CALOFLOW for CaloChallenge

Ian Pang

Rutgers, The State University of New Jersey

November 2, 2022

Based on work in collaboration with M. Buckley, C. Krause and D. Shih

Motivation

- Generating calorimeter showers with GEANT4 is major computational bottleneck at LHC
- Urgent need for fast and accurate calorimeter simulation
- Developed methods based on normalizing flows and applied them to *CaloChallenge* datasets

Outline

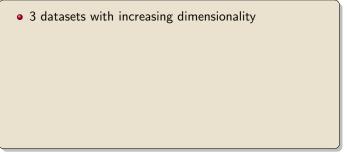
CaloChallenge

2 CALOFLOW on DS 1

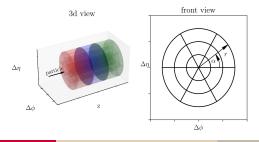
- Method
- Results

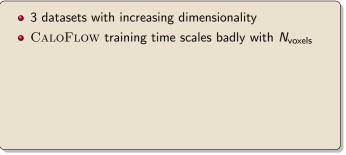
ICALOFLOW on DS 2 & 3

- Method
- Results (preliminary)

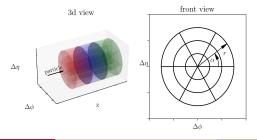


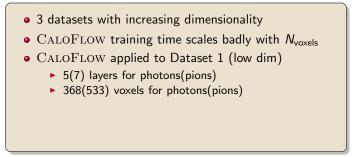
M. Faucci Giannelli, G. Kasieczka, C. Krause, B. Nachman, D. Salamani, D. Shih, and A. Zaborowska https://calochallenge.github.io/homepage/



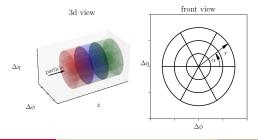


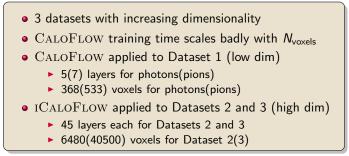
M. Faucci Giannelli, G. Kasieczka, C. Krause, B. Nachman, D. Salamani, D. Shih, and A. Zaborowska https://calochallenge.github.io/homepage/



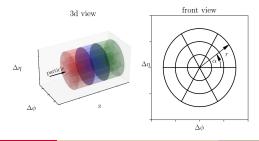


M. Faucci Giannelli, G. Kasieczka, C. Krause, B. Nachman, D. Salamani, D. Shih, and A. Zaborowska https://calochallenge.github.io/homepage/





M. Faucci Giannelli, G. Kasieczka, C. Krause, B. Nachman, D. Salamani, D. Shih, and A. Zaborowska https://calochallenge.github.io/homepage/



CALOFLOW (Low dimensional dataset)

Goal: Learn $p(\vec{\mathcal{I}}|E_{inc})$

2-flow process

CALOFLOW (Low dimensional dataset)

Goal: Learn
$$p(\vec{\mathcal{I}}|E_{inc})$$

2-flow process

Flow-I

- Learns $p_1(E_i|E_{inc})$
- is MAF trained with LL

CALOFLOW (Low dimensional dataset)

Goal: Learn
$$p(\vec{\mathcal{I}}|E_{inc})$$

2-flow process

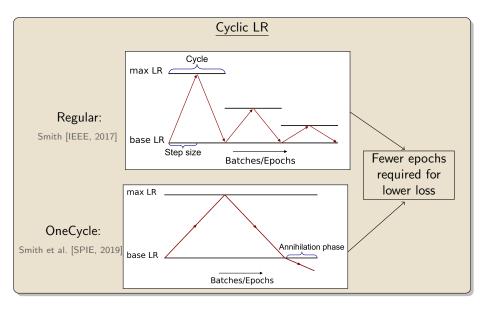
Flow-I

- Learns $p_1(E_i|E_{inc})$
- is MAF trained with LL

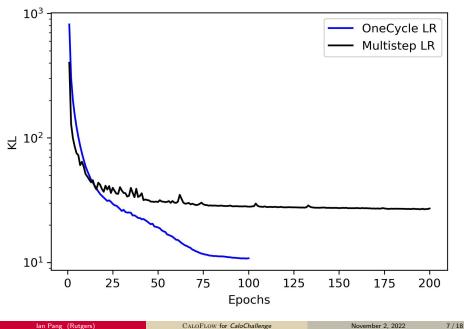
Flow-II

- Learns $p_2(\vec{\mathcal{I}}|E_i, E_{inc})$
- Teacher (MAF) Slow in sampling; Fast in density estimation
- Student (IAF) Fast in sampling; Slow in density estimation

