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Why Anomaly Detection? 

• The goal of unsupervised anomaly detection is to 
develop less model dependent methods. 

• Try to develop methods that are trained only on 
background but can be used to find signals 

• Can be divided into outlier detection and finding over 
densities



Two Types of Anomaly Detection 

Finding Overdensities Outlier Detection

[Collins et al: 1805.02664, D’Anglo + 
Wulzer: 1806.02350, Collins et al: 
1902.02634, D’Anglo et al: 1912.12155, 
Nachman & Shih: 2001.04990, Stein et al: 
2012.11638, Carron et al: 2106.10164, 
Hallin et al: 2109.00546, + many others]

[Hajer et al: 1807.10261, Heimel et al: 
1808.08979, Farina et al: 1808.08992, Cerri 
et al: 1811.10276, Roy + Vijay: 1903.02032, 
Atkinson et al: 2105.07988, Carron et al: 
2106.10164, Ngairangbam et al: 
2112.04958, + many others]

https://arxiv.org/abs/2109.00546


Simplifying the Problem

• Full event anomaly detection is 
hard 

• Consider the simplified problem 
of detecting top and W jets in a 
QCD dijet background.  

• Use jet images of simulated 
LHC jets, which have been 
preprocessed (flipped, rotated, 
discretized) and normalized by 
total pT. 

Sample Images: QCD Jet (Above), Top Jet (Below)
[Fraser et al: 2110.06948]
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• In an autoencoder (AE), an encoder compresses inputs to a latent 
space, and then a decoder tries to map the latent space back to the 
original data by minimizing a reconstruction loss such as the mean 
power error:  

• When the AE is trained on background, the reconstruction fidelity 
gives an anomaly score: background-like events should be 
reconstructed well while signal-like events should not [Heimel et al: 
1808.08979, Farina et al: 1808.08992] 

AEs for Anomaly Detection

d (α)
MPE(ℐ1, ℐ2) =

1
Npixels ∑

i∈pixels

|ℐ1,i − ℐ2,i |
α

Schematic AE [Farina et al: 1808.08992] 



Adapting Variational Autoencoders (VAEs)
• In a VAE, the latent space consists of multiple distributions 

(gaussians) that the decoder samples from, and a KL divergence is 
added to the loss to regularize training: 

Loss = (1 − β) × Reconstruction Loss + β × KLD 

This allows the VAE to be used for variational inference. 

• This stochasticity gives distances in latent space meaning.

 [PureAI]

https://pureai.com/articles/2020/05/07/variational-autoencoders.aspx


Our Architecture

[Fraser et al: 2110.06948]

The VAE architecture 
contains: 

• An encoder with 
downsampling 
blocks (each with 
convolutional 
layers, elu 
activations, and a 
pooling layer) and 
dense layers 

•  A decoder that 
mirrors the 
encoder.



• Optimal transport (OT) is the minimum 
“effort” required to transform one event 
into another.  

• The OT distance is 

where  is the transport plan (where and 
how to transport intensity) and  is the 
cost function (how much work it takes to 
transport one unit of intensity). 

• Optimal transport can be balanced or 
unbalanced. We normalize our images 
and restrict to balanced OT.

fij
cij

A More Physical Alternative 

dOT = minf ∑
i, j

fijcij

Example OT Plan 
[Komiske et al: 1902.02346] 



• Examples of OT metrics include the 
Energy Movers Distance [Komiske et al: 
1902.02346, 2004.04159] and more general 
Wasserstein distances  

where  is the Euclidean distance in 
the  plane.

cij
(η, ϕ)

A More Physical Alternative 

Example OT Plan 
[Komiske et al: 1902.02346] 

d ( p)
Wass = (minf ∑

i, j

fij(cij)p)
1/p



• OT gives the distance between events. How can we use it to get a 
score for the “distance” to a distribution? 

• Pick reference samples and use OT distances to the references as 
an anomaly score.  

• Test average QCD image and k-medoids of the QCD jets as the 
reference, with k chosen by the elbow method. Medoids perform 
better. 

Using Optimal Transport Distances
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Key Questions

• How do the VAE and Event-to-Ensemble OT compare? 

• How robust are the VAE and Event-to-Ensemble 
distance? 

• Do results depend on reconstruction loss/distance 
choice? (Ex. MAE, MSE, Wasserstein distance - 
implemented with the Sinkhorn approximation 
through the GeomLoss package) 

• How model independent are the best choice of 
reconstruction loss and other hyperparameters? 
(Ex. β, number of downsampling blocks)



VAE Results

• The VAE performs best with MSE loss and 2-3 
downsampling layers. 

• Wasserstein loss doesn’t perform as well for 
most benchmarks



OT Results

• Best Top vs. QCD: 1-Wasserstein metric

• MAE does well for QCD vs. W; correlated with Wass(1) 

here

• Find worse performance for larger p: small pixel 

differences become comparatively less important, agrees 
with [Finke et al: 2104.09051] for AEs.



Comparison

• Reference 
samples slightly 
outperform the 
VAE with most 
benchmarks

• Best 
hyperparameters 
are signal 
dependent



Hyperparameter Dependence

• There is no signal independent way of choosing 
hyperparameters.  

• Choices that best represent the background are often not best 
for signal detection: β with the lowest loss on the validation 
samples is NOT best for QCD vs. W classification 

• Also applies to choosing metric/number of medoids for 
reference samples



Semi-Supervised Results with OT

• OT is easy to apply to other reference samples: also use top jets as 
a reference and try to detect QCD vs. Top jets or QCD vs. W jets 

• Comparing to a Top reference sample is better than comparing to a 
QCD sample for QCD vs. W classification but not Top vs. W 
Classification. 

• For Top vs. QCD classification with top reference samples, higher p 
is better.
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• Can we use the latent space to understand what the VAE is 
learning? 

• Distances between events in the VAE latent space are correlated 
with Wasserstein OT distances between the same pairs. 
Downsampling helps generate these correlations.

Understanding the Latent Space



1. There are general challenges with outlier detection. 
For both VAEs and OT with reference samples, 
choices that best represent the background are 
often not best for signal detection. Outlier detection 
is inherently signal dependent and hard to optimize. 

2. The event-to-ensemble Wasserstein distances do 
as well or better than the VAE because Wasserstein 
OT distances and VAE latent space distances are 
correlated. This suggests there could be cases 
where they can be interchanged.

Summary



Back Up Slides



• Data x, Latent space elements z 

• Let where  is the VAE encoder. Then p(x) =

 

•  log  

 

qϕ(z |x)

𝔼p(z)[p(x |z)] = ∫ p(x |z)p(z)dz

= ∫ qϕ(z |x)
p(x |z)
qϕ(z |x)

p(z)dz = 𝔼qϕ(z|x)[ p(x |z)p(z)
qϕ(z |x) ]

⇒ p(x) = log𝔼qϕ(z|x)[ p(x |z)p(z)
qϕ(z |x) ]

≥ 𝔼qϕ(z|x)[log( p(x |z)p(z)
qϕ(z |x) )] = 𝔼qϕ(z|x)[logp(x |z) − log(

qϕ(z |x)
p(z) )]

Variational Inference with VAEs



Downsampling vs. Layers



The Elbow Method


