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The problem: 
measuring muon energy in a calorimeter 

Muons do not produce EM 
showers when traversing dense 
materials

Their behavior changes above a 
few 100 GeVs, when they start to 
radiate soft photons in significant 
amounts

But even then the energy loss in 
a thick calorimeter is typically of 
the order of a few percent
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What to do above a few TeV?

Future E>E(LHC) colliders might produce new particles whose signature 
involves decay to ultra-high-energy muons. Yet above a few TeV we cannot 
rely on magnetic bending to measure their momentum:

• CMS has δΕ/E = (0.06 : 0.17) E/TeV
• ATLAS has δΕ/E = (0.08 : 0.20) E/TeV

→ Above 3-4 TeV muon energy becomes unmeasurable by bending methods. 

The questions then are:

• Is there information in the spatial distribution of the energy deposits?

• To what precision can multi-TeV muon energy be measured in a very high 
granularity calorimeter?

To answer them, we developed a very complex CNN model
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Simulation of a high-granularity calorimeter
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GEANT4 → high-statistic samples of muons 
interacting in a high-granular, homogeneous 
PbWO4 calorimeter

total depth = 2032 mm = 10 λ 0

50 layers of 32x32 cells –

51,200 channels in total

cell size = 3.7 x 3.7 x 39.6 mm

We assume the calorimeter is embedded in 
a 2-Tesla B-field orthogonal to the muon 
incident direction. This has practically no 
effect for >1 TeV muon trajectories (<1mm 
deflection)

We simulate about 1M muons in the energy 
range E = [100 GeV: 8000 GeV] Note: this looks like a shower, but most photon deposits

shown are of few MeV only
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CNN model

The CNN we originally deployed 
uses convolutional layers to 
reduce the dimensionality of the 
pattern of energy deposits, and 
employs 28 high-level features in a 
dense layer. 

The 28 event features are the 
result of human-based «domain 
knowledge» about possible ways 
to aggregate the information on 
the spatial distribution of energy 
deposits (more later)
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CNN results
The CNN model manages to recover 20% resolution for 4-TeV muons. It also 
demonstrates how there is information in the spatial distribution of photon 
deposits. A combination with a tracking measurement (δE/E=0.2E/TeV) is shown on 
the right.

Results are published in J. Kieseler et al., Eur. Phys. Journ. C82 (2022) 79, 
arXiv:2107.02119
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Why a k-NN then?

The CNN results shown were actually produced several months after
we first tried a k-NN algorithm on the problem, because I had some 
code handy and needed to produce a preprint in time for a funding 
application... 

The k-NN was eventually re-run on the full dataset used for the CNN 
publication, after many improvements

Here I am describing the final version of the k-NN we developed.
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High-Level Features

A k-NN cannot possibly make sense of a 51,200-dimensional space, so we 
cooked up 28 high-level features to aggregate information in various ways:

- total energy in cells for various values of min cell energy

- moments of energy distribution around track in xy space, in z slices

- number of clusters of cells (above energy threshold)

- number of towers in clusters

- energy of clusters

- imbalance in x and y of energy distribution

- fit to curvature from energy depositions (useful for E in few-100 GeV range)
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kNN Construction

The kNN estimate is constructed as the average estimate from several pools of weak 
learners, each pool trained independently on partially disjunct subsets of training data. 

Weak learners address the curse of dimensionality (which makes even 28 dimensions too 
many for local averaging) by defining the distance in subspaces, ignoring in turn some of 
the features through an indicator function, I(d) = 1/0 if feature d is considered or not:

Features in the definition above are standardized to have unit variance and zero mean.

The prediction for test event j can be written as 

where ikNN(m) is the index of the m-th closest training event to j in the subspace, Δ(m,j).
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e.g. I = {0,1,1,1,1,1,0,0,1,1,1,1,0,1,1,0,0,1,0,0,1,1,0,0,0,1,1,1}



Pooling of weak learners

The subsampling through I() brings in a loss of information and turns the problem 
into one of identifying advantageous subspaces and combinations

To reduce information loss, we consider Nwl weak learners, each performing a kNN 
average in a different subspace through a different indicator Iwl(). 

The regressors are then combined in a weighted average:

Weights Wwl(i) are optimized by gradient descent.