Main updates to $\operatorname{CALOFLOW}$



Main updates to CALOFLOW



```
lan Pang (Rutgers)
```

- According to Neyman-Pearson lemma, we have p_{GEANT4}(x) = p_{generated}(x) if an optimal classifier cannot distinguish between the two datasets.
- Trained binary classifier directly on low-level and high-level features of CALOFLOW and GEANT4 samples.

- According to Neyman-Pearson lemma, we have p_{GEANT4}(x) = p_{generated}(x) if an optimal classifier cannot distinguish between the two datasets.
- Trained binary classifier directly on low-level and high-level features of CALOFLOW and GEANT4 samples.
- Low-level features:
 - Voxel energies $\vec{\mathcal{I}}$
 - \bigcirc Incident energies E_{inc}
- High-level features:
 - Incident energies E_{inc}
 - 2 Layer energies E_i
 - **③** Centers of energy in η and ϕ directions + their widths

AUC / JSD		DNN based classifier		
		GEANT4 vs. CALOFLOW (teacher)	GEANT4 vs. CALOFLOW (student)	
γ	low-level	0.701(3) / 0.092(3)	0.739(3) / 0.131(4)	
	high-level	0.551(3) / 0.013(2)	0.556(3) / 0.015(2)	
π^+	low-level	0.779(1) / 0.185(2)	0.854(3) / 0.313(6)	
	high-level	0.698(2) / 0.104(3)	0.726(3) / 0.128(3)	

AUC (\in [0.5, 1]): Area Under ROC Curve JSD (\in [0, 1]): Jensen-Shannon divergence based on binary cross entropy

AUC / JSD		DNN based classifier		
		GEANT4 vs. CALOFLOW (teacher)	GEANT4 vs. CALOFLOW (student)	
γ	low-level	0.701(3) / 0.092(3)	0.739(3) / 0.131(4)	
	high-level	0.551(3) / 0.013(2)	0.556(3) / 0.015(2)	
π^+	low-level	0.779(1) / 0.185(2)	0.854(3) / 0.313(6)	
	high-level	0.698(2) / 0.104(3)	0.726(3) / 0.128(3)	

AUC (\in [0.5, 1]): Area Under ROC Curve

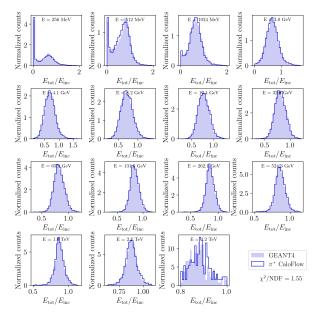
JSD (\in [0,1]): Jensen-Shannon divergence based on binary cross entropy

All AUC and JSD much below 1 (less is better) \implies High-fidelity!

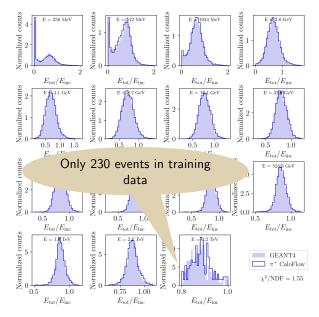
In comparison, $\mathrm{CALOSCORE}$ has $\mathsf{AUC}=0.98$ for low-level features

Mikuni et al. [arXiv:2206.11898]

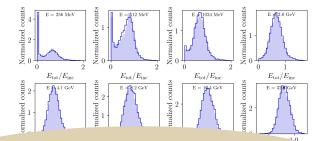
 $\pi^+ E_{\rm tot}/E_{\rm inc}$



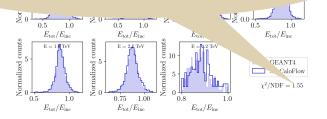
 $\pi^+ E_{\rm tot}/E_{\rm inc}$



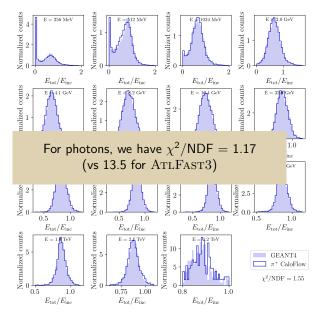
 $\pi^+ E_{\rm tot}/E_{\rm inc}$



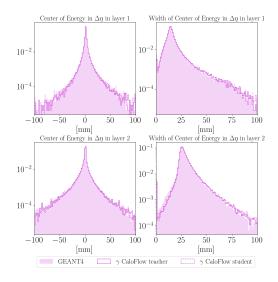
 $\chi^2/\text{NDF} = 1.55$ (vs 12.7 for ATLFAST3 [arXiv:2109.02551])



