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Constraining Parameters — Uncertainty Quantification

0 Much of modern Machine Learning
targets prediction problems

O In many science applications, however,
the interest is more on uncertainty
quantification than in point estimation

O All the examples on the right are inverse
problems. The interest is on internal

parameters 6, i.e. the “causes” of X
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Constraining Parameters — Uncertainty Quantification

0 Much of modern Machine Learning
targets prediction problems

O In many science applications, however,
the interest is more on uncertainty
quantification than in point estimation

O All the examples on the right are inverse
problems. The interest is on internal

parameters 6, i.e. the “causes” of X

I Goal: constraini

. using theoretical (or simulation) models
and experimental data,

while guaranteeing coverage

ng parameters of interest |
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Science relies heavily on high-fidelity simulators
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Likelihood-based Inference
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-4 Likelihood-Free Inference (LFI)




Inference via predictions and posteriors: bias and overconfidence

O Recent advances in LFI1. Use ML algorithms and simulated data to directly estimate key inferential quantities:

use {(0,,92)),...,(05, Dp)}, Where 0 ~ ny, D ~F, —» 0 L fOl9D),Z0,2),Z0);D) L0, D)

Parameters  pogteriors Likelihoods Likelihood ratios
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Inference via predictions and posteriors: bias and overconfidence

O Recent advances in LFI1. Use ML algorithms and simulated data to directly estimate key inferential quantities:

use {(0,,92)),...,(05, Dp)}, Where 0 ~ ny, D ~F, —» 2 ,fO|D),ZL0;9D),ZL0,; D) ZL(0,; D)
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O Do these methods give reliable measures of uncertainty around parameters of interest?

Prediction algorithms are biased Posterior estimators are overconfident?
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Inference via predictions and posteriors: bias and overconfidence

O Recent advances in LFI1. Use ML algorithms and simulated data to directly estimate key inferential quantities:

use {(6,,9D,), ..., (05, Dp)}, Where|9 ~ g | D ~Fy —» 2 ,fO|D),ZL0;9D),ZL0,; D) ZL(0,; D)

Parameters  pogteriors Likelihoods Likelihood ratios

O Do these methods give reliable measures of uncertainty around parameters of interest?

Prediction algorithms are biased Posterior estimators are overconfident?

NPE SNL

0 +0

Predicted Energy [GeV]

ao: /
O e Energy (GevT
Problem: both approaches rely on 8 ~ r,, which introduces a bias that might or might not be consistent with the data

—$ Hinders the reliability of scientific conclusions




Constraining parameters while guaranteeing coverage

0 Reliable inference should achieve confidence sets whose coverage guarantees are independent of

1. the choice of the prior 7y, so that good priors lead to tighter constraints, but bad priors do not degrade coverage;

2. the specific value of @ : coverage guarantees should hold everywhere, not in expectation;

3. the size of the observed sample: no asymptotics



Constraining parameters while guaranteeing coverage

0 Reliable inference should achieve confidence sets whose coverage guarantees are independent of

1. the choice of the prior 7y, so that good priors lead to tighter constraints, but bad priors do not degrade coverage;

2. the specific value of @ : coverage guarantees should hold everywhere, not in expectation;

3. the size of the observed sample: no asymptotics

0 How?

1. Leverage predictions and posteriors and use Neyman inversion to achieve correct conditional coverage

PO € RD)|O)=1-a YOO

1

2. Independent diagnostics: check actual coverage across the whole ®, without costly Monte-Carlo simulations




Neyman construction of confidence sets

O Ingredients:

1.Data D ~ F)
2. Test statistic 7(<; 0)
3. Critical values Cy_,

Theorem (Neyman 1937)
Constructing a 1 — o confidence set for 6 is equivalent to testing

H0:0=00 VS. HAZB#GO

for every 6y € ©.
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Neyman construction of confidence sets

O Ingredients:

1.Data D ~ F)
2. Test statistic 7(<; 0)
3. Critical values Cy_,

Theorem (Neyman 1937)
Constructing a 1 — o confidence set for 6 is equivalent to testing

H0:0=00 VS. HAZB#GO

for every 6y € ©.
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Neyman construction of confidence sets

O Ingredients: 00/ .. _ ]
25 . =
1.Data D ~ F) g .

|
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Neyman construction of confidence sets

O Ingredients:

1.Data D ~ F,

2. Test statistic 7(<; 0)
3. Critical values Cy_,

Theorem (Neyman 1937)

Constructing a 1 — o confidence set for 6 is equivalent to testing
H0:6=00 VS. HAZB#GO

for every 6y € ©.