The loss of information remains, but its effect is tamed by the added flexibility of 
the model, and optimized weights Wwl.
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Overparametrization

One of the aces in the sleeve of DNNs is overparametrization – it smoothens the 
loss function landscape and eases convergence to the real minimum. To inject 
overparametrization in a kNN one may only rely on training data.

Each training event affects the prediction by its position in space (fixed) and by the 
value of energy (also fixed). One can still inject flexibility by biasing the energy 
value, and altering the weight of the event in the averaging.

We introduce two sets of parameters b(wl,i), w(wl,i) for each weak learner:

with O(600k) training events, O(10) weak learners per pool, and O(5) pools, this 
boils down to about 66M free parameters in the final model. 

But can they be trained ??
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Once a loss function is defined, it is straightforward to compute derivatives and 
create a mechanism to navigate the parameter space in the direction of maximum 
negative gradient. But the kNN relies for the prediction on data which cannot be 
the same used to optimize the parameters. 

So we split training data in a training and a prediction set. The former is used in 
batches to feed gradient descent and learn optimal parameters.

A first-guess loss for a regression task is the MSE: if T is true energy and P its 
prediction, we want to minimize

In our problem we have long non-Gaussian tails in many features. To reduce the 
effect of outliers, we write the loss as

and tune the sigma parameter to focus on acceptable resolution.

Gradient Descent
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Bias Penalization
Since we average the energy of muons in a finite energy 
range ([0.05-8 TeV]), it is to be expected that our estimate 
will be biased toward the center of the range

A way to reduce this effect is to penalize the loss with the 
following term, with m!=n:

NT is the number of bins of tested energy; P and T denote 
predicted and true energy.

The sum considers all pairs of bins to enforce that 
predictions «line up» along the diagonal
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The denominator in L2

The denominator is constructed by assuming that uncertainties in energy deposits 
scale with Poisson statistics, so that an estimate of the uncertainty in the difference 
at the numerator above as 

with Nm the number of events in bins m. This gives equal importance to deviations 
over a small energy difference Tm-Tn and over a large one. A way to give more 
weight to larger differences is to add that term to the denominator. Our choice 
then is
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Other figures of merit
The loss as defined above is not necessarily the best proxy to the success of our regression 
task, as we are mainly concerned with the high-end part of the spectrum, where a 
curvature measurement would be inadequate.

In addition, we assume we will combine the calorimetric measurement with a tracking one 
with a resolution δE/E = 0.2E/TeV.

The combination yields

and we define as a figure of merit the function
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Further, we gauge the discrimination power of predicted energies 
for 4 vs 2 TeV muons and 3 vs 1 TeV muons by computing the
following proxies:
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* Features pruning

Regardless of our dimensionality reduction based on feature subsampling, it is 
useful to identify and get rid of variables that are not useful for the regression 
task.

The identification is difficult, as the feature space is complex and the 
interdependencies non trivial. 

We run 1639 independent regression tasks using randomly generated single 
weak learners on the same training data sample (50,000 events), with 
subspace dimension variable between 8 and 15, and compute the average 
value of figures of merit as a function of their inclusion or exclusion of each 
feature.
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* Pruning study results

Listed here are variables that are among the six worst on any one of the four figures of merit.

The variables which do not worsen the performance of the corresponding figure of merit are highlighted in boldface.

We finally reject all listed variables except variable 8, which is only present in the list due to the (relatively noisy) max res.

(larger is worse) (larger is worse)         (smaller is worse)          (smaller is worse)

Worst 
ΔLoss

Worst 
ΔMaxR
Worst 
D24

Worst D13
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* Weights and biases initialization and learning

W() and b() need to be initialized. 
b() is set to zero, W() to a value that 
is =1.0 below 5 TeV (4 TeV is the 
upper limit of the regression range), 
and smoothly decays to 0 for E=8 
TeV with a sigmoid (same approach 
was used by CNN paper).

During training, the weights and 
biases get tweaked by the learning 
process. For W() you still see some 
remainder of the initial trend, but 
with large spread
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Final run
For each of the four sets of 8 regressors with Nwl=5,10,15,20, two are chosen based 
on the FoMs already discussed, and using cross validation. Finally, we run the eight 
sets on 80,000 test events and 400,000 or 300,000 training events.
The total number of parameters used in the final regression is 
Nweights = (2*5 + 2*10)*400,000 + (2*15+2*20)*300,000 and the same number of 
biases, plus 100 global weak learner weights. The total is thus (12M+21M)*2 +100 
= 66,000,100 parameters.
Each job needs about one week to complete the training.
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The final loss from the averaging of the 8 
regressors is 33.734, MaxRes is 0.3372, Discr24 
is 1.3318, and Discr13 is 0.7025. These 
numbers are better than those of the 8 inputs.



