

Reconstructing particles in jets with set transformer and hypergraph models

ML4Jets 2022 Rutgers University

F. Armando Di Bello, **Etienne Dreyer**,

S. Ganguly, E. Gross, L. Heinrich,

A. Ivina, N. Kakati, M. Kado,

L. Santi, J. Shlomi, M. Tusoni

Particle reconstruction

Hard scatter process

Particle reconstruction

Infer the **set** of particles which produced the **set** of energy deposits in detector

Particle reconstruction

Hard scatter process

Final state particles

Energy deposits in detector

true

PS
had'zn.
decays

predicted

predicted

preconstruction

Infer the **set** of particles which produced the **set** of energy deposits in detector

Challenges:

- Physical overlap (due to collimated particles and pileup)
- Feature overlap between different particle signatures
- Dimensionality of data and complexity of spatial correlations

Open calorimeter model (SCD)

- Interfaced to Pythia8 event generator
- Tracking emulation in 3.8T magnetic field
- 3 ECAL + 3 HCAL concentric GEANT4 calorimeter layers
- To be released in forthcoming paper

Node encoding

J. Kieseler <u>arXiv:2002.03605</u> (won't have time to present today)

Transformer set prediction with slot attention

Based on:

A. R. Kosiorek, H. Kim, D. J. Rezende

arXiv:2006.16841

F. Locatello, D. Weissenborn et al.

Transformer set prediction with slot attention

Based on:

A. R. Kosiorek, H. Kim, D. J. Rezende arXiv:2006.16841

F. Locatello, D. Weissenborn et al.

Transformer set prediction with slot attention

attention weights

Based on:

~ particle-node affinities

A. R. Kosiorek, H. Kim, D. J. Rezende arXiv:2006.16841

F. Locatello, D. Weissenborn et al.

Transformer set prediction with slot attention

compared with target particles

via permutation-invariant matching

(Hungarian algorithm)

arXiv:2006.16841

F. Locatello, D. Weissenborn et al.

Graph

Graph

Adjacency matrix

Graph

Hypergraph

Adjacency matrix

$$(N \times N)$$

Graph

Adjacency matrix

Hypergraph

$$(N \times N)$$

Graph

Adjacency matrix

Hypergraph

Bipartite graph

 $(N \times N)$

Graph

Adjacency matrix

Hypergraph

$$(N \times N)$$

Bipartite graph

Incidence matrix

cartoon from Nilotpal Kakati

Topoclusters and tracks

cartoon from Nilotpal Kakati

Topoclusters and tracks

cartoon from Nilotpal Kakati

Topoclusters and tracks

cartoon from Nilotpal Kakati

Target hypergraph

True particles

Predicted hypergraph

Topoclusters and tracks

Target hypergraph

Topoclusters and tracks

Why use a hypergraph?

Target hypergraph

Topoclusters and tracks

Physically-interpretable incidence matrix

$$[I]_{ia} = \frac{E_{ia}}{E_i}$$

 \Rightarrow fraction of topocluster i energy contributed by particle a

Why use a hypergraph?

Target hypergraph

Topoclusters and tracks

Physically-interpretable incidence matrix

$$[I]_{ia} = \frac{E_{ia}}{E_i}$$

 \Rightarrow fraction of topocluster i energy contributed by particle a

Advantages

- * Interpretability
- * Biased toward E cons.
- * Can approx. particle energy as incidence-weighted sum of node energies

1) predict incidence matrix

1) predict incidence matrix

Recurrently predicting hypergraphs <u>arXiv:2106.13919</u>

1) predict incidence matrix

input nodes

hyperedges

Hyperedges

0.6

Energy-fraction incidence matrix

Incidence matrix

Recurrently predicting hypergraphs <u>arXiv:2106.13919</u>

2) predict particle properties

Energy-weighted proxy quantities:

$$\hat{E}_a = \sum_{\text{nodes } i} E_i \cdot I_{ia}$$

$$\hat{\eta}_a = \sum_{\text{nodes } i} \eta_i \cdot \frac{E_{ia}}{E_a}$$

$$\hat{\phi}_a = \sum_{\text{nodes } i} \phi_i \cdot \frac{E_{ia}}{E_a}$$

input nodes

hyperedges

Hyperedges

0.6

Energy-fraction incidence matrix

Incidence matrix

Recurrently predicting hypergraphs arXiv:2106.13919

2) predict particle properties

Energy-weighted

proxy quantities:

predict

 $\eta_a^{\text{pred}} = \hat{\eta}_a + \Delta \eta_a^{\text{net}}$

offsets

$$p_{\mathrm{T}} \eta \phi$$

$$\hat{E}_a = \sum_{\text{nodes } i} E_i \cdot I_{ia}$$

$$\hat{\eta_a} = \sum_{\text{nodes } i} \eta_i \cdot \frac{E_{ia}}{E_a}$$

$$\hat{\phi}_a = \sum_i \phi_i \cdot \frac{E_{ia}}{E_a}$$

Energy-fraction incidence matrix

Incidence matrix

Hyperedges

0.6

Recurrently predicting hypergraphs <u>arXiv:2106.13919</u>

predict

offsets

 $p_{\rm T} \eta \phi$

Energy-weighted proxy quantities:

$$\hat{E}_{a} = \sum_{\text{nodes } i} E_{i} \cdot I_{ia}$$

$$\hat{\eta}_{a} = \sum_{\text{nodes } i} \eta_{i} \cdot \frac{E_{ia}}{E_{a}}$$

$$\hat{\phi}_a = \sum_{\text{nodes } i} \phi_i \cdot \frac{E_{ia}}{E_a}$$

Comparing pred. vs target particles

1) Hungarian matching:

Comparing pred. vs target particles 1) Hungarian

matching:

pairs with best match in

angle & momentum

1) Hungarian matching:

pred. vs target particles

pairs with best match in angle & momentum

2) Performance metrics

- Efficiency and fake rate
- Particle angular, momentum residuals

$$\frac{\mathsf{x} - \mathsf{o}}{\mathsf{x}}$$

Classification purity

Comparing pred. vs target particles

1) Hungarian matching:

2) Performance metrics

- Efficiency and fake rate
- Particle angular, momentum residuals

Classification purity

Jet-level quantities

Charged particle momentum

⇒ ML models exploit complementary information from calorimeter activity

Photon efficiency:

$$\epsilon = \frac{\text{#matched targets}}{\text{#total targets}}$$

>90% above 2 GeV

Photon fake rate:

$$\epsilon = \frac{\text{#unmatched predictions}}{\text{#total predictions}}$$

<5% above 20 GeV

Nu. Had. efficiency:

 $\epsilon = \frac{\text{#matched targets}}{\text{#total targets}}$

 \simeq 80% above 3 GeV

Nu. Had. fake rate:

 $\epsilon = \frac{\text{#unmatched predictions}}{\text{#total predictions}}$

<10% above 20 GeV

Classification accuracy

Photons

100%

>90% above 5 GeV

Neutral Hadrons

>90% above 15 GeV

Neutral particle properties

Jet-level performance

Jet momentum resolution

 Graph-based set-to-set models show ability to reconstruct individual neutral constituents <u>inside of a jet</u>

 Graph-based set-to-set models show ability to reconstruct individual neutral constituents <u>inside of a jet</u>

- *HGPflow*: particles as hyperedges
 - √ Enables physically-interpretable results
 - ✓ Introduces bias towards energy conservation
 - √ Shows best performance in our study

- Graph-based set-to-set models show ability to reconstruct individual neutral constituents <u>inside of a jet</u>
- HGPflow: particles as hyperedges
 - ✓ Enables physically-interpretable results
 - ✓ Introduces bias towards energy conservation
 - √ Shows best performance in our study

Stay tuned for arXiv!

Next steps

- Full-event dataset (+ pileup + γ conversions in tracker + ...)
- Improvements to HGPflow (one-shot training, cell-level input, ...)

Bonus

"Particle flow" paradigm

Main idea: use full detector information in complimentary way

e.g. track-cluster association

→ problem: potential overcounting

Traditional recipe [1]

- 1. Identify groups of cells (topological clustering)
- 2. Find associated tracks
- 3. Decide whether to merge with additional clusters
- 4. Subtract expected E from track to infer contribution from neutral particles

- Each step relies on discrete rules with few tuned parameters
- Does not predict cardinality or properties of the neutral particles

Can we approach this as a machine learning task?

Graph construction

- Cells connected to:
 - * nearest k = (8,6) cells in same (ECAL, HCAL) layer within d_{max}^{c-c}
 - * single nearest cell in neighboring layers within d_{max}^{c-c}
- Tracks connected to:

Why use graphs?

⇒ Well-suited to detector data:

- No ordering
- Set-to-set problem with variable cardinality
- Sparse (most cells not activated)
- Irregular (multiple detector geometries)
- Key info encoded in spatial relationships

Plan of attack

Dataset

- * 50k single-jet events (30k test)
- * SCD calo simulation
- * Track momentum smearing
- * Neglect pileup
- * No γ conversions upstream from iron layer

<u>Target</u>

Particles $\geq 1 \text{GeV}$ entering calorimeter

ML reconstruction algorithms

- 1. Object condensation
- 2. TSPN + slot attention
- 3. HGPflow