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Constraining Parameters  Uncertainty Quantification→

Image credits: Brehmer, J. et al. (2018); Abell, Paul A. et al. (2009)

Much of modern Machine Learning 
targets prediction problems

In many science applications, however, 
the interest is more on uncertainty 
quantification than in point estimation

All the examples on the right are inverse  
problems. The interest is on internal 
parameters , i.e. the “causes” of  θ x

Particle 
Physics

Cosmology
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Much of modern Machine Learning 
targets prediction problems

In many science applications, however, 
the interest is more on uncertainty 
quantification than in point estimation

All the examples on the right are inverse  
problems. The interest is on internal 
parameters , i.e. the “causes” of  θ x

Particle 
Physics

Cosmology
Goal: constraining parameters of interest 
using theoretical (or simulation) models 

and experimental data,  
while guaranteeing coverage
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Science relies heavily on high-fidelity simulators

Image adapted from Cranmer K., Brehmer J., Louppe G., PNAS (2020)
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Likelihood-based Inference
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" ∼ f (θ ; ")
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Likelihood-based Inference

Parameters

θ
Data/Sample

" = (x1, …, xn)

Likelihood ℒ(θ ; ")

Forward  
Simulator

" ∼ f (θ ; ")

Inference with intractable 
likelihood 

Likelihood-Free Inference (LFI)
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Inference via predictions and posteriors: bias and overconfidence

Recent advances in LFI1. Use ML algorithms and simulated data to directly estimate key inferential quantities: 

1. E.g. Heinrich (2022); Miller et al. (2021); Papamakarios et al. (2016); Lueckmann et al (2016); Izbicki et al. (2014)         2. Hermans et al. (2021)

use {(θ1, "1), …, (θB, "B)},  where θ ∼ πθ,  " ∼ Fθ θ
⏟

Parameters

, f (θ |")
Posteriors

, ℒ(θ; ")
Likelihoods

, ℒ(θ1; ")/ℒ(θ2; ")
Likelihood ratios
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̂θ ≠ θ
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Inference via predictions and posteriors: bias and overconfidence

Recent advances in LFI1. Use ML algorithms and simulated data to directly estimate key inferential quantities: 

1. E.g. Heinrich (2022); Miller et al. (2021); Papamakarios et al. (2016); Lueckmann et al (2016); Izbicki et al. (2014)         2. Hermans et al. (2021)

use {(θ1, "1), …, (θB, "B)},  where θ ∼ πθ,  " ∼ Fθ θ
⏟

Parameters

, f (θ |")
Posteriors

, ℒ(θ; ")
Likelihoods

, ℒ(θ1; ")/ℒ(θ2; ")
Likelihood ratios

Do these methods give reliable measures of uncertainty around parameters of interest? 

Problem: both approaches rely on , which introduces a bias that might or might not be consistent with the dataθ ∼ πθ

Prediction algorithms are biased Posterior estimators are overconfident2

Hinders the reliability of scientific conclusions

̂θ ≠ θ
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Constraining parameters while guaranteeing coverage

Reliable inference should achieve confidence sets whose coverage guarantees are independent of 

1. the choice of the prior , so that good priors lead to tighter constraints, but bad priors do not degrade coverage; 

2. the specific value of  :  coverage guarantees should hold everywhere, not in expectation; 

3. the size of the observed sample: no asymptotics

πθ

θ
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Constraining parameters while guaranteeing coverage

How? 

1. Leverage predictions and posteriors and use Neyman inversion to achieve correct conditional coverage

ℙ(θ ∈ ℛ(D) |θ) = 1 − α ∀θ ∈ Θ

2. Independent diagnostics: check actual coverage across the whole , without costly Monte-Carlo simulationsΘ

Reliable inference should achieve confidence sets whose coverage guarantees are independent of 

1. the choice of the prior , so that good priors lead to tighter constraints, but bad priors do not degrade coverage; 

2. the specific value of  :  coverage guarantees should hold everywhere, not in expectation; 

3. the size of the observed sample: no asymptotics

πθ

θ
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Neyman construction of confidence sets
Ingredients:  

1. Data  
2. Test statistic  
3. Critical values 

" ∼ Fθ
τ("; θ )

Cθ,α



7

Neyman construction of confidence sets
Ingredients:  

1. Data  
2. Test statistic  
3. Critical values 

" ∼ Fθ
τ("; θ )

Cθ,α

Image adapted from Dalmasso et al. (2020)

i. Rejection region for 
τ("; θ ),  ∀θ ∈ Θ

τ (D ; θ )



7

Neyman construction of confidence sets
Ingredients:  

1. Data  
2. Test statistic  
3. Critical values 

" ∼ Fθ
τ("; θ )

Cθ,α

Image adapted from Dalmasso et al. (2020)

i. Rejection region for 
τ("; θ ),  ∀θ ∈ Θ

τ (D ; θ )



7

Neyman construction of confidence sets
Ingredients:  

1. Data  
2. Test statistic  
3. Critical values 

" ∼ Fθ
τ("; θ )

