ν-Flows

Conditional Neutrino Regression

Neutrinos are not directly observable

- Neutrinos are not directly observable
- Total neutrino transverse momenta is often measured by the experimental proxy $p_T^{
 m miss}$

- Neutrinos are not directly observable
- Total neutrino transverse momenta is often measured by the experimental proxy $p_T^{
 m miss}$
 - No information about the longitudinal momentum

- Neutrinos are not directly observable
- Total neutrino transverse momenta is often measured by the experimental proxy $p_T^{
 m miss}$
 - No information about the longitudinal momentum
 - Transverse momenta in final states with more than one neutrino are under-constrained

- Neutrinos are not directly observable
- Total neutrino transverse momenta is often measured by the experimental proxy $p_T^{
 m miss}$
 - No information about the longitudinal momentum
 - Transverse momenta in final states with more than one neutrino are under-constrained
- Any indication of the neutrino kinematics could benefit a wide variety of analyses in collider physics

- Many solutions might be possible but not equally likely
 - Leverage information from the event to constrain this likelihood

- Many solutions might be possible but not equally likely
 - Leverage information from the event to constrain this likelihood
 - Leverage an inductive bias
 - Assume an underlying process

- Many solutions might be possible but not equally likely
 - Leverage information from the event to constrain this likelihood
 - Leverage an inductive bias
 - Assume an underlying process
- Trying to recover a degree of freedom
 - Standard supervised regression methods might not be applicable

- Many solutions might be possible but not equally likely
 - Leverage information from the event to constrain this likelihood
 - Leverage an inductive bias
 - Assume an underlying process

- Standard supervised regression methods might not be applicable
- Propose to a conditional normalizing flow to learn a conditional likelihood over the neutrino momenta

Conditional Normalising Flows

- Conditional normalising flows parameterise an invertible map from x to z given y as conditioning inputs
 - (y, x) can be seen as input/target training pair

Conditional Normalising Flows

- Conditional normalising flows parameterise an invertible map from x to z given y as conditioning inputs
 - (y,x) can be seen as input/target training pair
- Training: Model runs forward for maximum likelihood objective

$$Loss(y, x) = -\log(p_X(x|y))$$

= $-\log(p_Z(f_\theta(x|y))) - \log|\det(J(x|y))|$

Conditional Normalising Flows

- Conditional normalising flows parameterise an invertible map from x to z given y as conditioning inputs
 - (y,x) can be seen as input/target training pair
- Training: Model runs forward for maximum likelihood objective

$$Loss(y, x) = -\log(p_X(x|y))$$

= $-\log(p_Z(f_\theta(x|y))) - \log|\det(J(x|y))|$

• Sampling: Model runs in reverse giving p(x|y)

Case Study: Single Leptonic $t\bar{t}$

• Commonly studied process is the **single leptonic** $t\bar{t}$ decay

Case Study: Single Leptonic $t\bar{t}$

- Commonly studied process is the **single leptonic** $t\bar{t}$ decay
- Full properties of leptonic top not directly measurable due to the unknown longitudinal momentum of the neutrino in the final state

- If we assume that
 - $(p_x^{\nu}, p_y^{\nu}) = (p_x^{\text{miss}}, p_y^{\text{miss}})$
 - $m_W = 80.38 \text{ GeV}$
- Can solve for neutrino's longitudinal momentum:

$$p_Z^{\nu} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$\begin{split} a &= (p_z^{\ell})^2 - (E^{\ell})^2, \\ b &= \alpha p_z^{\ell}, \\ c &= \frac{\alpha^2}{4} - (E^{\ell})^2 (p_{\mathrm{T}}^{\nu})^2, \\ \alpha &= m_W^2 - m_\ell^2 + 2(p_x^{\ell}, p_x^{\nu} + p_y^{\ell} p_y^{\nu}). \end{split}$$

- If we assume that
 - $(p_x^{\nu}, p_y^{\nu}) = (p_x^{\text{miss}}, p_y^{\text{miss}})$
 - $m_W = 80.38 \text{ GeV}$
- Can solve for neutrino's longitudinal momentum:

$$p_Z^{\nu} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

- Gives two solutions with no preference
 - Take the estimate closer to zero
 - Consider both possibilities in any downstream tasks

$$\begin{split} a &= (p_z^\ell)^2 - (E^\ell)^2, \\ b &= \alpha p_z^\ell, \\ c &= \frac{\alpha^2}{4} - (E^\ell)^2 (p_{\rm T}^\nu)^2, \\ \alpha &= m_W^2 - m_\ell^2 + 2(p_x^\ell, p_x^\nu + p_y^\ell p_y^\nu). \end{split}$$