Results

The regression shows an almost linear response, 
indicating that the bias correction penalization 
helped. The MSE reaches down to 22%E at 4 TeV.
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Results/2

For a comparison, 
we look at results 
of a NN (orange), a 
default kNN (pink), 
and Xboost. 

The results of our 
k-NN outperform 
the standard k-NN 
and are overall 
similar to those of 
NN and BDT 
methods, and even 
slightly better than 
those at high E.

But the CPU and 
analysis load is non 
comparable!
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CNNs use more 
information (full 

granularity on cell 
energies)

Compare these 4



Conclusions

Deep learning achieves great results in a number of problems, and that 
is wonderful! - but we should not forget that there is nothing really 
special in it: overparametrization and gradient descent can be applied 
also to more mundane tools, with similar outcomes (but way more 
CPU-hungry)

In the future, high-energy muons will pose a challenge to high-energy 
colliders. We argue that high-granularity calorimeters are suitable for a 
measurement of their energy at arbitrarily high values
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Thanks for your attention!
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Before 2012...

Long before most of us started thinking about machine learning (ML) tools for HEP, 
statisticians developed and used a huge weaponry of statistical learning tools

• Linear discriminant analysis is a 1936 brainchild of R. Fisher

• k-NN was invented in 1951 (Fix, Hodges)

• Clustering dates back to 1938-39 (Zubin, Tryon)

• Cross-validation was invented in 1974 (Allen, Stone)

• Boosting comes from ideas of the late eighties, then Schapire 1990.

When ML boomed in the early 2000s, it was largely a computer-driven revolution 
rather than the discovery of new tools
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The rise of deep learning in HEP

DNNs use skyrocketed in HEP after 2012, when BDTs and NNs were 
used for the Higgs discovery (2012 is also the turning point in the 
imagenet challenge). A true paradigm change!
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Solution Score

Gabor Melis (DNN pooling) 3.806

MultiBoost 3.405

TMVA boosted trees 3.200

Naive Bayesian classifier 2.060

1D cut-based selection 1.535

The most effective solution 
was based on a pool of DNNs, 
with emphasis on cross-
validation

Alternative methods 
commonly used in HEP 
(xgboost, Bayesian NN, etc.) 
were beaten soundly

equiv. to 6 
times 
more 
data!

Further evidence of the benefit of ML tools for HEP was given by the Kaggle Higgs challenge 
[Kaggle 2014], with 1800 teams participating (physicists, statisticians, computer scientists). 
Task: separate H→ττ decays from backgrounds in LHC simulated data
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https://www.kaggle.com/c/higgs-boson


The weaponry of the 2020s

Current trends of deep learning applications in particle physics include

- DNNs for classification, particle ID, signal discrimination, deep regression

- CNNs for image-based classification (e.g. boosted jets)

- Graph NNs for event reconstruction

- Differentiable pipelines for incorporation of nuisance parameters in supervised learning tasks

- Implementation of NNs in FPGAs for online data acquisition

- VAEs for anomaly detection

- GANs for generative models

- End-to-end optimization of experiments

The above tools essentially use the same engine under the hood: the chain 
rule of differentiable calculus, which allows gradient descent
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* Automatic Differentiation
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Wouldn’t it be nice if you coded
a problem and the dependence
of variables in a program, and the
language took care of figuring out
how functions vary depending on 
parameters, and carry out the
complicated task of propagating
derivatives around?

Those of us who have done this 
manually can’t be happier by
seeing the rise of Pytorch, TF, etc.
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Manual differentiation

Automatic differentiation is great, and is speeding up progress... But 
manual differentiation also works!

In this talk I will discuss a result produced with unrefined c++ code, by 
manually implementing a calculation of a loss function and its 
derivatives

The message will be that what is really important is the statistical 
model, not the tools that we apply to it to get our answer...
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* What is a k-NN?

It is entirely possible that you do not know 
what a k-NN is, so here is my one-slide 
explanation of a regressor k-NN.

Imagine you need to estimate the 
temperature in Roscommon co., Michigan 
(red star) based on the data on the right.

