Carnegie Mellon University

Simulation-Based Inference with WALDO: Confidence Regions by Leveraging Prediction Algorithms or Posterior Estimators

Luca Masserano¹

Joint work with:
Tommaso Dorigo², Rafael Izbicki³,
Mikael Kuusela¹, Ann B. Lee¹

- 1. Department of Statistics and Data Science, Carnegie Mellon University
- 2. Italian Institute for Nuclear Physics and CERN
- 3. Department of Statistics, Federal University of Sao Carlos

Constraining Parameters → **Uncertainty Quantification**

- Much of modern Machine Learning targets prediction problems
- In many science applications, however, the interest is more on uncertainty quantification than in point estimation
- All the examples on the right are <u>inverse</u> problems. The interest is on internal parameters θ , i.e. the "causes" of x

Particle Physics

Constraining Parameters → **Uncertainty Quantification**

- Much of modern Machine Learning targets prediction problems
- ☐ In many science applications, however, the interest is more on uncertainty quantification than in point estimation
- All the examples on the right are <u>inverse</u> problems. The interest is on internal parameters θ , i.e. the "causes" of \mathbf{x}

Goal: constraining parameters of interest using theoretical (or simulation) models and experimental data, while guaranteeing coverage

Particle Physics

Science relies heavily on high-fidelity simulators

Science relies heavily on high-fidelity simulators

Likelihood-Free Inference (LFI)

■ Recent advances in LFI¹. Use ML algorithms and simulated data to directly estimate key inferential quantities:

use
$$\{(\theta_1, \mathcal{D}_1), ..., (\theta_B, \mathcal{D}_B)\}$$
, where $\theta \sim \pi_{\theta}$, $\mathcal{D} \sim F_{\theta} \rightarrow \underbrace{\theta}_{Parameters}$, $\underbrace{f(\theta \mid \mathcal{D})}_{Posteriors}$, $\underbrace{\mathcal{L}(\theta; \mathcal{D})}_{Likelihoods}$, $\underbrace{\mathcal{L}(\theta_1; \mathcal{D})/\mathcal{L}(\theta_2; \mathcal{D})}_{Likelihoods}$

Recent advances in LFI¹. Use ML algorithms and simulated data to directly estimate key inferential quantities:

$$\text{use } \{(\theta_1, \mathcal{D}_1), ..., (\theta_B, \mathcal{D}_B)\}, \text{ where } \theta \sim \pi_\theta, \ \mathcal{D} \sim F_\theta \quad \longrightarrow \quad \underbrace{\theta}_{Parameters}, \underbrace{f(\theta \mid \mathcal{D})}_{Posteriors}, \underbrace{\mathcal{L}(\theta; \mathcal{D})}_{Likelihoods}, \underbrace{\mathcal{L}(\theta_1; \mathcal{D})/\mathcal{L}(\theta_2; \mathcal{D})}_{Likelihoods}$$

■ Recent advances in LFI¹. Use ML algorithms and simulated data to directly estimate key inferential quantities:

$$\text{use } \{(\theta_1, \mathcal{D}_1), ..., (\theta_B, \mathcal{D}_B)\}, \text{ where } \theta \sim \pi_\theta, \ \mathcal{D} \sim F_\theta \quad \color{red} \longrightarrow \quad \underbrace{\theta}_{Parameters} \quad \underbrace{f(\theta \mid \mathcal{D})}_{Posteriors}, \underbrace{\mathcal{L}ikelihoods}_{Likelihoods} \quad \underbrace{\mathcal{L}ikelihoods}_{Likelihoods}$$

Do these methods give reliable measures of uncertainty around parameters of interest?

