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Introduction

The Pixel Vertex Detector (PXD) is the innermost semi-conductor sub-detector at Belle II.

The sensitive area of the PXD is assembled from 40 modules, where each module consists of 
a 250  768 pixel matrix of the pixel sensors. 

The inner layer: 16 modules implemented into 8 ladders

The outer layer: 24 modules implemented into 12 ladders
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Figure �.��: �e ladder numbering for the
PXD

Figure �.��: �e sensor numbering for the
PXD

Each ladder hosts two sensors, labelled in the following way: the �rst sensor starting from the
forward part of a ladder (the part which is most positive in the z axis) is given the ID �. �e
second sensor, located on the backward part of the ladder, is represented by ID �. Figure �.��
shows the sensor numbering for the PXD. Addressing a given sensor requires the three IDs for
layer, ladder and sensor. �e notation agreed upon is for the IDs to be listed in the order of
layer, ladder and sensor using a point character (“ . ”) as the delimiter. For example: “�.�.�”
speci�es the �rst layer, fourth ladder and second sensor. In this example this would be the
backward sensor, which is located on the fourth ladder of the �rst (innermost) layer of the
PXD. An asterisk can be used to address all layers, ladders or sensors. For example: “�.*.�”
speci�es all backward sensors of the �rst layer. To keep the notation short, trailing asterisks can
be omitted: the notation “�.*.*” is equivalent to “�” and describes all ladders and sensors of the
�rst layer. Figure �.�� shows an example of the use of this notation.
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Backgrounds

The PXD hits are coming from two sources:

Signal Decays: Involve on average less than 1 percent hits per sensor


Backgrounds: Majority of hits


Objective: Faithful PXD background simulation based on different sensors

Beam direction

Colour-reversed real (simulated) image
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Motivation

Using spatial class-conditions based on the sensor number 1-40:

Training Data: GEANT4 Simulated beam background events

Objective: Generation of sensor-dependent, High Resolution PXD images

X

Y

17/18

19/20

21/2223/24

25/26

27/28

29/30

31/32

33/34 35/36

37/38

39/40

1/2

15/16

13/14
11/12

9/10

7/8

5/6
3/4



5

Motivation

Using spatial class-conditions based on the sensor number 1-40:

Training Data: GEANT4 Simulated beam background events

Objective: Generation of Fine-grained sensor-dependent, High Resolution, Correlated PXD images
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Fine-Grained Image Generation

class-conditional GAN : The type of animal is the condition (class)


Fine-grained class-conditional image generation: 

A. The classes show both statistical and semantic similarity

B. Similar datasets: The Stanford Cars, iNaturalist

C. The objective is to create objects from subordinate categories 


  such as breeds of dogs or models of cars. 

D. The small inter-class and large intra-class variation inherent 


  to fine-grained image analysis makes it a challenging problem.
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IEA-GAN Model (prologue)

How to approximate the concept of an “Event” while we simulate the detector response? 


Proper Sampling: Defining an image per class sampler (generating event by event) and shuffling within each batch (event).


Intra-event relational reasoning: Using a Relational Reasoning Module over an event to weight the importance of each sample with 
respect to each other. Thus, the model will understand the class-to-class  relations in a single event.


Maintaining the Discriminator’s Information Entropy


Transferring Discriminator’s Intra-event Knowledge to the Generator
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IEA-GAN Model (Generator)

Relational Reasoning Module

L2C(xi, yi; t) = −
1
N

N

∑
i=1

log ( exp(h(xi)Te(yi)/t)
exp(h(xi)Te(yi)/t) + ∑m

k=1 1k≠i . exp(h(xi)Th(xk)/t) )
LIEA(xf , xr) = DKL(∑

i, j

σ(h(x(r)
i )h(x(r)

j )⊤) |σ(h(x( f )
i )h(x( f )

j )⊤))

Lgen = LAdv + λ2CL2C + λIEALIEA
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IEA-GAN Model (Generator)

Relational Reasoning Module

LIEA(xf , xr) = DKL(∑
i, j

σ(h(x(r)
i )h(x(r)

j )⊤) |σ(h(x( f )
i )h(x( f )

j )⊤))
Hypersphere dimension: 128

MLP dimension: 128

Number of Heads: 2

Number of Layers: 1











h( . ) : Relational embedding
e( . ) : proxy (class embedding)
σ( . ) : Softmax function
x( f ) : generated images
x(r) : real images

Upon minimising it, we are putting a self-supervised penalising system over 
the intra-event awareness of the the generator by encouraging it to look 
for more detailed connections among the images. 


