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• Total neutrino transverse momenta is often measured 
by the experimental proxy 𝒑𝑻

𝐦𝐢𝐬𝐬

• No information about the longitudinal momentum

• Transverse momenta in final states with more than 
one neutrino are under-constrained

• Any indication of the neutrino kinematics could benefit a 
wide variety of analyses in collider physics
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• Many solutions might be possible but not equally likely

• Leverage information from the event to constrain 
this likelihood

• Leverage an inductive bias

• Assume an underlying process

• Trying to recover a degree of freedom

• Standard supervised regression methods might not 
be applicable

• Propose to a conditional normalizing flow to learn a 
conditional likelihood over the neutrino momenta

Our Approach
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𝑝 𝑥|𝑦 𝑝 𝑧

observation

target

𝒩(0, 𝕀)

• Conditional normalising flows parameterise an 

invertible map from 𝒙 to 𝒛 given 𝒚 as conditioning

inputs

• (𝒚, 𝒙) can be seen as input/target training pair

• Training: Model runs forward for maximum likelihood 

objective

𝐿𝑜𝑠𝑠 𝑦, 𝑥 = −log(𝑝𝑋 𝑥|𝑦 )

= − log 𝑝𝑧 𝑓𝜃 𝑥|𝑦 − log det 𝐽 𝑥|𝑦

• Sampling: Model runs in reverse giving 𝑝 𝑥|𝑦
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• Commonly studied process is the single leptonic 𝒕 ҧ𝒕 decay

• Full properties of leptonic top not directly measurable due 
to the unknown longitudinal momentum of the neutrino
in the final state

Case Study: Single Leptonic 𝑡 ҧ𝑡
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• If we assume that

• 𝑝𝑥
𝜈, 𝑝𝑦

𝜈 = (𝑝𝑥
miss, 𝑝𝑦

miss)

• 𝑚𝑊 = 80.38 GeV

• Can solve for neutrino’s longitudinal momentum:

𝑝𝑧
𝜈 =

−𝑏± 𝑏2−4𝑎𝑐

2𝑎

Kinematic Solution: 𝑊 → 𝑙𝜈
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𝑊

𝑏

𝑡
𝑙

𝜈
Sometimes lead to 

no real solutions!

No off-shell

No reco effects

No reco effects



• Trained using simulated single leptonic 𝑡 ҧ𝑡
https://doi.org/10.5281/zenodo.6782987

• Combines observations + assumptions in fully probabilistic way

• Can scale to multiple neutrinos

𝜈-Flow Overview

ML4Jets 2022 20

https://doi.org/10.5281/zenodo.6782987


Inference on Individual Events
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Cherry picked representative examples



• Neutrino kinematic distributions for different methods of generation

• 𝝂-Flows(sample): Take one sample from 𝑝 𝑥|𝑦

• 𝝂-Flows(mode): Take 1024 samples keep one with highest likelihood under flow

Results: Neutrino Kinematics
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• Neutrino kinematic distributions for different methods of generation

• 𝝂-Flows(sample): Take one sample from 𝑝 𝑥|𝑦

• 𝝂-Flows(mode): Take 256 samples keep one with highest likelihood under flow

Results: Neutrino Kinematics
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• Reconstructed 𝒑𝒛 vs Truth 𝒑𝒛

Results: Neutrino Kinematics
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𝝂-Flows(mode)𝒑𝑻
𝒎𝒊𝒔𝒔 + 𝒎𝑾 Constraint



Results: Invariant Mass Reconstruction
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• Invariant mass reconstruction of the leptonic 𝑾 and leptonic 𝒕

• 𝑡 is reconstructed using the correct b-jet (not guaranteed in data)



Results: Invariant Mass Reconstruction
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• Reconstructed 𝒎𝒕 vs Truth 𝒎𝒕

𝝂-Flows(mode)𝒑𝑻
𝒎𝒊𝒔𝒔 + 𝒎𝑾 Constraint



Χ2: Downstream Task Example
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• Don’t know which of our reconstructed jets correspond to the 
𝒃𝒍𝒆𝒑, 𝒃𝒉𝒂𝒅, 𝒒𝟏, or 𝒒𝟐

• Up to 9 reconstructed jets

• Test all possible jet permutations

• Take permutation with smallest 𝚾𝟐

• Example of a method used in many combinatoric  solving 
approaches (Χ2, KLFitter, etc)



