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Challenges:

• Physical overlap (due to collimated particles and pileup)


• Feature overlap between different particle signatures


• Dimensionality of data and complexity of spatial correlations
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Particle reco.  
set-to-set task

2) Classify them

Input set Output set

1) Identify particles (cardinality)

K0

γ
π+

3) Regress their  
     properties

✓ Direction ( )

✓ Momentum ( )

η, ϕ
pT
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• Interfaced to Pythia8 event generator

• Tracking emulation in 3.8T magnetic field

• 3 ECAL + 3 HCAL concentric GEANT4 calorimeter layers

• To be released in forthcoming paper

ATLAS-like calorimeter simulation

Open calorimeter model (SCD)
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https://arxiv.org/abs/2002.03605
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A. R. Kosiorek, H. Kim, D. J. Rezende 
arXiv:2006.16841

F. Locatello, D. Weissenborn et al. 
arXiv:2006.15055

Based on:
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Transformer set prediction  
       with slot attention

A. R. Kosiorek, H. Kim, D. J. Rezende 
arXiv:2006.16841

F. Locatello, D. Weissenborn et al. 
arXiv:2006.15055

Based on:

Properties

compared with target particles 
via permutation-invariant matching 

(Hungarian algorithm)

https://arxiv.org/abs/2006.16841
https://arxiv.org/abs/2006.15055
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Why use a hypergraph?
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[I]ia =
Eia
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Physically-interpretable incidence matrix

 fraction of topocluster  energy  
contributed by particle 

⇒ i
a

0.58
0.42

Advantages

✴ Interpretability

✴ Biased toward E cons.

✴ Can approx. particle energy  

as incidence-weighted sum  
of node energies
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Comparing pred. vs target particles

1) Hungarian  
    matching:

• Efficiency and fake rate

• Particle angular, momentum residuals


• Classification purity

2) Performance metrics

pairs with best match in 
angle & momentum

• Jet-level quantities

Truth Reco
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Charged particle momentum

 ML models exploit complementary information from calorimeter activity⇒
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Photon fake rate:

ϵ =
#matched targets

#total targets

ϵ =
#unmatched predictions

#total predictions

Photon efficiency:

>90% above 2 GeV

<5% above 20 GeV
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Nu. Had. fake rate:

ϵ =
#matched targets

#total targets

ϵ =
#unmatched predictions

#total predictions

Nu. Had. efficiency:

 80% above 3 GeV≃

<10% above 20 GeV
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Classification 
accuracy

Photons

Neutral 
Hadrons

>90% above 5 GeV

>90% above 15 GeV
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Neutral particle properties

R ≡
target − predicted

targetR(η)

      R(ϕ)

      R(pT)
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Jet momentum resolution# constituents / jet

clusters + tracks

Jet-level performance

ATLAS-like  
parameterized 

particle-flow
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• Graph-based set-to-set models show ability to reconstruct 
individual neutral constituents inside of a jet

• HGPflow: particles as hyperedges

✓ Enables physically-interpretable results

✓ Introduces bias towards energy conservation

✓ Shows best performance in our study

Take-home messages & outlook

• Full-event dataset (+ pileup +  conversions in tracker + …)

• Improvements to HGPflow (one-shot training, cell-level input, …)

γ

Next steps

Stay tuned for arXiv!



Bonus
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"Particle flow” paradigm

Traditional recipe [1]
1. Identify groups of cells (topological clustering)

2. Find associated tracks

3. Decide whether to merge with additional clusters

4. Subtract expected E from track to infer contribution from neutral particles

Main idea: use full detector information in complimentary way 
                     e.g. track-cluster association

• Each step relies on discrete rules with few tuned parameters

• Does not predict cardinality or properties of the neutral particles

Can we approach this as a machine learning task?

 problem: potential overcounting→

[1] ATLAS Collaboration. Jet reconstruction and performance using particle flow with the ATLAS Detector. Eur. Phys. J. C 77 (2017)

https://doi.org/10.1140/epjc/s10052-017-5031-2
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Graph constructionCells connected to:

✴ nearest  cells in same (ECAL, HCAL) layer within 

✴ single nearest cell in neighboring layers within 


Tracks connected to:

✴ nearest  cells in (ECAL, HCAL) layers within 

k = (8,6) dc−c
max

dc−c
max

k = (4,3) dt−c
max

{dc−c
max}l = {0.05,0.05,0.08,0.15,0.15,0.30}

{dt−c
max}l = {0.10,0.10,0.20,0.50,0.50,1.00}

Ex: EM layer 2
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• No ordering

• Set-to-set problem with variable cardinality

• Sparse               (most cells not activated)

• Irregular            (multiple detector geometries)

• Key info encoded in spatial relationships

 Well-suited to detector data:⇒

Type Spatial Kinematic Auxiliary Total

cell 11
track 26

x, y, z, η, ϕ, layer
d0, z0, {η, ϕ}0,proj pT, q/p

E, E/σnoise

isTrack, isMuon, …

isTrack, …

Cells

Tracks

Feature vectors

Nodes Edges
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photons

charged 
        particles

neutral 
hadrons

Plan of attack

ML reconstruction algorithms
1. Object condensation


2. TSPN + slot attention


3. HGPflow

Dataset

Target
Particles  entering calorimeter≥ 1GeV

✴ 50k single-jet events (30k test)

✴ SCD calo simulation

✴ Track momentum smearing

✴ Neglect pileup

✴ No  conversions upstream from iron layerγ