Prediction algorithms are biased

Posterior estimators are overconfident²

■ Recent advances in LFI¹. Use ML algorithms and simulated data to directly estimate key inferential quantities:

use
$$\{(\theta_1, \mathcal{D}_1), ..., (\theta_B, \mathcal{D}_B)\}$$
, where $\theta \sim \pi_{\theta}$, $\mathcal{D} \sim F_{\theta}$ \rightarrow θ , $f(\theta \mid \mathcal{D})$, $\mathcal{L}(\theta; \mathcal{D})$, $\mathcal{L}(\theta_1; \mathcal{D})/\mathcal{L}(\theta_2; \mathcal{D})$

Parameters Posteriors Likelihoods Alikelihoods ratios

Do these methods give reliable measures of uncertainty around parameters of interest?

Prediction algorithms are biased

Posterior estimators are overconfident²

Problem: both approaches rely on $\theta \sim \pi_{\theta}$, which introduces a bias that might or might not be consistent with the data

Hinders the reliability of scientific conclusions

Constraining parameters while guaranteeing coverage

- Reliable inference should achieve confidence sets whose coverage guarantees are independent of
 - 1. the choice of the prior π_{θ} , so that good priors lead to tighter constraints, but bad priors do not degrade coverage;
 - 2. the specific value of θ : coverage guarantees should hold everywhere, not in expectation;
 - 3. the size of the observed sample: no asymptotics

Constraining parameters while guaranteeing coverage

- ☐ Reliable inference should achieve confidence sets whose coverage guarantees are independent of
 - 1. the choice of the prior π_{θ} , so that good priors lead to tighter constraints, but bad priors do not degrade coverage;
 - 2. the specific value of θ : coverage guarantees should hold everywhere, not in expectation;
 - 3. the size of the observed sample: no asymptotics

- ☐ How?
 - 1. Leverage predictions and posteriors and use Neyman inversion to achieve correct conditional coverage

$$\mathbb{P}(\theta \in \mathcal{R}(D) \,|\, \theta) = 1 - \alpha \quad \forall \theta \in \Theta$$

2. Independent diagnostics: check actual coverage across the whole Θ , without costly Monte-Carlo simulations

Ingredients:

- 1. Data $\mathscr{D} \sim F_{\theta}$
- 2. Test statistic $\tau(\mathcal{D};\theta)$
- 3. Critical values $C_{\theta,\alpha}$

Theorem (Neyman 1937)

Constructing a $1-\alpha$ confidence set for θ is equivalent to testing

$$H_0: \theta = \theta_0$$
 vs. $H_A: \theta \neq \theta_0$

for every $\theta_0 \in \Theta$.

Ingredients:

- 1. Data $\mathscr{D} \sim F_{\theta}$
- 2. Test statistic $\tau(\mathcal{D};\theta)$
- 3. Critical values $C_{\theta,\alpha}$

Theorem (Neyman 1937)

Constructing a $1-\alpha$ confidence set for θ is equivalent to testing

$$H_0: \theta = \theta_0$$
 vs. $H_A: \theta \neq \theta_0$

for every $\theta_0 \in \Theta$.

i. Rejection region for $\tau(\mathcal{D}; \theta), \ \forall \theta \in \Theta$

Ingredients:

- 1. Data $\mathcal{D} \sim F_{\theta}$
- 2. Test statistic $\tau(\mathcal{D};\theta)$
- 3. Critical values $C_{\theta,\alpha}$

Theorem (Neyman 1937)

Constructing a $1-\alpha$ confidence set for θ is equivalent to testing

$$H_0: \theta = \theta_0$$
 vs. $H_A: \theta \neq \theta_0$

for every $\theta_0 \in \Theta$.

i. Rejection region for $\tau(\mathcal{D}; \theta), \forall \theta \in \Theta$

Ingredients:

- 1. Data $\mathcal{D} \sim F_{\theta}$
- 2. Test statistic $\tau(\mathcal{D};\theta)$
- 3. Critical values $C_{\theta,\alpha}$

Theorem (Neyman 1937)

Constructing a $1-\alpha$ confidence set for θ is equivalent to testing

$$H_0: \theta = \theta_0$$
 vs. $H_A: \theta \neq \theta_0$

for every $\theta_0 \in \Theta$.

