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Introduction

- Identifying prompt muons from heavy 

boson decay (Z, W, etc.) is important for 

the discovery of new physics

- Low level particle data is reduced to a 

scalar, isolation[1-3] - information loss[4]

- Use neural networks to learn, in real data, 

to identify prompt muons from 

non-prompt background

- Identify set of interpretable high level 

observables which yield similar NN 

performance to low level data
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Hypothetical particles such as the Z’ boson 

might be identified through muon decay 
products



Introduction

- Unlike simulation, real data is 

unlabeled

- Fully supervised NN training 

techniques used on simulation won’t 

directly work here

- Can determine overall sample 

composition -> weakly supervised 

learning
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Dataset - Reconstruction
- Our dataset was obtained from CMS Open 

Data, collected during 2012 run[5]

- Data reconstructed with Particle Flow 
algorithm - calo + track information[6]

- Results in particle data objects with 
associated pT, eta, phi, charge

- Objects are categorized as:

- Muons and electrons

- Charged and neutral hadrons

- Photons

- Pileup 4



Dataset - Selection
- Selection criteria:

- Dimuon events

- Both muon pTs > 25 GeV

- Both muon |eta|s < 2.1

- Invariant mass between 70 - 110 GeV

- Separate into 2 samples:

- Prompt muon dominated (907488 

events, 95.6% prompt)

- Non-prompt muon dominated 

(171238 events, 6.83% prompt) 5

Non-Prompt dominated sample contains all similarly 
charged muon events + all from shaded regions, 

remaining events make up prompt dominated sample 



Approach

- Compare performance of neural networks on:

- Low level particle flow data

- Isolation

- Low level performance provides benchmark

- How does isolation compare?

- Can we match low level performance with 

more interpretable set of high level 

observables?
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Visualization of low level data - pT deposits 
binned in (eta,phi) + averaged across samples



Isolation
- Isolation quantifies the amount of activity 

around a given muon with a radius R_0

- Other studies indicate using a radius of 

0.3, which we include in our set of 

calculated isos[7]
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Training

- Optimal classifier for two mixed 

class samples can be shown to be 

equivalent to that for underlying 

classes - Classification Without 

Labels (CWoLa)[8]

- Separate events into two samples 

determined to have different class 

distributions

- Label events according to sample 

drawn from -> supervised learning 8

Mixed Sample 1
All labeled 1

Mixed Sample 2
All labeled 0

Training on pure samples should 
yield equivalent classifier to training 

on mixed samples 1 & 2
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Performance Evaluation

- Want model performance at class level

- Typical AUC calculation would use true 

class labels

- Instead we use a reweighting method 

(sPlots)[9]

- Fit the masses, using exponential and 

voigt distributions as signal / bg 

components

- These can be used to calculate weight 

values 9

Weights are calculated such that they reduce 
the contribution of an unwanted component 

to a given histogram

Mass Fit

Probabilities Weights

Simulated example with larger background



Performance Evaluation

- The weights can be applied to 

histograms of other quantities

- Reconstructs signal / 

background components

- Apply to model outputs

- Use separated output 

distributions to calculate FPR / 

TPR -> AUC 10

Model 
Outputs

Signal 
Outputs

Background 
Outputs

Example 
ROC curve, 
very close 

to truth

True AUC: 0.987
sPlot AUC: 0.986

Model outputs corresponding to above mass 
distribution



Networks

- Low level - Particle Flow Network 

(PFN)[10]

- Two fully connected networks

- Each (pT, eta, phi) in an event is fed 

individually into first network

- Outputs are summed over event

- Fed into second fully connected 

network for classification

- High level - Fully connected 

networks

- Train with sets of isos of different 

radii + summed event pT
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Index i runs over 
pixels

PFN

Per pixel 
outputs reduced 

to set of 
observables



Isolation Performance
- Networks trained with sets of 

isolations and the summed event 
pTs as input

- Performance + error bands are 
calculated over 5 fold stratified 
cross validation

- Overall as cones are added, 
performance increases

- Improvements start to drop off at 9 
isolations

- Performance never reaches that of 
the low level data 12

Performance as additional isolations 
are included in the feature set, starting 

with the largest and then adding 
subsequently smaller cones

Performance 
Gap

Preliminary Results 



EFPs can be represented as 
graphs

Nodes: Edges:

Where:

Search identifies this EFP as useful:

EFP Selection
- Energy Flow Polynomials (EFPs) are 

parameterized functions which act over 
the (pT, eta, phi)’s in an event[11]

- Including these as features may recover 
information not captured by isos

- Average Decision Ordering (ADO) metric 
used to select EFP set[12]

- ADO measures probability two classifiers 
yield similarly ordered pair of outputs

- Iterative algorithm compares EFPs to 
PFN with ADO and selects optimal set
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Results

- The first EFP identified by our 

search seems to close the 

performance gap between the 

high and low level data

- Minimum high level observables: 

9 isos + summed pT + 1 EFP

- Previous results on simulation 

had identified 10 isos + summed 

pT + 5 EFPs to match PFN 14

Preliminary Results 



Conclusions

- We find that isolation does not capture all useful discriminating 

information present in real particle flow data

- We employ CWoLa, a weakly supervised learning strategy, to train on 

real data

- Notably previous studies of this kind have only been done on 

simulation, and CWoLa has only been used in bump hunt applications

- We identify a minimal set of interpretable high level observables that 

has similar discriminating power to the full low level data 15



Backup
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CMS Isolation Distributions 0.025 - 0.225
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CMS Isolation Distributions 0.225 - 0.45
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Muon pT / eta distributions

- Muon pT / eta distributions are 

shown for our separated prompt / 

non-prompt dominated samples

- These are weighted such that they 

match between the samples

- Weights are calculated using 2D 

gaussian KDE in the pT / eta 

dimensions, and applied to loss 

during training 19



-

ADO[12]

- Measures probability two 

classifiers yield similarly ordered 

pair of outputs

- For classifiers f & g, classes 

distributed as p_1 & p_2 (H being 

Heaviside step)

20

.9

.8

DO = 1

.6

.7

.3

.2

DO = 0

.1

.5

.2

.4

DO = 1

.6

.8

Decision ordering calculated for 
individual pairs from two classifiers

Classifier 1

Classifier 2

+

+

+

-

-

X1 X2



Guided Search[12]

- Select random signal / bg pairs, compare on 
average how often two classifiers give 
similarly ordered output

- Select points which a high level network and 
the PFN order differently

- Compute ADO between PFN and a set of 
EFPs

- Select highest ADO EFP and include as input 
for high level network

- Iterate until ADO between the PFN and high 
level network stops improving
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Figure from [12] Illustration of the guided search 
strategy. Here the PFN takes the place of the black 

box network, and the EFPs are used as the high level 
(HL) observables.



CMS Open Data Analysis - CWoLa Details[8] 

- The likelihood ratio for two samples S and B defines the optimal classifier between them (letting p_S 
and p_B be pdfs)

- Given mixed samples M1 and M2 with signal fractions f1 and f2, we can relate their likelihood ratio 
to that of the one for S and B

- We see that the likelihood ratio between M1 and M2 is a rescaling of the likelihood ratio for S and B

- Since rescaling doesn’t change the decision ordering these two are equivalent at the classification 
level

- Training on our mixed samples should therefore yield a network that can classify between the signal 
and background that we’re interested in 22



Selected EFP
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