Cθ,α

Image adapted from Dalmasso et al. (2020)

i. Rejection region for 
τ("; θ ),  ∀θ ∈ Θ

ii. τ(D; θ ),  ∀θ ∈ Θ

τ (D ; θ )



7

Neyman construction of confidence sets
Ingredients:  

1. Data  
2. Test statistic  
3. Critical values 

" ∼ Fθ
τ("; θ )

Cθ,α

Image adapted from Dalmasso et al. (2020)

i. Rejection region for 
τ("; θ ),  ∀θ ∈ Θ

ii. τ(D; θ ),  ∀θ ∈ Θ

iii.  confidence set 
for 
(1 − α)

θ

τ (D ; θ )



7

Neyman construction of confidence sets
Ingredients:  

1. Data  
2. Test statistic  
3. Critical values 

" ∼ Fθ
τ("; θ )

Cθ,α

Image adapted from Dalmasso et al. (2020)

i. Rejection region for 
τ("; θ ),  ∀θ ∈ Θ

ii. τ(D; θ ),  ∀θ ∈ Θ

iii.  confidence set 
for 
(1 − α)

θ

τ (D ; θ )

Wald test statistic (1D case): 

τWald("; θ0) := (θ MLE − θ0)2

-[θMLE]



7

Neyman construction of confidence sets
Ingredients:  

1. Data  
2. Test statistic  
3. Critical values 

" ∼ Fθ
τ("; θ )

Cθ,α

Image adapted from Dalmasso et al. (2020)

i. Rejection region for 
τ("; θ ),  ∀θ ∈ Θ

ii. τ(D; θ ),  ∀θ ∈ Θ

iii.  confidence set 
for 
(1 − α)

θ

τ (D ; θ )

Wald test statistic (1D case): Waldo test statistic (1D and p-D case):

τWaldo("; θ0) := (.[θ |"] − θ0)2

-[θ |"]τWald("; θ0) := (θ MLE − θ0)2

-[θMLE]

τWaldo("; θ0) := (.[θ |"] − θ0)T -[θ |"]−1(.[θ |"] − θ0)
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Waldo
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Waldo

Posterior: NPE, NLE, NRE, etc… 1 
Prediction (square loss): 
1. .[θ |X ],  2. .[(θ − .[θ |X ])2 |X ] = -[θ |X ]

1. Neural Posterior Estimator, Neural Likelihood Estimator, Neural Ratio Estimator.
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An example leveraging posterior estimators
Synthetic example: estimate the common mean of the components of a Gaussian mixture

" |θ ∼ 1
2 /(θ, I) + 1

2 /(θ,  0.01I), θ ∈ ℝ2,  n = 1
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Inference on Muon energies using CNN predictions
Goal: alternative to traditional way of measuring muons

Data obtained from Geant41 with incoming energy 
between 50 GeV and 8000 GeV

finely segmented calorimeter with 50 layers in , each 
divided in a  grid     cells

z
32 × 32 51,200

28 features2 extracted from the spatial and energy 
information of the calorimeters cells. Three main groups:

1. general properties of the energy deposition (e.g. 
sum of energy above/below a threshold)

2. more fine-grained information (e.g. moments of the 
energy distributions in different regions over )z

3. custom procedure that isolates clusters of 
deposited energy along the track

sum energy deposits over 0.1 GeV to get one-
dimensional energy-sum data

10
1. Agostinelli et al. (2003); 2. From Kieseler et al. (2022)



Can we do frequentist inference for muon energy?

We are mainly interested in two questions:

1. Infer, from the pattern of the energy deposits in the calorimeter, how much energy the incoming 
muon had and construct a confidence set for it with proper coverage

goal: Reconstruct muon properties with rigorous uncertainties for downstream analyses

11



Can we do frequentist inference for muon energy?

We are mainly interested in two questions:

1. Infer, from the pattern of the energy deposits in the calorimeter, how much energy the incoming 
muon had and construct a confidence set for it with proper coverage

goal: Reconstruct muon properties with rigorous uncertainties for downstream analyses

2. How much added value does a high granularity of the calorimeter cells offer over the 1D and 
28D representations? 

          goal: devise better and more cost-effective calorimeters for future particle colliders

11
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Prediction algorithms used

Image credit: Kieseler et al. (2022)

Three “nested” datasets:
1. One-dimensional energy sum: best predictor wrt Cross-Validation MSE loss (XGBoost)
2. 27 features + 1D energy sum: best predictor wrt Cross-Validation MSE loss (XGBoost)
3. Full calorimeter (51200-D) + 28 features: custom CNN (with MSE loss) from Kieseler et al. (2022)

We estimate  and  for each of these. Muon energy is .[θ |"] -[θ |"] θ
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Confidence sets for muon energy have proper coverage
Nominal coverage is achieved regardless of the dataset used 
Prediction sets ( ) do not achieve the desired level of coverage.[θ |x] ± -[θ |x]
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Confidence sets for muon energy have proper coverage
Nominal coverage is achieved regardless of the dataset used 
Prediction sets ( ) do not achieve the desired level of coverage.[θ |x] ± -[θ |x]

