kasieczka) N

Candidate pairs are merged, dropped, or isolated,
according to criteria integrated into the SI measure
SIFT unifies: a) large-radius jet finding, b) filtering of
soft wide radiation, and c) substructure axis finding
into a single-pass prescription for low/high boosts
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* Massive resonances decay into hard prongs

e Jet definitions with fixed cones impose a scale

* Boosted objects collimate and structure is lost

e Substructure recovery techniques are complex

e Can we avoid losing resolution in the first place?

* Select proximal objects w/ scale-invariant measure

B3, + Eig

5AB =

N-subjet Tree holds superposition
of projections onto N=1,2,3 prongs
Hard prongs are preserved to end
The measure history discriminates
N=1,2,3 typically above 90% AUC
Faithful kinematic reconstruction



Standard kT Jet Clustering Algorithms

Debris from showering & hadronization must be reassembled in a manner that

preserves correlation with the underlying hard (partonic) event

3 related algorithms reference an input angular width Ry & differ by an index n

Objects wider than Ry will never be clustered; Objects inside cone always merge
= 0, or “Cambridge/Aachen” favors objects with high angular adjacency

n = +1, or “kT” additionally favors clustering where one of the pair is soft

n = —1, or “Anti-kT” prioritizes clustering where one of the pair is hard

Anti-kT is now the default jet clustering tool at LHC, with Ry ~ 0.5

It is robust against “soft” and “collinear” jet perturbations and has regular jet

shapes which are favorable for calibration against pileup, etc.
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A Scale-Invariant Distance Measure

It is worth asking whether alternative techniques could provide intrinsic
resiliency to boosted event structure; this requires dropping the input scale Ry

It would be good to “asymptotically” recover key behaviors of Anti-kT
Numerator should favor angular collimation; we propose AM?Z, similar to JADE
Denominator should suppress soft pairings; we propose XE%,similar to Geneva
Result is dimensionless, Lorentz invariant (longitudinally in the denominator),
and free from references to external / arbitrary scales

Amip = (P +p)> —m4y —mp = 2phpf
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Comparison to the Geneva Measure

8 E;E;(1 —cosby)
YiT 9T (B 1 E;)

 Though motivated for new reasons, our measure is similar to “Geneva”
* In addition to normalization, there are three primary differences:
o Sum of squares rather than square of sum (minor change)
o Transverse cylindrical coordinates are referenced, as suitable for hadron
collider rather than electron collider applications (relevant change)
o Mass of merger candidates is accounted for (significant change)
 The more novel updates are not to the measure, but relate instead to:
o Filtering of stray radiation and a related halting criterion
o The concept of an N-subject Tree (superposition of axis candidates)



Moving Toward a Geometric Measure

* An efficient algorithm needs something like a “GEOMETRIC” neighbor finding

* We need to refer to the collider coordinates of A & B directly (An 45, Ad 45, etc.)
* For massive A & B, it will actually be rapidity Ay, 5 that is relevant
* Boost from the P, = 0 frame into the lab:

Am%p =2 x (EAE®P — plp? — p7pF cos A ap)

E\ (coshy sinhy\ (Etr\ (FErcoshy) ¢ The difference between E; & Py (i.e.
p.) \sinhy coshy) \ 0 /  \ Ersinhy MASS) means that we cannot perfectly

factorize kinematics from geometrics

A B A _B . .
ErEr —p. D, * Therole of ¢ is to deemphasize
= E{ Ef x (coshy” coshy® — sinh y” sinhy”) azimuthal differences in the non-

— E4EE cosh Ayap relativistic limit

Am? s =2F4EE x (cosh Ayap — 265 cos AquB)

eo Pt ((om\T )
~ Er EZ B pi



Comparative Angular Response
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AR% ;= ARYp
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The AR? measure is recovered for zero
mass & small angular separations
Hyperbolic cosine differs from cosine in
that all Taylor terms are POSITIVE ...
rapidity separations dominate azimuth
Massive or low-pT objects resist
clustering, even at small angles; this is a
type of BEAM MEASURE
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Geometrizing the Denominator