O Wald test statistic (1D case):

(HMLE _ 90)2

Wald (. —
T (9,90) = \/[QMLE]

i. Rejection region for
7(92;0), V0 € ©

i. 7(D;0), VO € ©

iii. (1 — a) confidence set

for O
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Neyman construction of confidence sets

O Ingredients:

1.Data D ~ F) . o .
2. Test statistic 7(<; ) . Rejection region for
. 7(2;0), V0 € ©
3. Critical values Cy ,
i. 7(D;0), VO € ©
Theorem (Neyman 1937)
Constructing a 1 — « confidence set for 0 is equivalent to testing iii. (1 — ) confidence set
* —
Hy:0=0, vs. Hy: 06, for 0 S B ——
* —
for every 6y € ©. 200
7(D;0)

O Wald test statistic (1D case): O Waldo test statistic (1D and p-D case):

(E[0| D] - 6,)?
(HMLE _ 90)2 =707

Waid TWaldO(g; Oy) := V7131
a . —
M@ 00) = = —

Waldo(gy: 6y) == (E[0| 2] - 60)T VIO | 21 (E[0| 2] - 6p)
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Prediction Algorithm or

/ Posterior Estimator

Quantile Regression

e

Posterior: NPE, NLE, NRE, etc... 1
Prediction (square loss):

1.E[0|X], 2. E[(0 — E[0|X]?|X] = V[O| X]

1. Neural Posterior Estimator, Neural Likelihood Estimator, Neural Ratio Estimator.




An example leveraging posterior estimators

0 Synthetic example: estimate the common mean of the components of a Gaussian mixture

1 1
D160 ~ ~H@O.D +—H (@, 001D, € R2 n =1



An example leveraging posterior estimators

0 Synthetic example: estimate the common mean of the components of a Gaussian mixture

1 1
D160 ~ ~H@O.D +—H (@, 001D, € R2 n =1
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Inference on Muon energies using CNN predictions

O Goal: alternative to traditional way of measuring muons

Muon-Calorimeter Interaction
Energy=3.2 TeV
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Inference on Muon energies using CNN predictions

O Goal: alternative to traditional way of measuring muons

Muon-Calorimeter Interaction O Data obtained from Geant4!' with incoming energy
Energy=3.2 TeV between 50 GeV and 8000 GeV

O finely segmented calorimeter with 50 layers in z, each
divided in a 32 X 32 grid — 51,200 cells

O 28 features? extracted from the spatial and energy
information of the calorimeters cells. Three main groups:

1. general properties of the energy deposition (e.g.
sum of energy above/below a threshold)

2. more fine-grained information (e.g. moments of the
energy distributions in different regions over z)

3.custom procedure that isolates clusters of
deposited energy along the track

0.0 0. 4 0.5

1 0.2 0.3 0.
Log Energy Deposit
0 sum energy deposits over 0.1 GeV to get one-
dimensional energy-sum data

10



Can we do frequentist inference for muon energy?

We are mainly interested in two questions:

1. Infer, from the pattern of the energy deposits in the calorimeter, how much energy the incoming
muon had and construct a confidence set for it with proper coverage

-—4 goal: Reconstruct muon properties with rigorous uncertainties for downstream analyses

1



Can we do frequentist inference for muon energy?

We are mainly interested in two questions:

1. Infer, from the pattern of the energy deposits in the calorimeter, how much energy the incoming
muon had and construct a confidence set for it with proper coverage

-—4 goal: Reconstruct muon properties with rigorous uncertainties for downstream analyses

2. How much added value does a high granularity of the calorimeter cells offer over the 1D and
28D representations?

-——4 goal: devise better and more cost-effective calorimeters for future particle colliders

N 1




Prediction algorithms used

Three “nested” datasets:
1. One-dimensional energy sum: best predictor wrt Cross-Validation MSE loss (XGBoost)
2. 27 features + 1D energy sum: best predictor wrt Cross-Validation MSE loss (XGBoost)
3. Full calorimeter (51200-D) + 28 features: custom CNN (with MSE loss) from Kieseler et al. (2022)

—¥%  We estimate E[0 | D] and V[0 | D] for each of these. Muon energy is &

HL features

N 12




Confidence sets for muon energy have proper coverage

O Nominal coverage is achieved regardless of the dataset used
O Prediction sets (E[@ | x] = 4/V[]| x]) do not achieve the desired level of coverage

Coverage Diagnostics
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Confidence sets for muon energy have proper coverage