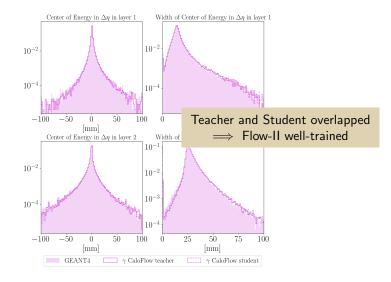
 $\pi^+ E_{\rm tot}/E_{\rm inc}$

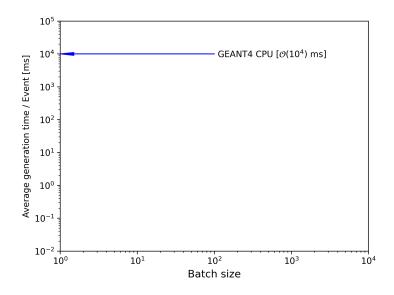


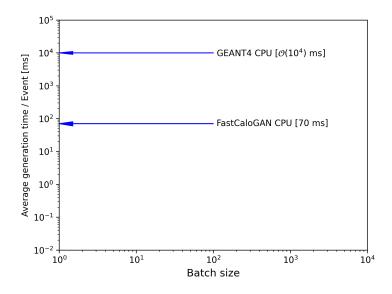
γ shower shape

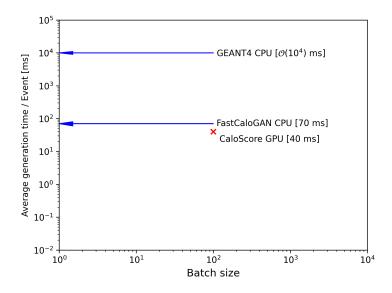


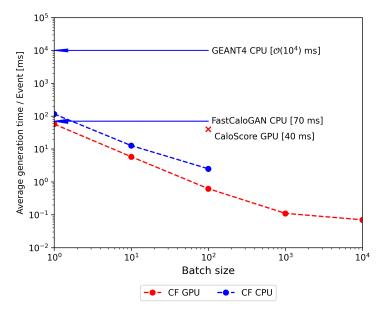
γ shower shape

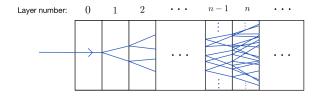




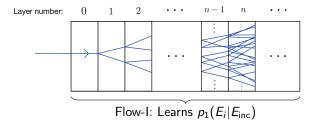


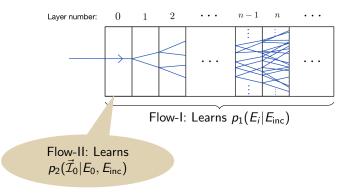


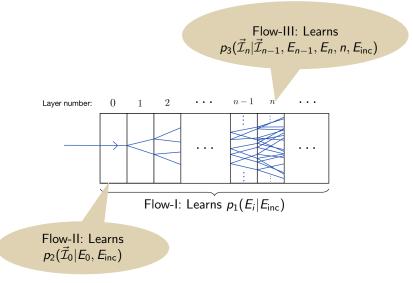


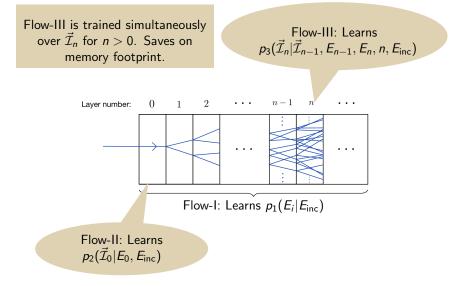


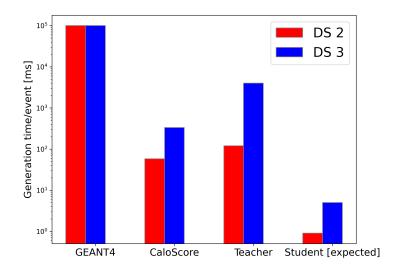
- DS 2 has $\mathcal{O}(10)$ more voxels than DS 1
- DS 3 has $\mathcal{O}(100)$ more voxels than DS 1
- Training time $\propto N_{\text{voxels}} \implies$ Inefficient to directly apply CALOFLOW!
- Here we need ICALOFLOW!