- i. Rejection region for $\tau(\mathcal{D}; \theta), \forall \theta \in \Theta$
- ii. $\tau(D;\theta), \ \forall \theta \in \Theta$

Ingredients:

- 1. Data $\mathscr{D} \sim F_{\theta}$
- 2. Test statistic $\tau(\mathcal{D};\theta)$
- 3. Critical values $C_{\theta,\alpha}$

Theorem (Neyman 1937)

Constructing a $1-\alpha$ confidence set for θ is equivalent to testing

$$H_0: \theta = \theta_0$$
 vs. $H_A: \theta \neq \theta_0$

for every $\theta_0 \in \Theta$.

Ingredients:

- 1. Data $\mathcal{D} \sim F_{\theta}$
- 2. Test statistic $\tau(\mathcal{D};\theta)$
- 3. Critical values $C_{\theta,\alpha}$

Theorem (Neyman 1937)

Constructing a $1-\alpha$ confidence set for θ is equivalent to testing

$$H_0: \theta = \theta_0$$
 vs. $H_A: \theta \neq \theta_0$

for every $\theta_0 \in \Theta$.

- i. Rejection region for $\tau(\mathcal{D}; \theta), \forall \theta \in \Theta$
- ii. $\tau(D;\theta), \ \forall \theta \in \Theta$
- iii. (1α) confidence set for θ

☐ Wald test statistic (1D case):

$$\tau^{Wald}(\mathcal{D};\theta_0) := \frac{(\theta^{MLE} - \theta_0)^2}{\mathbb{V}[\theta^{MLE}]}$$

Ingredients:

- 1. Data $\mathcal{D} \sim F_{\theta}$
- 2. Test statistic $\tau(\mathcal{D}; \theta)$
- 3. Critical values $C_{\theta,\alpha}$

Theorem (Neyman 1937)

Constructing a $1-\alpha$ confidence set for θ is equivalent to testing

$$H_0: \theta = \theta_0$$
 vs. $H_A: \theta \neq \theta_0$

for every $\theta_0 \in \Theta$.

☐ Wald test statistic (1D case):

$$\tau^{Wald}(\mathcal{D};\theta_0) := \frac{(\theta^{MLE} - \theta_0)^2}{\mathbb{V}[\theta^{MLE}]}$$

■ Waldo test statistic (1D and p-D case):

$$\tau^{Waldo}(\mathcal{D};\theta_0) := \frac{(\mathbb{E}[\theta\,|\,\mathcal{D}] - \theta_0)^2}{\mathbb{V}[\theta\,|\,\mathcal{D}]}$$

$$\tau^{Waldo}(\mathcal{D};\theta_0) := (\mathbb{E}[\theta\,|\,\mathcal{D}] - \theta_0)^T \mathbb{V}[\theta\,|\,\mathcal{D}]^{-1}(\mathbb{E}[\theta\,|\,\mathcal{D}] - \theta_0)$$

Waldo

Waldo

An example leveraging posterior estimators

Synthetic example: estimate the common mean of the components of a Gaussian mixture

$$\mathcal{D} \mid \theta \sim \frac{1}{2} \mathcal{N}(\theta, \mathbf{I}) + \frac{1}{2} \mathcal{N}(\theta, \mathbf{0.01I}), \quad \theta \in \mathbb{R}^2, \ n = 1$$

An example leveraging posterior estimators

Synthetic example: estimate the common mean of the components of a Gaussian mixture

$$\mathcal{D} \mid \theta \sim \frac{1}{2} \mathcal{N}(\theta, \underline{\mathbf{I}}) + \frac{1}{2} \mathcal{N}(\theta, \underline{0.01}\underline{\mathbf{I}}), \quad \theta \in \mathbb{R}^2, \ n = 1$$

☐ Goal: alternative to traditional way of measuring muons

- ☐ Goal: alternative to traditional way of measuring muons
- □ Data obtained from Geant4¹ with incoming energy between 50 GeV and 8000 GeV