The remainder of the metric refers only to transverse energy RATIOS
This factor has a symmetry under E; —» 1/E7
It asymptotically mimics BOTH kt and anti-kt clustering, preferencing the

clustering of pairs with hierarchically DISPARATE transverse scales
It has the benefit of being ANALYTIC
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Comparative Energy-Momentum Response
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} * The kT algorithms SCALE the overall
response by a power of the geometric
mean of transverse energies
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All Together: the SIFT Measure

dap = P x AéiB
cosh Ayap — E4EB cos Adap
cosh Auap

The measure is a simple product of energy and angular-type factors
Clustering preferences pairs that are (relatively) soft and/or collinear

Since mutually hard (relative to other available radiation) members will defer
clustering, prongy structure is preserved to the end and easily accessed
However, extraneous wide and soft radiation is assimilated very early

This distorts the kinematic reconstruction (mass especially)

Moreover, there is no sense of when to *stop™* clustering

These failures are potentially fatal, precluding practical application!



Lepton to TThar 2.5 TeV Scale Invariant Clustering with Ghosts

e See Video “A” Posted at Indico



FILTERING Stray Radiation

* We know, at least, how to deal with soft, wide-angle radiation

* Take a cue from “Soft Drop” (2014 Larkoski, Marzani, Soyez, Thaler)

* This “Grooming” removes contaminants like ISR, UE, and pileup

» SD iteratively DECLUSTERS C/A, dropping softer object unless & until:

min(Pr,, Prg) (ARAB>B
cut

Prap + Prp Ry

e Typically, z.yt is O(0.1), and § > 0 for grooming
 We propose an analog to be applied within the original clustering
itself, expressible in the scale invariant language

D2
Cluster: % < { (2 eAB) < 1}

* With factors of 2 in their “natural” places the maximal effective cone size is V2
* This is a DYNAMIC boundary, and the angular size reduces for imbalanced scales



Dropping vs. Isolating

This leaves the question of what to do when clustering FAILS ...
There are two distinct ways to fail the filtering criterion, to be handled differently
The scale disparity can be too extreme (soft radiation) at O(1) angular separation

(e < 1) and (AR%p ~ 1)

In this case the metric product is small ... DROP the softer member
Or, the angular separation can be too large (wide angle) with comparable scales

(Af{iB > 1) and (e45 ~ 1)

In this case the metric product is large ... ISOLATE both objects

Isolate: {1} <éus
Drop: {(26A3)2 < 1} < dap < {1}



Clustering Phase Diagram

2 x 4B

< SOFT

0
0 < COLLINEAR L 2 AR =2 s

* The unification of clustering, filtering, and isolation also provides natural halting
e Grey contours “y = §/x” mark constant values of the measure

* Isolation occurs above 6 = 1; this amounts finding of variable large-radius jets

* The same factors separate clustering from dropping at “y = x”
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Lepton to TThar 2.5 TeV SIFT Filtered Clustering with Ghosts

 See Video “B” Posted at Indico



The N-Subjet TREE

We observe that:
o hard structures are preserved
o wide concentrations of hard objects are isolated
o soft wide radiation is dropped

However, hard prongs within a variable radius jet do still cluster

How do we fix the interior halting criterion to avoid losing structure?

The most interesting alternative is to not halt at all ...

We learn more about whether the prongs “want” to merge by merging!

Hard prongs are the final objects to be merged, and we retain a superposition of
projections onto all numbers N of prongs — suitable for computing N-subjettiness
The record of structure is also directly imprinted on the measure history



Tagging Jet Substructure

N-Subjettiness 1y is the leading tool for characterizing how well a given event
matches an N-prong hypothesis (axes chosen separately)

The best discrimination comes from the ratio ry, e.g. how much more 3-prong-
like is the event than 2-prong like

However, this procedure is also substantially complicated

Zz’EJ P1i min(ARz'k)
Zie J pT,iRO

Given N axes ng, TN =

TN

N —
TN—-1

It is interesting to ask if structure tagging can be incorporated into clustering
To compare and assess performance, we simulate 1, 2 (W >jj),and 3 (t>jjj)
jet event samples, at a range of transverse scales



Binned Event Fraction

Binned Event Fraction

T, /741 as implemented by Delphes

The expected 2/1 discrimination is validated, but seen to degrade at high boost

Vs =13 TeV, Pr=200 GeV £10%
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Binned Event Fraction

Binned Event Fraction

Vs =13 TeV, Pr=400 GeV £10%
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Binned Event Fraction