Why?
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Valuable information in high-granularity calorimeter

Intervals are shorter as the data 
becomes higher-dimensional 

Prediction sets can even be larger 
than Waldo confidence sets (while 
also not guaranteeing coverage)
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Summary
WALDO, a method to construct confidence regions with correct conditional coverage for parameters in 
inverse problems by leveraging any prediction algorithm or posterior estimator 

WALDO disentangles the coverage guarantees of the confidence region from the choice of the prior 
distribution. To increase power, one may be able to leverage domain-specific knowledge, take advantage of 
the internal structure of the simulator, or exploit active learning strategies 

We demonstrated its effectiveness estimating the energy of muons at a future particle collider. Calorimeter 
data represents a viable alternative for the measurement of muons of very high energy

ArXiv: 

    - WALDO (under review): https://arxiv.org/abs/2205.15680 
    - LF2I (under review): https://arxiv.org/abs/2107.03920 

Code  
    - https://github.com/lee-group-cmu/lf2i

Useful Links:

We are looking for interested 
users to gather feedback on 
the package!

https://arxiv.org/abs/2205.15680
https://arxiv.org/abs/2107.03920
https://github.com/lee-group-cmu/lf2i


Thanks!



Bias and coverage of prediction intervals
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Train on  and output  

               posterior mean, which depends on marginal since  

("1, θ1), …, ("B, θB) ∼ f (", θ ) ̂θ = .̂[θ |"]
f (", θ ) = f (" |θ )f (θ )

Prediction intervals over-cover when  and under-cover for large bias values  bias( ̂θ ) = 0

Simple univariate Gaussian example: 

 

 

Construct confidence sets via 

• Wald test 
• Waldo  

     and 

• Prediction sets

θ ∼ /(μ = 0, σ = 2)
" |θ ∼ /(θ,  σ = 1)

Left: means of upper 
and lower bounds of 
interval estimates for 
100,000 observations 
divided in 38 bins over 
the true parameter. 

Right: empir ica l 
coverage of the 
intervals on the left 
as a function of the 
true parameter.

What about coverage of standard prediction intervals? Construct a  interval of the form  

               Coverage is a strictly decreasing function of 

1 − α ̂θ ± z1−α/2 ̂σ
|bias( ̂θ ) | = |.[ ̂θ ] − θ |
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Statistical Properties (coverage diagnostics) 
Synthetic example: estimate the common mean of the components of a Gaussian mixture

" |θ ∼ 1
2 /(θ, I) + 1

2 /(θ,  0.01I), θ ∈ ℝ2

Waldo Credible Region



Muons are one of the elementary particles described by the Standard Model. 
Their importance is mainly due to two facts: first, they emerge as a signature in processes which could signal the 
existence of new physics, and second, they are (relatively) easy to identify.

Above: Aerial view of the position of the LHC.

19

Right: transverse slice of CMS, one of the particle detectors 
at the LHC in Geneva.

Inference for calorimetric muon energy measurements
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Likelihood-free Frequentist Inference (LF2I)

A modular framework: 
1. central branch: parameterized odds 

                          

used to construct test statistics 

2(X; θ ) := ℙ(Y = 1 |θ, x)
ℙ(Y = 0 |θ, x)

τ("; θ0)
2. left branch: quantile regression to estimate critical 

values  for  for hypothesis tests  

                   

      (1 + 2) use Neyman inversion: 

                          

Cθ0 τ("; θ0)
H0 : θ = θ0 versus H1 : θ ≠ θ0, ∀θ ∈ Θ

{θ0 ∈ Θ | ̂τ (" = D; θ0) in acceptance region}
3. right branch: assess empirical coverage across  

by regressing  against 
Θ

3{θ ∈ 4(") |θ} θ

Image credit: Dalmasso et al. (2021)

https://arxiv.org/pdf/2107.03920.pdf

https://arxiv.org/pdf/2107.03920.pdf


Likelihood-free Frequentist Inference (LF2I)

21

Computing the test statistics involves optimization/
integration procedures that negatively affect the 
power of the resulting test;

1. Image adapted from Dalmasso et al. (2021)

Left branch guarantees coverage provided that the 
quantile regressor is well estimated
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Combining frequentist coverage with prior knowledge

" |θ ∼ /(θ,  1); LEFT: θ ∼ 5(35,45), RIGHT: θ ∼ /(40, 1)
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Is it useful to divide by ?-[θ |X]
Waldo requires to estimate . Why not simply use  ?-[θ |"] τWaldo−novar("; θ ) := (.[θ |"] − θ )T(.[θ |"] − θ )

Reject  if . Let  be the power function of the Waldo test statistics                                                                
    setting: inference on the shape of a Pareto likelihood 

H0 " ∈ Rej 6Waldo = ℙθ[" ∈ Rej ]
" ∼ Pareto(θ, xmin = 1), θ ∼ 5(0,60)
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Coverage guarantees

From Dalmasso, Masserano, Zhao, Izbicki, Lee (2021). 
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Coverage Diagnostics Gaussian Mixture, πθ ≡ 5([−10,10]2)