- ☐ **Goal:** alternative to traditional way of measuring muons
- Data obtained from Geant4¹ with incoming energy between 50 GeV and 8000 GeV
- ☐ finely segmented calorimeter with 50 layers in z, each divided in a 32×32 grid → 51,200 cells

^{1.} Agostinelli et al. (2003); 2. From Kieseler et al. (2022)

- ☐ Goal: alternative to traditional way of measuring muons
- Data obtained from Geant4¹ with incoming energy between 50 GeV and 8000 GeV
- ☐ finely segmented calorimeter with 50 layers in z, each divided in a 32×32 grid → 51,200 cells
- 28 features² extracted from the spatial and energy information of the calorimeters cells. Three main groups:
 - 1. general properties of the energy deposition (e.g. sum of energy above/below a threshold)
 - 2. more fine-grained information (e.g. moments of the energy distributions in different regions over z)
 - 3. custom procedure that isolates clusters of deposited energy along the track

^{1.} Agostinelli et al. (2003); 2. From Kieseler et al. (2022)

- ☐ Goal: alternative to traditional way of measuring muons
- Data obtained from Geant4¹ with incoming energy between 50 GeV and 8000 GeV
- ☐ finely segmented calorimeter with 50 layers in z, each divided in a 32×32 grid → 51,200 cells
- 28 features² extracted from the spatial and energy information of the calorimeters cells. Three main groups:
 - 1. general properties of the energy deposition (e.g. sum of energy above/below a threshold)
 - 2. more fine-grained information (e.g. moments of the energy distributions in different regions over z)
 - 3. custom procedure that isolates clusters of deposited energy along the track
- sum energy deposits over 0.1 GeV to get onedimensional energy-sum data

^{1.} Agostinelli et al. (2003); 2. From Kieseler et al. (2022)

Can we do frequentist inference for muon energy?

We are mainly interested in **two questions**:

- 1. Infer, from the pattern of the energy deposits in the calorimeter, how much energy the incoming muon had *and* construct a **confidence set for it with proper coverage**
 - **goal**: Reconstruct muon properties with rigorous uncertainties for downstream analyses

Can we do frequentist inference for muon energy?

We are mainly interested in **two questions**:

- 1. Infer, from the pattern of the energy deposits in the calorimeter, how much energy the incoming muon had *and* construct a **confidence set for it with proper coverage**
 - **goal**: Reconstruct muon properties with rigorous uncertainties for downstream analyses
- 2. How much added value does a **high granularity of the calorimeter** cells offer over the 1D and 28D representations?
 - **goal**: devise better and more cost-effective calorimeters for future particle colliders

Prediction algorithms used

Three "nested" datasets:

- 1. One-dimensional energy sum: best predictor wrt Cross-Validation MSE loss (XGBoost)
- 2. 27 features + 1D energy sum: best predictor wrt Cross-Validation MSE loss (XGBoost)
- 3. Full calorimeter (51200-D) + 28 features: custom CNN (with MSE loss) from Kieseler et al. (2022)
 - We estimate $\mathbb{E}[\theta | \mathcal{D}]$ and $\mathbb{V}[\theta | \mathcal{D}]$ for each of these. Muon energy is θ

Confidence sets for muon energy have proper coverage

- Nominal coverage is achieved regardless of the dataset used
- Prediction sets ($\mathbb{E}[\theta | x] \pm \sqrt{\mathbb{V}[\theta | x]}$) do not achieve the desired level of coverage

Confidence sets for muon energy have proper coverage

- Nominal coverage is achieved regardless of the dataset used
- Prediction sets ($\mathbb{E}[\theta | x] \pm \sqrt{\mathbb{V}[\theta | x]}$) do not achieve the desired level of coverage

Valuable information in high-granularity calorimeter

- Intervals are shorter as the data becomes higher-dimensional
- Prediction sets can even be larger than Waldo confidence sets (while also not guaranteeing coverage)