Binned Event Fraction

T, /71 with SIFT Axes

SIFT is also very good for N-subjettiness axis finding

Vs =13 TeV, Pr=200 GeV £10%

T0.0 0.2 0.4 0.6 0.8 1.0
73/71 (SIFT)

Vs =13 TeV, Pp=800 GeV £10%

“00 02 04 0.6 0.8 1.0
7y/71 (SIFT)

Binned Event Fraction

Binned Event Fraction

Vs =13 TeV, Pr=400 GeV £10%

“00 0.2 0.4 0.6 0.8 1.0
Ty /7'1 (SIFT)

Vs =13 TeV, Pr=1600 GeV £10%

0.0 0.2 04 0.6 0.8 1.0
73/ (SIFT)
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Binned Event Fraction

Binned Event Fraction

74 /7, (Delphes)

The next ratio is confirmed to separate t/W effectively, but likewise degrades

Vs =13 TeV, Pr=200 GeV £10%
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Binned Event Fraction

Binned Event Fraction
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Binned Event Fraction

Binned Event Fraction

T4 /T, with SIFT Axes

Vs =13 TeV, Pr=200 GeV £10%

T0.0 0.2 0.4 0.6 0.8 1.0
T3/T2 (SIFT)

Vs =13 TeV, Pp=800 GeV £10%
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Binned Event Fraction

Binned Event Fraction

Vs =13 TeV, Pr=400 GeV £10%

“00 0.2 0.4 0.6 0.8 1.0
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Vs =13 TeV, Pr=1600 GeV £10%

0.0 0.2 04 0.6 0.8 1.0
73/72 (SIFT)
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Binned Event Fraction

Binned Event Fraction

SIFT(

1)

We are also interested in whether the SIFT measure tracks jettiness DIRECTLY
It seems not only to do so, but to excel specifically at large boost

Vs =13 TeV, Pr=200 GeV £10%

Vs =13 TeV, Pr=400 GeV £10%
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Binned Event Fraction

Binned Event Fraction

SIFT(2)

The last several mergers hold the most information and are complementary

Vs =13 TeV, Pr=200 GeV £10%

Vs =13 TeV, Pr=_800 GeV £10%
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SIFT(3)

* In general, the measure is large if you have merged at least N hard prongs
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Binned Event Fraction

Binned Event Fraction

The included filtering gives sharp accurate mass reconstruction at large boost
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Assessing Performance

A Boosted Decision Tree lets us compare information density in an unbiased way
The BDT is also completely transparent, since it amounts simply to cascaded
binary selection cuts (branchings) with assigned scores

We feed the BDT Delphes N-subjettiness ratios up to 5/4

We also provide it with the final values of the SIFT measure

We compare outcomes in isolation, and with both data sets provided together
We compare the power of 2/1 and 3/2 discrimination at a range of scales



2/1 Discrimination with BDT @200 GeV

* Performance is comparable at low boost, but the BDT gives the edge to SIFT

Receiver Operating Characteristic Receiver Operating Characteristic Receiver Operating Characteristic
1.0 1.0 1.0
7’ b 7’ 7’
/ ,l/ // /'/ / "/
. . .
I’ I’ I’
0.8 > 0.8 &) — 0.8 >
. . .
e’
o / o \Q / o \z\ /
/ / /
& AL & A & AL
0.6 N 0.6 o 0.6 N
9] / ) a / ) /
: & : & : p
g (SN £ N £ 2
= )G = \O - = -
£ 7 £ e £ %
o 04 < o 04 2 o 04 2
2 7 2 \/J 7 2 7
= 7 = S = 7
I’ I’ I’
0.2 < 0.2 < 0.2 <
I, I, I,
I’ I’ I’
s Area Under Curve: 0.92 s Area Under Curve: 0.89 s Area Under Curve: 0.93
0.0+ I I 0.0+ I I 0.0+ I I
0.0 0.2 04 0.6 0.8 1.0 0.0 0.2 04 0.6 0.8 1.0 0.0 02 0.4 0.6 0.8 1.0
False Positive Rate False Positive Rate False Positive Rate
Signal and Background Score Distribution Feature Importance to Total Gain
30
[ Background
, SIFT(3), 74 /73, ...
1 Signal /7 73/72, SIFI(3), 74/ 73
25

e To/71, SIFT(2)