O Nominal coverage is achieved regardless of the dataset used
O Prediction sets (E[@ | x] = 4/V[]| x]) do not achieve the desired level of coverage

Coverage Diagnostics
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0.8- Why?
q) %6000
O 0.6- %
© g
q) -L;AODO
> 2 3000
Q0.4 :
U . &JZODO
—— Waldo Energy Sum ) /
Waldo 28 Features ::- 0 1000 2000 3000 4000 5000 6000 7000 8000
0.2- . True Energy [GeV]
————— Waldo Full Calorimeter
---------- Prediction Sets Full Calorimeter
—=- Nominal coverage = 68.3 %
0.0-

0 1000 2000 3000 4000 5000 6000 7000 8000
True Muon Energy 0 [GeV]




Valuable information in high-granularity calorimeter

Interval Length

O Intervals are shorter as the data
becomes higher-dimensional

O Prediction sets can even be larger
than Waldo confidence sets (while
also not guaranteeing coverage)

—a— Waldo Energy Sum

1000-
i Waldo 28 Features
500’ ) .
o --o- Waldo Full Calorimeter
" -4~ Prediction Sets Full Calorimeter
0 1000 2000 3000 4000 5000 6000 7000 8000
True Muon Energy 6 [GeV]
N 14



Summary

O WALDO, a method to construct confidence regions with correct conditional coverage for parameters in
inverse problems by leveraging any prediction algorithm or posterior estimator

O WALDO disentangles the coverage guarantees of the confidence region from the choice of the prior
distribution. To increase power, one may be able to leverage domain-specific knowledge, take advantage of
the internal structure of the simulator, or exploit active learning strategies

0 We demonstrated its effectiveness estimating the energy of muons at a future particle collider. Calorimeter
data represents a viable alternative for the measurement of muons of very high energy

Useful Links:

ArXiv:

- WALDO (under review): https://arxiv.org/abs/2205.15680
- LF2I (under review): https://arxiv.org/abs/2107.03920

Code We are looking for interested
- https://github.com/lee-group-cmu/If2i <~ users to gather feedback on
the package!

15
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Bias and coverage of prediction intervals

O Trainon (2, 0,), ...,(Dg, 03) ~ f(D,8) and output 0 = E[0]| D]
—§ posterior mean, which depends on marginal since f(<,0) = f(2|0)f(0)

T What about coverage of standard prediction intervals? Construct a 1 — a interval of the form 0+ Z—gp0

- Coverage is a strictly decreasing function of | bias(é) | = | E[0] - 0]

—¥ Prediction intervals over-cover when bias(6) = 0 and under-cover for large bias values

O Simple univariate Gaussian example:

O~ N(u=0,06=2)
D 1O~ NO, 0=1)

Construct confidence sets via

« \Wald test
* \Waldo

and

* Prediction sets

Regions

10.0
— Wald
7.5 —-.— Prediction Sets
Waldo
50 ——- Bisector
25
o
a 7’
0.0 Nl s
e ’
'_.r:- s
—2. Rt
° At g
40 7 I
A
-5.0 =1 ,/'_J‘."
/,f-"‘. E
s o
-75 T or
%900 -75 -50 -25 00

Parameter Regions

25

5.0

7.5

10.0

0.9

Coverage
o
3

o
=)

0.5

Empirical Coverage

e

-10.0 -75 -50 -25

0.0

25

5.0

Nominal coverage = 95%

7.5

\

10.0

Left: means of upper
and lower bounds of
interval estimates for
100,000 observations
divided in 38 bins over
the true parameter.

Right: empirical
coverage of the
intervals on the left
as a function of the
true parameter.
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Statistical Properties (coverage diagnostics)

0 Synthetic example: estimate the common mean of the components of a Gaussian mixture

1 1
D10~ — N O.1)+ 40, 001D, 0 € R2

Waldo Credible Region 100
10.0- 1
e PRI N 90
oniaande s SN
5.0 g T
. 70
2.5- 60
Prior: N(O, 21 (1)
| 0.2 6" -
-2.5 40
-5.0 30
120
-7.5
10
-10.0-
-0

-10

Estimated Coverage



Inference for calorimetric muon energy measurements

Muons are one of the elementary particles described by the Standard Model.

Their importance is mainly due to two facts: first, they emerge as a signature in processes which could signal the
existence of new physics, and second, they are (relatively) easy to identify.