Summary

- ☐ WALDO, a method to construct confidence regions with correct conditional coverage for parameters in *inverse* problems by leveraging any prediction algorithm or posterior estimator
- □ WALDO disentangles the coverage guarantees of the confidence region from the choice of the prior distribution. To increase power, one may be able to leverage domain-specific knowledge, take advantage of the internal structure of the simulator, or exploit active learning strategies
- ☐ We demonstrated its effectiveness estimating the energy of muons at a future particle collider. Calorimeter data represents a viable alternative for the measurement of muons of very high energy

Useful Links:

ArXiv:

- WALDO (under review): https://arxiv.org/abs/2205.15680
- LF2I (under review): https://arxiv.org/abs/2107.03920

Code

- https://github.com/lee-group-cmu/lf2i

We are looking for interested users to gather feedback on the package!

Carnegie Mellon University

Bias and coverage of prediction intervals

- ☐ Train on $(\mathcal{D}_1, \theta_1), ..., (\mathcal{D}_B, \theta_B) \sim f(\mathcal{D}, \theta)$ and output $\hat{\theta} = \hat{\mathbb{E}}[\theta \mid \mathcal{D}]$
 - \rightarrow posterior mean, which depends on marginal since $f(\mathcal{D}, \theta) = f(\mathcal{D} \mid \theta) f(\theta)$
- \Box What about coverage of standard prediction intervals? Construct a $1-\alpha$ interval of the form $\hat{\theta} \pm z_{1-\alpha/2}\hat{\sigma}$
 - lacktriangle Coverage is a strictly decreasing function of $|\operatorname{bias}(\hat{\theta})| = |\mathbb{E}[\hat{\theta}] \theta|$
 - \longrightarrow Prediction intervals over-cover when bias $(\hat{\theta})=0$ and under-cover for large bias values
- ☐ Simple univariate Gaussian example:

$$\theta \sim \mathcal{N}(\mu = 0, \sigma = 2)$$

 $\mathcal{D} \mid \theta \sim \mathcal{N}(\theta, \sigma = 1)$

Construct confidence sets via

- Wald test
- Waldo

and

Prediction sets

Left: means of upper and lower bounds of nterval estimates for 100,000 observations divided in 38 bins over

Right: empirical coverage of the intervals on the left as a function of the true parameter.

Statistical Properties (coverage diagnostics)

Synthetic example: estimate the common mean of the components of a Gaussian mixture

$$\mathcal{D} \mid \theta \sim \frac{1}{2} \mathcal{N}(\theta, \mathbf{I}) + \frac{1}{2} \mathcal{N}(\theta, 0.01 \mathbf{I}), \quad \theta \in \mathbb{R}^2$$

Inference for calorimetric muon energy measurements

Muons are one of the elementary particles described by the **Standard Model**.

Their importance is mainly due to two facts: **first**, they emerge as a signature in processes which could signal the existence of new physics, and **second**, they are (relatively) easy to identify.

Above: Aerial view of the position of the LHC.

Right: transverse slice of CMS, one of the particle detectors at the LHC in Geneva.

Likelihood-free Frequentist Inference (LF2I)

https://arxiv.org/pdf/2107.03920.pdf

A modular framework:

1. central branch: parameterized odds

$$\mathbb{O}(X;\theta) := \frac{\mathbb{P}(Y=1 \mid \theta, \mathbf{x})}{\mathbb{P}(Y=0 \mid \theta, \mathbf{x})}$$

used to construct test statistics $\tau(\mathcal{D}; \theta_0)$

2. left branch: quantile regression to estimate critical values C_{θ_0} for $\tau(\mathcal{D};\theta_0)$ for hypothesis tests

$$H_0: \theta = \theta_0 \text{ versus } H_1: \theta \neq \theta_0, \quad \forall \theta \in \Theta$$

→ (1 + 2) use Neyman inversion:

$$\{\theta_0 \in \Theta \,|\, \hat{\tau}(\mathcal{D} = D; \theta_0) \text{ in acceptance region} \}$$

