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Introduction

- ldentifying prompt muons from heavy
boson decay (Z, W, etc.) is important for
the discovery of new physics

- Lowlevel particle datais reduced to a
scalar, isolation[1-3] - information loss[4]

- Use neural networks to learn, in real data,
to identify prompt muons from
non-prompt background

- ldentify set of interpretable high level
observables which yield similar NN
performance to low level data

Hypothetical particles such as the Z’' boson
might be identified through muon decay
products



Introduction

Unlike simulation, real datais
unlabeled

Fully supervised NN training
techniques used on simulation won'’t
directly work here

Can determine overall sample
composition -> weakly supervised
learning

Fully Supervised

Signal

Background

Weakly Supervised

~70% Signal

25% Signal




Dataset - Reconstruction

- Our dataset was obtained from CMS Open Key: ———Muon

Charged Hadron (e.g. Pion)

Data, collected during 2012 run[5] | el stalon (A e

- Datareconstructed with Particle Flow
algorithm - calo + track information[6]

- Results in particle data objects with
associated pT, eta, phi, charge

- Objects are categorized as:

- Muons and electrons

- Charged and neutral hadrons
- Photons

- Pileup
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Dataset - Selection 016 |
- Selection criteria: 014
0.12 4
- Dimuon events 010 -
- Bothmuon pTs > 25 GeV E 0.08 1
0.06 -
- Bothmuon |etals < 2.1
0.04 4
- Invariant mass between 70 - 110 GeV 0.02 -
. 0.00 -
- Separate into 2 samples: 700 75 8 8 % 9 10 105 110

Invariant Mass (GeV)

Prompt muoon dominated (907488 Non-Prompt dominated sample contains all similarly
events, 95.6% prompt) charged muon events + all from shaded regions,

Non-prompt muon dominated remaining events make up prompt dominated sample

(171238 events, 6.83% prompt)
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Isolation Example
Charged hadron deposit withpT =4 — @

——\
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Isolation Shoton ¢ N
- Isolation quantifies the amount of activity pT =2
around a given muon with aradius R_O / @ '/ \
\
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Training

Optimal classifier for two mixed
class samples can be shown to be
equivalent to that for underlying
classes - Classification Without
Labels (CWoLa)[8]

Separate events into two samples
determined to have different class
distributions

Label events according to sample
drawn from -> supervised learning

Mixed Sample 1
All labeled 1

Mixed Sample 2
All labeled O

Training on pure samples should
yield equivalent classifier to training
on mixed samples 1 & 2



Performance Evaluation

- Want model performance at class level

- Typical AUC calculation would use true
class labels

- Instead we use a reweighting method
(sPlots)[9]

- Fit the masses, using exponential and
voigt distributions as signal / bg
components

- These can be used to calculate weight
values
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Weights are calculated such that they reduce
the contribution of an unwanted component

to a given histogram



Performance Evaluation

- The weights can be applied to
histograms of other quantities

- Reconstructs signal /
background components

- Apply to model outputs

- Use separated output
distributions to calculate FPR /
TPR-> AUC

Model outputs corresponding to above mass
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Networks

- Low level - Particle Flow Network
(PFN)[10]

- Two fully connected networks

- Each (pT, eta, phi) in an event is fed
individually into first network

- Outputs are summed over event

- Fedinto second fully connected
network for classification

- High level - Fully connected
networks

- Train with sets of isos of different
radii + summed event pT

Index i runs over PTs
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0.89 A

Isolation Performance
- Networks trained with sets of said

isolations and the summed event

AUC

pTs as input 0.86 -

- Performance + error bands are
calculated over 5 fold stratified

0.85 A

cross validation P

- Overall as cones are added,
performance increases

- Improvements start to drop off at 9
isolations

- Performance never reaches that of
the low level data

Preliminary Results

Performance
Gap

— PFN
—— Iso + Sum pT

i é 3l ‘It 5' ('5 '} é é1I01|11|21I3l'41'51'61l7118
Number of Cones
Performance as additional isolations
are included in the feature set, starting
with the largest and then adding
subsequently smaller cones
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EFPs can be represented as
graphs