Key:

Muon
Electron

Charged Hadron (e.g. Pion)

— — — - Neutral Hadron (e.g. Neutron)
----- Photon

Silicon
Tracker

Electromagnetic
)“" Calorimeter
Above: Aerial view of the position of the LHC.
Hadron Superconducting
Calorimeter Solenoid
nght transverse slice of CMS, one of the particle detectors Iron return yoke interspersed | i
at the LHC in Geneva. Transverse slice with Muon chambers | 3
through CMS &

19



Likelihood-free Frequentist Inference (LF2l)

https://arxiv.org/pdf/2107.03920.pdf

lo

T

A

4

Critical or

P-Value

\

Simulator

T

A 4

--- ( Reference Distributionj

Classification

Odds and
Test Statistics

|

Hypothesis
Tosting |

f Diagnostics /

Confidence
Set for @

A modular framework:

1. central branch: parameterized odds
P(Y=1]|6,x)
P(Y =0|6,x)

used to construct test statistics 7(Z; 6,))

0X;0) =

2. left branch: quantile regression to estimate critical
values CGo for 7(Z; 6,) for hypothesis tests

Hy:0 =0yversusH, : 0 # 6, V00O
—» (1 + 2) use Neyman inversion:

{90 € O|7(Z = D; 6,) in acceptance region}

3. right branch: assess empirical coverage across ©
by regressing {0 € €(2)|0} against 0
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Likelihood-free Frequentist Inference (LF2l)

P-Value

Critical or

O Left branch guarantees coverage provided that the

Proposal : . :
quantile regressor is well estimated
lo
Simulator . . . S
O Computing the test statistics involves optimization/
- Reference Distribution ) integration procedures that negatively affect the
. power of the resulting test;
’ N ”
T Clasyifigation [« £(D:0) [T, Oxeb:6,)
O _ 1o SUPseo, £(D; AD:00) = Tog " Po0c0, [Tizy OX7™% 0
LR(D; ©o) = log supgee L£(D;0) - (D; G0) = log suppee [T O(X(>:6)
v
v . Estimated (BFF) vs. True BF (d=5) Estimated (BFF) vs. True BF (d=10)
Diagnostics - .5 K% ':
[z b TRV N
& . g]"" E‘]ﬂna ‘. o,:z ‘\“
082> .
HypotheS|s Confudence L T e
Testlng e Set for 6 Estimated (ACORE) vs. True LR (d='5’h/ o Estimated (ACORE) vs. True Ll: (d.=10)
: ;‘;‘;;,, . __’::.
o . PR
£ . .:“g 2 N L -..--:

0+ 100 107 10° 100 0 100 100
LR LR
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Combining frequentist coverage with prior knowledge

210 ~4@, 1); LEFT: 0~ %(35,45), RIGHT: 8 ~ (40, 1)

Power Curves

10 Prior: U(35, 45) Prior: N(40, 1)

0.8

0.2




Is it useful to divide by V[0 | X]?

J Waldo requires to estimate V[@ | 2]. Why not simply use ¢W¢/do—novar(g. gy .= (E[0 | 2] — 6)T(E[0| 2] — 0) ?

O Reject H,if @ € Rej. Let #W4ldo = p [P € Rej] be the power function of the Waldo test statistics
— setting: inference on the shape of a Pareto likelihood & ~ Pareto(0, x,,;,, = 1), 0 ~ 2%(0,60)
Power Curves
i Waldo/
/’ 2 /7
’l g 100 //
I’ _8 /,/
| s 50 ,/’ --- Test Statistic
',' g /,/ —— Critical Values
0 »
1 Waldo-novar
: b— Wa|d0 2 800 /I’
'.' --- Waldo-novar "(-';D 600 /
,, ...... o *= 005 _g 400
:' —-- 0= 12 500
[} o
el s 0
30 40 50 60
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Coverage guarantees

Assumption 1 (Uniform consistency) Let F(-|@) be the cumulative distribution function of the test
statistic 7(D;0y) conditional on 6, where D ~ Fy. Let Fp/(-|0) be the estimated conditional

distribution function, implied by a quantile regression with a sample T' of B’ simulations D ~ Fy.

Assume that the quantile regression estimator is such that

5 P
e Gl
TGR B/—)OO

Theorem 1 Let Cp € R be the critical value of the test based on a strictly continuous statistic
7(D; 0¢) chosen according to step (ii) for a fixed « € (0,1). If the quantile estimator satisfies
Assumption 1, then,
Ppje,,cp (7(D; 00) > Cp) —= a,
B’'— 00
where Pp g, c ., denotes the probability integrated over D ~ Fg and conditional on the random
variable Cp.
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Coverage Diagnostics Gaussian Mixture, 7, = %([—10,10]%)
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