In the end we want to maximise the agreement of data points on two unit 
hyperspheres of real image and generated image embeddings.
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IEA-GAN Model (Discriminator)

Relational Reasoning Module

L2C(xi, yi; t) = −
1
N

N

∑
i=1

log ( exp(h(xi)Te(yi)/t)
exp(h(xi)Te(yi)/t) + ∑m

k=1 1k≠i . exp(h(xi)Th(xk)/t) )
Luniform(h; t) = log 𝔼xi,xj∼pdata

[exp(−t∥h(xi) − h(xj)∥2
2)]

Ldis = LAdv + λ2CL2C + λuniformLuniform

Hypersphere dimension: 1024

SN-MLP dimension: 512

Number of Heads: 4

Number of Layers: 1


h( . ) : Relational embedding
e( . ) : proxy (class embedding)

 By imposing uniformity condition over the feature vectors on the unit 
hypersphere, they preserve as much information as possible since the uniform 
distribution carry high entropy. 
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Validation of generated PXD images

Validation Metrics over the test set in comparison to SOTA in High Resolution Image Generation:

Pixel Energy above the threshold:

BigGAN-deep, Brock, A., Donahue, J., Simonyan, K.: Large Scale GAN Training for High Fidelity Natural Image 
Synthesis, arXiv (2019). https://doi.org/10. 48550/arXiv.1809.11096 .

ContraGAN: Contrastive Learning for Conditional Image Generation. In: Advances in Neural Information Processing 
Sys- tems, vol. 33, pp. 21357–21369.

PE-GAN:  Hashemi et al.: Pixel Detector Background Generation using Generative Adversarial Networks at Belle II. 
EPJ Web of Conferences 251, 03031 (2021). https://doi.org/10. 1051/ep jconf/202125103031 
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Validation of generated PXD images

Validation Metrics over the test set in comparison to SOTA in High Resolution Image Generation:

Occupancy Density and Mean Occupancy :

BigGAN-deep, Brock, A., Donahue, J., Simonyan, K.: Large Scale GAN Training for High Fidelity Natural Image 
Synthesis, arXiv (2019). https://doi.org/10. 48550/arXiv.1809.11096 .

ContraGAN: Contrastive Learning for Conditional Image Generation. In: Advances in Neural Information Processing 
Sys- tems, vol. 33, pp. 21357–21369.

PE-GAN:  Hashemi et al.: Pixel Detector Background Generation using Generative Adversarial Networks at Belle II. 
EPJ Web of Conferences 251, 03031 (2021). https://doi.org/10. 1051/ep jconf/202125103031 



14

Validation of generated PXD images

Validation Metrics over the test set:

FID:


FID is one of the most popular metrics for measuring the feature distance between the real and the 
generated images. Frechet Distance is used to compute the distance between two "multivariate" normal 
distribution. For a "univariate" normal distribution Frechet Distance is given as


                                       . 


The use of activations of the last layer from the Inception-V3 model trained on the PXD images to 
summarise each image, gives the score. The lower the FID the better the image diversity and Fidelity.


Possible interpretation of FID in pixel level:

d2(xr, xf ) = (μr − μf )2 + (σr − σf )2
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Validation of generated PXD images

Validation Metrics over the test set:

Spearman’s correlation between the occupancy of Geant4 simulated images (left), and generated 
images from IEA-GAN (center), generated images from PE-GAN (right).
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Validation of generated PXD images

Validation Metrics over the test set:

Physics Analysis: Helix parameter resolutions
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Summary and Outlook 

IEA-GAN: 

Successful generation of fine-grained, High Resolution, Correlated PXD images based on the 
sensor number.


Accepted at ML4PS workshop at NeurIPS 2022 


Open-source code: https://github.com/Hosein47/IEA-GAN, Pre-print coming soon.


TODO/In Progress:


Applying IEA-GAN to the calorimeter shower generation in Fast Calorimeter Simulation Challenge.


Working on the real PXD detector data by transferring the same structure with minor 
modifications to generate them.


Do Luminosity dependent Event generation (OOD simulation)


Doing a comprehensive validation of generated hitmaps by estimating the systematic uncertainty 
on the tracking efficiency, fake rate and resolution.

https://github.com/Hosein47/IEA-GAN
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Thank You
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The Base Model:
Technologies:


Residual blocks

Spectral Normalisation

Orthogonal Weight init.

Orthogonal regularisation

Contrastive Learning

Hinge Loss

Consistency Regularisation

Differentiable Augmentation

IEA Loss

5x10^-5 lr for both G and D
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Overlay Problem

Realistic detector simulation has to take into account effects from 
background processes


Simulation requires many PXD hitmaps with statistically independent background.

Overlay hits from simulated background or random trigger data to hits from signal MC.

PXD hits have the highest storage consumption.

Requires distributing over all sites where MC is produced.


Solution: Generating the background data on the way of analysis with GANs instead of 
storing them.
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