You might choose to take the state average 
of 56°F; that would be a low variance/high 
bias choice

A more principled procedure is to check 
the temperature of neighboring counties.
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As temperature is connected to spatial distance, 
you may want to include/exclude data points based
on their distance from Roscommon.
In k-NN, you specify k and the distance rule.

The more you restrict the range of counties which
you allow in your average, the more «relevant» they
become: bias decreases; but variance grows.5/11/2022 T. Dorigo, a kNN with 66M parameters



Not all features are equal

In the example of temperature 
averaging we made earlier, we could 
argue that climate models indicate that 
longitude is less important than latitude 
to impact ground temperature

We might use that information to get a 
less biased estimate, if we modified the 
distance calculation...
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Above, the «balls» containing evaluation points
are shrunk along the direction that is more relevant
for the estimation.

However, note that a linear dependence of
average temperature with latitude would not 
suffice for this to be a justified procedure, as a linear
trend gets averaged out !5/11/2022 T. Dorigo, a kNN with 66M parameters



Hyperball optimization

An additional feature of the developed algorithm is 
an adaptive shape of the k-balls, by giving weights 
to the distance components proportionally to the 
variance exhibited, in the proximity of the test 
point, by the quantity to be estimated.

An estimate of the bias due to the variability of E as 
a function of x in the surrounding of the test point 
(x=0 here) is provided by fitting with a parabola the 
deviations from the mean.

This corresponds to simply getting the average 
energy in a wide region [-d,d] and in a central region 
E0=<E>([-d/3,d/3]), and computing the bias as 

b = <E> - E0.
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The biases can then be used to give
more or less importance to the different
features in the calculation of the distance:

The calculation requires to study
the vicinity of the test point with
large k (3-5 times the normal value) and 
is thus very CPU expensive.
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Validation of pruning procedure

We validate the pruning procedure by running a regression on all 28 
variables, and then removing gradually the worst features.

As expected, we observe a decrease of the loss and MaxRes, and an 
increase of the discrimination power
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Validation of pruning/2

Further evidence of the validity of the choice comes from starting off from the best 5 features and adding the 
worst ones one by one. We see a clear increase of the loss and a decrease of Discr13; the other two FoMs 
remain basically untouched
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(lower is better)                     (higher is better)

Loss MaxRes Discr24 Discr13

Minimum value of graphs is 50% of maximum
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* Regressor details

• k is set to 100. This was not «properly» optimized but the regression 
performance was checked for a few values in [10,500]. CPU 
limitations make too large values impractical; smaller values start to 
make the loss very noisy (especially L2)
• large k has benefit of giving more flexibility to predictions (200*Nwl+Nwl

parameters per test point)

• 300,000 / 400,000 events used for prediction

• 400,000 events are used for training (batch GD)

• 100,000 events are used for testing

• 18 variables used out of 28 (10 excluded by pruning)
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* Weak learners choice

We used 32 sets of weak learners: 8 sets of 5 
learners, 8 sets of 10 learners, 8 sets of 15 learners, 
and 8 sets of 20 learners.

Each set was separately determined by optimization 
searches running on cross-validation sets of training 
data, without an optimization of w() and b() 
parameters. The procedure was as follows:

1. Select by bootstrapping 10,000 training events

2. Define at random Nwl weak learners, by 
selecting a variable fraction (from 30% to 80%) 
of the active features among the 18;

3. Iterate to modify active flags, by flipping some 
of the flags on or off, then performing the 
regression on 5000-event batches; compare 
loss, minimize it
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The resulting sets of weak learners perform 
significantly better than the original random 
sets. Typical decreases of loss by 2% to 5% 
observed.

Other recipes, based on genetic breeding, did 
not produce good results.
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* Other hyperparameters

• Alpha parameters (loss multipliers) must be defined for the two loss 
components L1, L2. This is tricky and requires some fine-tuning

• The learning rate must be set to a value that allows smooth descent. 
Also tricky

• Learning rate is also updated during gradient descent via additional 
scheduling parameters, depending on the steepness of the descent

• Nbatch is the number of training events used to evaluate the loss 
during learning – must be large enough for L2 to be meaningful (40 
bins, want O(100 GeV) uncertainty on predictions per bin with RMS of 
O(1 TeV) → 100 events per bin → 5000 events per batch)
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