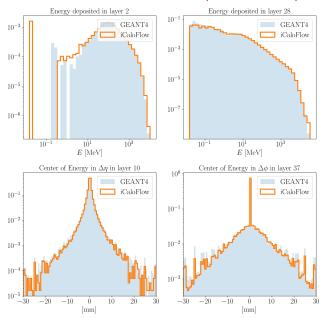
14/18

Classifier scores (preliminary)

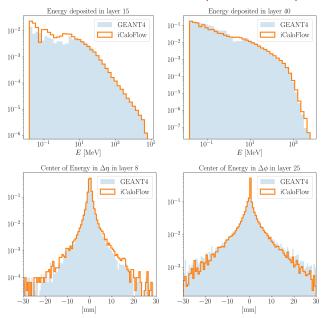
	C / JSD	DNN based classifier
		GEANT4 vs. ICALOFLOW (teacher)
DS 2	low-level	0.823(3)/ 0.263(6)
	high-level	0.860(2)/ 0.329(5)
DS 3	low-level	0.8892 / 0.4112
	high-level	0.9306 / 0.5239

In comparison, CALOSCORE has AUC = 0.98 for low-level features in both DS.

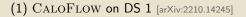
Datasets 2 histograms (preliminary)



Datasets 3 histograms (preliminary)



Summary



- Updates to CALOFLOW
- Good performance on DS 1 (histograms, χ^2/NDF , classifier scores)
- $\mathcal{O}(10^2) \mathcal{O}(10^5)$ speed up compared to GEANT4

Summary

(1) CALOFLOW on DS 1 [arXiv:2210.14245] Updates to CALOFLOW Good performance on DS 1 (histograms, χ²/NDF, classifier scores) O(10²) - O(10⁵) speed up compared to GEANT4 (2) ICALOFLOW on DS 2 & 3

- Inductively learn each layer (Good for high dim)
- Promising results for teacher (MAF)
- Future work: Train student model to speed up sample generation

Backup

Dataset 1

() Voxelized version of ATLAS detector config with $\eta \in [0.2, 0.25]$

- **2** Used to train FastCaloGAN of AtlFast3 [2109.02551, Comput.Softw.Big Sci.]
- **121000** photon showers & **120230** charged pion showers

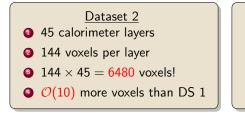
10.5281/zenodo.6368338

	Number of voxels	Number of layers
γ	368	5
π^+	533	7

CALOFLOW algorithm works well here!

Datasets 2 and 3

100k electron showers in simulated detector



^{10.5281/}zenodo.6366271

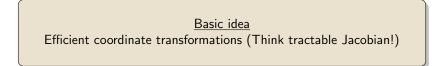
Dataset 3

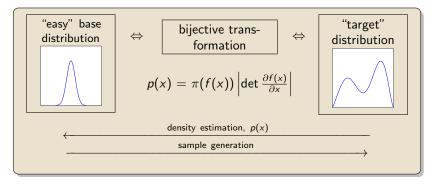
- **4**5 calorimeter layers
- 900 voxels per layer
- **3** $900 \times 45 = 40500$ voxels!
- $\mathcal{O}(100)$ more voxels than DS 1

10.5281/zenodo.6366324

Here we need inductive CALOFLOW (ICALOFLOW)!

Normalizing flows in generative modelling





Normalizing flows in generative modelling

 Rational Quadratic Splines (RQS) chosen as transformations Durkan et al. [arXiv:1906.04032], Gregory/Delbourgo [IMA J. of Num. An., '82]

- NFs learn parameters θ of a composition of RQS Dinh et al. [arXiv:1410.8516], Rezende/Mohamed [arXiv:1505.05770]
- Autoregressive architecture (MAF/IAF) ensures triangular Jacobian for fast evaluation

MAF (Teacher)

Papamakarios et al. [arXiv:1705.07057]

- slow in sampling
- $\bullet\,$ fast in density estimation $\checkmark\,$
- trained with LL