[
(=1
L

Probability Density
G

(=1
1

0.0 0.2 0.4 0.6 0.8 1.0
Signal Classification Score

Walker - Sam Houston State — ML4Jets ‘22 27



2/1 Discrimination with BDT @400 GeV

* The pattern continues as we climb in energy
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2/1 Discrimination with BDT @800 GeV

Probability Density

At larger transverse scales, the edge tips decisively to the SIFT measure
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2/1 Discrimination with BDT @1.6 TeV

e At extreme boost, we observe a substantial advantage for SIFT
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3/2 Discrimination with BDT @200 GeV

* The same pattern emerges in the 3/2 discrimination
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3/2 Discrimination with BDT @400 GeV

* In all cases, the combined power is greater than either method alone
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3/2 Discrimination with BDT @800 GeV

* Again, the main advantages emerge at large scales, where SIFT excels
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3/2 Discrimination with BDT @1.6 TeV

We also find that SIFT is less sensitive to course graining of the object coordinates
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Summary and Conclusions

SIFT is a SCALE INVARIANT clustering algorithm designed to avoid losing substructure
FILTERING of soft-wide radiation and variable-radius isolation is fully integrated

The measure history & TREE of N-subjet axis candidates encode structure on the fly
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Thank You!

Mathematica movie-generating notebook is available by request to jwalker@shsu.edu



Software Advertisement

PROCEEDINGS

OF SCIENCE

Automated collider event selection, plotting, & machine

learning with AEACuS, RHADAManTHUS, & MInOS
All data analysis for this project was

performed with the indicated set of tools

Joel W. Walker®*
Th e p ac ka ge | S ava | I a b | e fo r d owhn | oa d & “Department of Physics and Astronomy, Sam Houston State University,

Box 2267, Huntsville, TX 77341, USA

public use from GitHub: E-mail: jwalker@shsu. edu

htt pS . / / g it h u b .com / J oe |WW8 | ke r/ A EAC u S A trio of automated collider event analysis tools are described and demonstrated, in the form of

a quick-start tutorial. AEACuS interfaces with the standard MadGraph/MadEvent, Pythia, and
I Wl | | h e I p yO u ! Delphes simulation chain, via the Root file output. An extensive algorithm library facilitates the
computation of standard collider event variables and the transformation of object groups (including
jet clustering and substructure analysis). Arbitrary user-defined variables and external function
calls are also supported. An efficient mechanism is provided for sorting events into channels with
distinct features. RHADAManTHUS generates publication-quality one- and two-dimensional
histograms from event statistics computed by AEACuS, calling MatPlotLib on the back end. Large
batches of simulation (representing either distinct final states and/or oversampling of a common
phase space) are merged internally, and per-event weights are handled consistently throughout.
Arbitrary bin-wise functional transformations are readily specified, e.g. for visualizing signal-
to-background significance as a function of cut threshold. MInOS implements machine learning
on computed event statistics with XGBoost. Ensemble training against distinct background
components may be combined to generate composite classifications with enhanced discrimination.
ROC curves, as well as score distribution, feature importance, and significance plots are generated
on the fly. Each of these tools is controlled via instructions supplied in a reusable cardfile,
employing a simple, compact, and powerful meta-language syntax.
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Collider Variables & Coordinates

* Transverse components (perpendicular to the beam) are very important
(invariant under longitudinal boosts, Py total is zero)

» Differences in orientation characterized by AR, referring also to azimuth angle ¢

e The pseudorapidity 77 is a proxy for the polar (beam) angle 6, defined such that
differences An are (almost) invariant under longitudinal boosts

* This invariance is exact for the rapidity y (difference is handling of MASS)

AR =\/(An)? + (Ag)? 3
1 P|+P 0
n=-In ‘_,I; = —Intan | =
2 |P| - P, 2
> 2
1 E+ P, \/ cosh? 7 + % + sinhn
3155111 T_p =In

M?
I+ P2

FIG. 1: The pseudorapidity n (bold, orange) is plotted as a func-
tion of the polar angle . For comparison, the longitudinal rapidity
y (fine, blue) is also shown for various values of M/Pr, equal to
{1/2,1,2,5,10,20} from top to bottom. 0
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