- If we assume that
 - $(p_x^{\nu}, p_y^{\nu}) = (p_x^{\text{miss}}, p_y^{\text{miss}})$ • $m_W = 80.38 \text{ GeV}$ No reco effects
- Can solve for neutrino's longitudinal momentum:

$$p_Z^{\nu} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

- Gives two solutions with no preference
 - Take the estimate closer to zero
 - Consider both possibilities in any downstream tasks

- If we assume that
 - $(p_x^{\nu}, p_y^{\nu}) = (p_x^{\text{miss}}, p_y^{\text{miss}})$ • $m_W = 80.38 \text{ GeV}$ No reco effects
- Can solve for neutrino's longitudinal momentum:

$$p_z^{\nu} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
 Sometimes lead to no real solutions!

- Gives two solutions with no preference
 - Take the estimate closer to zero
 - Consider both possibilities in any downstream tasks

ν-Flow Overview

• Trained using simulated single leptonic $t\bar{t}$

https://doi.org/10.5281/zenodo.6782987

Category	Variables	Description
$\overrightarrow{p}_{\mathrm{T}}^{\mathrm{miss}}$	$p_x^{ m miss}, p_y^{ m miss}$	Missing transverse momentum 2-vector
Lepton	$p_x^\ell, p_y^\ell, \eta^\ell, \log E^\ell$ ℓ^{flav}	Lepton momentum 4-vector Whether lepton is an electron or muon
Jets	$p_x^j, p_y^j, \eta^j, \log E^j$ isB	Jet momentum 4-vector If jet met <i>b</i> -tagging criteria
Misc	$N_{ m jets}, N_{ m bjets}$	Jet and b-jet multiplicities in the event

- Combines observations + assumptions in fully probabilistic way
- Can scale to multiple neutrinos

Inference on Individual Events

Cherry picked representative examples

Results: Neutrino Kinematics

- Neutrino kinematic distributions for different methods of generation
 - ν -Flows(sample): Take one sample from p(x|y)
 - ν-Flows(mode): Take 1024 samples keep one with highest likelihood under flow

Results: Neutrino Kinematics

- Neutrino kinematic distributions for different methods of generation
 - ν -Flows(sample): Take one sample from p(x|y)
 - ν-Flows(mode): Take 256 samples keep one with highest likelihood under flow

Results: Neutrino Kinematics

• Reconstructed p_z vs Truth p_z

Results: Invariant Mass Reconstruction

- Invariant mass reconstruction of the leptonic W and leptonic t
 - t is reconstructed using the correct b-jet (not guaranteed in data)

Results: Invariant Mass Reconstruction

• Reconstructed m_t vs Truth m_t

X²: Downstream Task Example

- Don't know which of our reconstructed jets correspond to the b_{lep} , b_{had} , q_1 , or q_2
 - Up to 9 reconstructed jets
- Test all possible jet permutations
- Take permutation with smallest X²

$$\chi^2 = \frac{(m_W - m_{\ell\nu})^2}{\sigma_{\ell\nu}} + \frac{(m_W - m_{qq})^2}{\sigma_{qq}} + \frac{(m_t - m_{b\ell\nu})^2}{\sigma_{b\ell\nu}} + \frac{(m_t - m_{bqq})^2}{\sigma_{bqq}}$$

• Example of a method used in many combinatoric solving approaches (X², KLFitter, etc)

X²: Association Results

- Association accuracy of the b_{lep} verses the number of jets
 - Parton with highest dependance on neutrino in X² fit
- Events where the 4 signal jets were reconstructed

	Number of Jets							
Neutrino Type	4	5	6	7	8	9		
Truth Neutrino	0.864	0.753	0.686	0.641	0.611	0.587		
$\overrightarrow{p}_{\mathrm{T}}^{\mathrm{miss}}$ and m_W Constraint	0.790	0.576	0.476	0.398	0.366	0.286		
$ u ext{-}\mathrm{FF}$	0.754	0.533	0.410	0.353	0.300	0.302		
ν -Flows(sample)	0.803	0.624	0.515	0.457	0.391	0.357		
ν -Flows(mode)	0.813	0.664	0.575	0.508	0.481	0.405		

 ν -Flow (mode) improves upon kinematic solution by factor of 1.03 to 1.41

• Bayesian networks account for uncertainty in the network's parameters θ

https://towardsdatascience.com/why-you-should-use-bayesian-neural-network-aaf76732c150

- Bayesian networks account for uncertainty in the network's parameters θ
- Switch from a deterministic mapping f to probabilistic transformation

https://towardsdatascience.com/why-you-should-use-bayesian-neural-network-aaf76732c150