EFP Selection

- Energy Flow Polynomials (EFPs) are
parameterized functions which act over

A 5
Nodes: Z z: Edges: 9?:]-

the (pT, eta, phi)’sin an event[11] Z; = Zpi

- Including these as features may recover Where: 3
information not captured by isos o 2 2
0ij = \/ A + A

- Average Decision Ordering (ADO) metric
used to select EFP set[12]

- ADO measures probability two classifiers

. - : Search identifies this EFP as useful:
yield similarly ordered pair of outputs

- Iterative algorithm compares EFPs to N
PFN with ADO and selects optimal set (k=1,8=-)= Z T (9ab9ac9bd9§d)l/4 .
a.b.c,d=1



Results

The first EFP identified by our
search seems to close the
performance gap between the
high and low level data

Minimum high level observables:

9isos + summed pT + 1 EFP

Previous results on simulation
had identified 10 isos + summed
pT + 5 EFPs to match PFN

0.88 -

0.87

AUC

0.86 -

0.85 A

— PFN
== = EFP + 9 Is0 + Sum pT
—— Iso + Sum pT

0.84 -

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Number of Cones

Preliminary Results

Method AUC o

Single Iso Cone + > pr[0.843[4.37 x 10~°
9Iso + S pr 0.864(2.59 x 103
91Iso + > pr + EFP  [0.888(3.30 x 10™*
Particle-Flow Net 0.888(2.92 x 1073
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Conclusions

- We find that isolation does not capture all useful discriminating
information present in real particle flow data

-  We employ CWola, a weakly supervised learning strategy, to train on
real data

- Notably previous studies of this kind have only been done on
simulation, and CWola has only been used in bump hunt applications

-  Weidentify a minimal set of interpretable high level observables that
has similar discriminating power to the full low level data
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Backup
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CMS Isolation Distributions 0.025 - 0.225
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Iso Ro= 0.35
= Background

CMS Isolation Distributions 0.225 - 0.45
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Muon pT / eta distributions

Muon pT / eta distributions are
shown for our separated prompt /
non-prompt dominated samples

These are weighted such that they
match between the samples

Weights are calculated using 2D
gaussian KDE in the pT / eta
dimensions, and applied to loss
during training

=3 Prompt Dominated mmm Non-Prompt Dominated
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- Measures probability two
classifiers yield similarly ordered
pair of outputs

»— DO =0

- For classifiers f & g, classes
distributed as p_1 & p_2 (H being
Heaviside step)
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G u i d ed Sea rc h [ 12] Signal/Background Feirs Black-Box

Guided
. . . . Search
B E—E (-] -] BBN
- Select random signal / bg pairs, compare on HE I no || E l
average how often two classifiers give -] B BE TS
similarly ordered output i () o
. S P HRL®
- Select points which a high level network and 3 I !
the PFN order differently [~ ] ol Ves HE @ 8o
HE - | -] S =|2
- Compute ADO between PFN and a set of

EFPs
Figure from [12] lllustration of the guided search

) Selec_t highest ADO EFP and include as input strategy. Here the PFN takes the place of the black
for high level network box network, and the EFPs are used as the high level

- Iterate until ADO between the PFN and high (HL) observables.

level network stops improving 01



CMS Open Data Analysis - CWolLa Details[8]

- Thelikelihood ratio for two samples S and B defines the optimal classifier between them (letting p_S
and p_B be pdfs)

Lg/p(%) = ps(Z)/pB(%)

- Given mixed samples M1 and M2 with signal fractions f1 and f2, we can relate their likelihood ratio
to that of the one for Sand B
B = D firs+(—f)ps _ filyp+ (11— f1)
VR pm, faps+ (1= f2)pe faLs/p+ (1 - f2)

- Wesee that the likelihood ratio between M1 and M2 is a rescaling of the likelihood ratio for S and B

- Since rescaling doesn’t change the decision ordering these two are equivalent at the classification
level

- Training on our mixed samples should therefore yield a network that can classify between the signal
and background that we're interested in



Selected EFP

Density
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