𝝂-Flow (mode) improves

upon kinematic solution by 

factor of 1.03 to 1.41

Χ2: Association Results

ML4Jets 2022 28

• Association accuracy of the 𝒃𝒍𝒆𝒑 verses the number of jets

• Parton with highest dependance on neutrino in Χ2 fit

• Events where the 4 signal jets were reconstructed



Bayesian Normalising Flows
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• Bayesian networks account for uncertainty in the 

network’s parameters 𝜃

https://towardsdatascience.com/why-you-should-use-bayesian-neural-network-aaf76732c150
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• Bayesian networks account for uncertainty in the 

network’s parameters 𝜃

• Switch from a deterministic mapping 𝑓 to probabilistic 

transformation

• Parametrise the weights as mean field gaussians 

𝒒𝝓 𝜽 and use VI to ensure that they do not stray too 

far from prior 𝒑 𝜽

𝐿𝑜𝑠𝑠 𝑦, 𝑥 = − log 𝑝𝑧 𝑓𝜃 𝑥|𝑦 − log det 𝐽 𝑥|𝑦 + KL 𝑞𝜙 𝜃 𝑝 𝜃

https://towardsdatascience.com/why-you-should-use-bayesian-neural-network-aaf76732c150



• Allows us to sample under the base 
distribution AND under the network 
parameters

• Gives variance of the network’s 
predictions

• Uncertainty from missing data

• Can signify the stability of the flow

Bayesian Flow Inference

ML4Jets 2022 33



Conclusions
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• Demonstrated an approach of using normalizing flow for neutrino momentum regression

• Reconstruction with the flow yields better distributions for 𝑝𝑧
𝜈 , 𝑚𝑙𝜈, and 𝑚𝑏𝑙𝜈

• Demonstrated benefits in example downstream task of jet association

• ArXiv pre-print available:

• https://arxiv.org/abs/2207.00664v2

Next steps

• Move to two neutrino case

• Use the flow / Bayesian flow as an event filter

https://arxiv.org/abs/2207.00664v2


Thank You
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• The distribution of the flow does seem to correspond to real world accuracy!

• Observed Accuracy verses Predicted Confidence

Interpretable Uncertainty
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• A normalising flow is a transformation that typically maps a complex distribution 𝒑𝑿 𝒙 into a simple 

distribution 𝒑𝒁 𝒛

• 𝒁 = 𝑓(𝑿) with an invertible and differentiable 𝑓(𝑥)

• Taking 𝒑𝑿 𝒙 to be the complex distribution over our data

• Can perform exact density estimation: 𝑝𝑋 𝑥 = 𝑝𝑍 𝑓 𝑥 |det(𝐽 𝑥 )|

• Can generate new data by sampling 𝑝𝑿: Sample 𝑝𝑍 ⋅ , compute 𝑓−1(𝑧)

• In practice we use an invertible neural network (INN) to parameterise 𝒇𝜽

• Usually train with INNs for generation using maximum likelihood objective for observed data: 

𝐿𝑜𝑠𝑠(𝑥) = −log(𝑝𝑋 𝑥 ) = −log(𝑝𝑍 𝑓𝜃 𝑥 ) − log(|det 𝐽 𝑥 )

Normalizing Flows
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𝑓𝑿 𝒁

𝑓−1

“diffeomorphism”

INN layers need to be 

invertible and have a 

Jacobian that is easy to 

calculate



𝜈-Flow Structure
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× 𝟕



DeepSet:Feature Network

• 5(11)->Linear->LeakyReLU->LayerNorm->64

• 64->Linear->LeakyReLU->LayerNorm->64

• 64->Linear->8

DeepSet: Attention Network

• 5(11)->Linear->LeakyReLU->LayerNorm->32

• 32->Linear->LeakyReLU->LayerNorm->32

• 32->Linear->1

DeepSet: Final Network

• 8(11)->Linear->LeakyReLU->LayerNorm->64

• 64->Linear->LeakyReLU->LayerNorm->64

• 64->Linear->8

Network Hyperparamers
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Each row is a layer showing:

Inputs(conditional inputs) -> operations -> outputs(residual)

Embedding Network

• 19->Linear->LeakyReLU->LayerNorm->64

• 64->Linear->LeakyReLU->LayerNorm->64(add)

• 64->Linear->32

Spline Network

• 2(32)->Linear->LeakyReLU->LayerNorm->64

• 64(32)->Linear->LeakyReLU->LayerNorm->64(add)

• 64->Linear->LeakyReLU->LayerNorm->64(add)

• 64->Linear->29



Training was done using the negative log likelihood as the loss 
function using the Adam optimizer with early stopping performed 
on a 10% holdout validation set. 

• Training set size: 528921

• Validation set size: 58768

Other training parameters:

• Batch size = 256

• Gradient norm clipping = 5

• Early stopping patience = 30

The learning rate followed a cyclic asymmetrical cosine schedule 
with a period of two epochs. Each cycle the learning rate would be 
ramped up from 0 to 5e-4 and then back down to 0. The fraction of 
the cycle used for warmup(cooldown) was set to 0.3(0.7).

Network Training
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• Looking at the invariant mass of 𝑏𝑙𝜈 using the 𝒃 selected by the 𝜲𝟐 fit

• Idealised refers to the truth neutrino and the correct 𝑏𝑙𝑒𝑝
• Shaded regions are subset of events where Χ2 yielded correct 𝑏𝑙𝑒𝑝

Χ2: Masses
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