- Bayesian networks account for uncertainty in the network's parameters θ
- Switch from a deterministic mapping *f* to probabilistic transformation
- Parametrise the weights as **mean field gaussians** $q_{\phi}(\theta)$ and use **VI** to ensure that they do not stray too far from **prior** $p(\theta)$

https://towardsdatascience.com/why-you-should-use-bayesian-neural-network-aaf76732c150

- Bayesian networks account for uncertainty in the network's parameters θ
- Switch from a deterministic mapping *f* to probabilistic transformation
- Parametrise the weights as **mean field gaussians** $q_{\phi}(\theta)$ and use **VI** to ensure that they do not stray too far from **prior** $p(\theta)$

https://towardsdatascience.com/why-you-should-use-bayesian-neural-network-aaf76732c150

$$Loss(y,x) = -\log(p_z(f_{\theta}(x|y))) - \log|\det(J(x|y))| + KL(q_{\phi}(\theta)|p(\theta))$$

Bayesian Flow Inference

- Allows us to sample under the base distribution AND under the network parameters
- Gives variance of the network's predictions
- Uncertainty from missing data
- Can signify the stability of the flow

Conclusions

- Demonstrated an approach of using normalizing flow for neutrino momentum regression
- Reconstruction with the flow yields better distributions for p_z^{ν} , $m_{l\nu}$, and $m_{bl\nu}$
- Demonstrated benefits in example downstream task of jet association
- ArXiv pre-print available:
 - https://arxiv.org/abs/2207.00664v2

Next steps

- Move to two neutrino case
- Use the flow / Bayesian flow as an event filter

Thank You

Interpretable Uncertainty

- The distribution of the flow does seem to correspond to real world accuracy!
- **Observed Accuracy verses Predicted Confidence**

Normalizing Flows

- A normalising flow is a transformation that typically maps a complex distribution $p_X(x)$ into a simple distribution $p_Z(z)$ "diffeomorphism"
 - Z = f(X) with an **invertible** and **differentiable** f(x)

- Taking $p_X(x)$ to be the complex distribution over **our data**
 - Can perform exact density estimation: $p_X(x) = p_Z(f(x))|\det(J(x))|$
 - Can generate new data by sampling p_X : Sample $p_Z(\cdot)$, compute $f^{-1}(z)$

INN layers need to be invertible and have a Jacobian that is easy to calculate

- In practice we use an invertible neural network (INN) to parameterise $f_{ heta}$
- Usually train with INNs for generation using maximum likelihood objective for observed data:

$$Loss(x) = -\log(p_X(x)) = -\log(p_Z(f_\theta(x))) - \log(|\det(J(x)))$$

ν-Flow Structure

Network Hyperparamers

DeepSet:Feature Network

- 5(11)->Linear->LeakyReLU->LayerNorm->64
- 64->Linear->LeakyReLU->LayerNorm->64
- 64->Linear->8

DeepSet: Attention Network

- 5(11)->Linear->LeakyReLU->LayerNorm->32
- 32->Linear->LeakyReLU->LayerNorm->32
- 32->Linear->1

DeepSet: Final Network

- 8(11)->Linear->LeakyReLU->LayerNorm->64
- 64->Linear->LeakyReLU->LayerNorm->64
- 64->Linear->8

Each row is a layer showing: Inputs(conditional inputs) -> operations -> outputs(residual)

Embedding Network

- 19->Linear->LeakyReLU->LayerNorm->64
- 64->Linear->LeakyReLU->LayerNorm->64(add)
- 64->Linear->32

Spline Network

- 2(32)->Linear->LeakyReLU->LayerNorm->64
- 64(32)->Linear->LeakyReLU->LayerNorm->64(add)
- 64->Linear->LeakyReLU->LayerNorm->64(add)
- 64->Linear->29

Network Training

Training was done using the **negative log likelihood** as the loss function using the **Adam optimizer** with **early stopping** performed on a **10% holdout** validation set.

- Training set size: 528921
- Validation set size: 58768

Other training parameters:

- Batch size = 256
- Gradient norm clipping = 5
- Early stopping patience = 30

The learning rate followed a **cyclic asymmetrical cosine schedule** with a period of two epochs. Each cycle the learning rate would be ramped up from 0 to 5e-4 and then back down to 0. The fraction of the cycle used for warmup(cooldown) was set to 0.3(0.7).

X²: Masses

- Looking at the invariant mass of blv using the b selected by the X^2 fit
 - Idealised refers to the truth neutrino and the correct b_{lep}
 - Shaded regions are subset of events where X^2 yielded correct b_{lep}