3. right branch: assess empirical coverage across Θ by regressing $\mathbb{I}\{\theta \in \mathscr{C}(\mathscr{D}) | \theta\}$ against θ

Likelihood-free Frequentist Inference (LF2I)

- Left branch guarantees coverage provided that the quantile regressor is well estimated
- Computing the test statistics involves optimization/ integration procedures that negatively affect the power of the resulting test;

$$LR(\mathcal{D}; \Theta_0) = \log \frac{\sup_{\theta \in \Theta_0} \mathcal{L}(\mathcal{D}; \theta)}{\sup_{\theta \in \Theta} \mathcal{L}(\mathcal{D}; \theta)} \longrightarrow \Lambda(\mathcal{D}; \Theta_0) := \log \frac{\sup_{\theta_0 \in \Theta_0} \prod_{i=1}^n \mathbb{O}(\mathbf{X}_i^{\text{obs}}; \theta_0)}{\sup_{\theta \in \Theta} \prod_{i=1}^n \mathbb{O}(\mathbf{X}_i^{\text{obs}}; \theta)}$$

1. Image adapted from Dalmasso et al. (2021)

Combining frequentist coverage with prior knowledge

 $\mathcal{D} \mid \theta \sim \mathcal{N}(\theta, 1); \quad \text{LEFT: } \theta \sim \mathcal{U}(35,45), \quad \text{RIGHT: } \theta \sim \mathcal{N}(40, 1)$

Is it useful to divide by $\mathbb{V}[\theta|X]$?

- **Waldo** requires to estimate $\mathbb{V}[\theta \mid \mathcal{D}]$. Why not simply use $\tau^{Waldo-novar}(\mathcal{D};\theta) := (\mathbb{E}[\theta \mid \mathcal{D}] \theta)^T (\mathbb{E}[\theta \mid \mathcal{D}] \theta)$?
- Reject H_0 if $\mathscr{D} \in Rej$. Let $\mathscr{P}^{Waldo} = \mathbb{P}_{\theta}[\mathscr{D} \in Rej]$ be the **power function** of the Waldo test statistics setting: inference on the shape of a **Pareto** likelihood $\mathscr{D} \sim Pareto(\theta, x_{min} = 1), \quad \theta \sim \mathscr{U}(0.60)$

Coverage guarantees

Assumption 1 (Uniform consistency) Let $F(\cdot|\theta)$ be the cumulative distribution function of the test statistic $\tau(\mathcal{D};\theta_0)$ conditional on θ , where $\mathcal{D} \sim F_{\theta}$. Let $\widehat{F}_{B'}(\cdot|\theta)$ be the estimated conditional distribution function, implied by a quantile regression with a sample \mathcal{T}' of B' simulations $\mathcal{D} \sim F_{\theta}$. Assume that the quantile regression estimator is such that

$$\sup_{\tau \in \mathbb{R}} |\widehat{F}_{B'}(\tau|\boldsymbol{\theta}_0) - F(\tau|\boldsymbol{\theta}_0)| \xrightarrow{\mathbb{P}} 0.$$

Theorem 1 Let $C_{B'} \in \mathbb{R}$ be the critical value of the test based on a strictly continuous statistic $\tau(\mathcal{D}; \boldsymbol{\theta}_0)$ chosen according to step (ii) for a fixed $\alpha \in (0,1)$. If the quantile estimator satisfies Assumption I, then,

$$\mathbb{P}_{\mathcal{D}|\boldsymbol{\theta}_0, C_{B'}}(\tau(\mathcal{D}; \boldsymbol{\theta}_0) \ge C_{B'}) \xrightarrow[B' \to \infty]{a.s.} \alpha,$$

where $\mathbb{P}_{\mathcal{D}|\theta_0,C_{B'}}$ denotes the probability integrated over $\mathcal{D} \sim F_{\theta_0}$ and conditional on the random variable $C_{B'}$.

Coverage Diagnostics Gaussian Mixture, $\pi_{\theta} \equiv \mathcal{U}([-10,10]^2)$