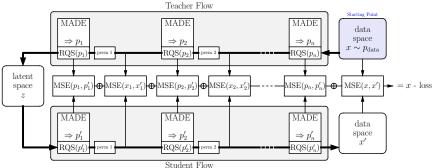
IAF (Student)

Kingma et al. [arXiv:1606.04934]

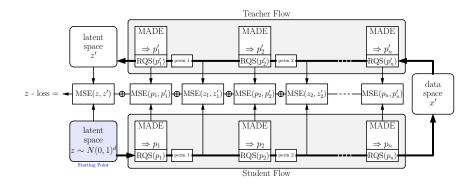
- fast in sampling \checkmark
- slow in density estimation
- trained with PDD

van den Oord et al. [arXiv:1711.10433]

PDD (x-loss)



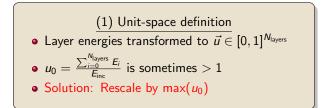
PDD (z-loss)

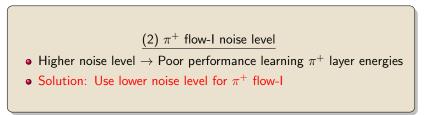


Training time

		Number of training epochs (Training time)		
		Teacher	Student	
γ	flow-I	100 (46 min)	-	
	flow-II	100 (77 min)	100 (360 min)	
π^+	flow-I	100 (52 min)	-	
	flow-II	100 (119 min)	150 (658 min)	

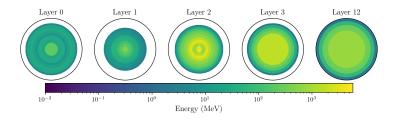
Main updates to CALOFLOW



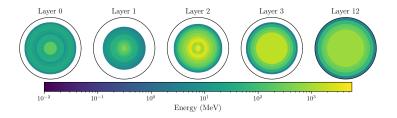


γ Shower images

Shower average photon student

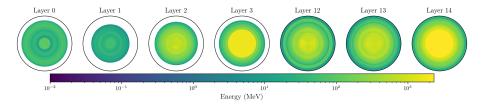


Shower average GEANT4 photon reference dataset



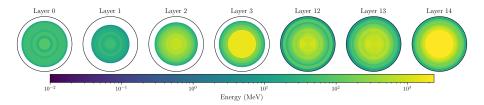
lan Pang (Rutgers)	CALOFLOW for CaloChallenge	November 2, 2022	18 / 18
--------------------	----------------------------	------------------	---------

π^+ Shower images

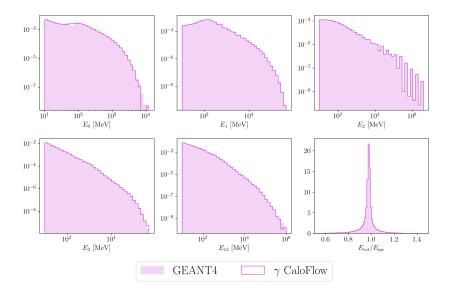


Shower average pion student

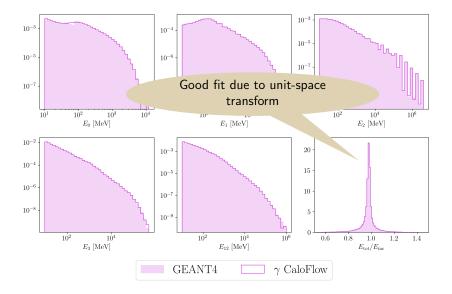
Shower average GEANT4 pion reference dataset



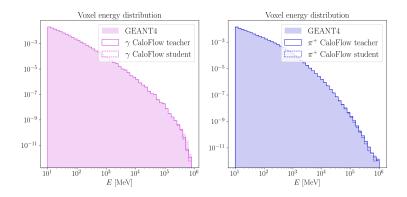
γ layer energies



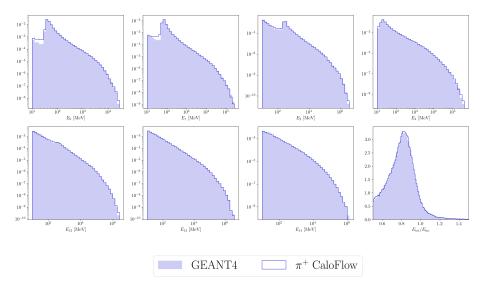
γ layer energies



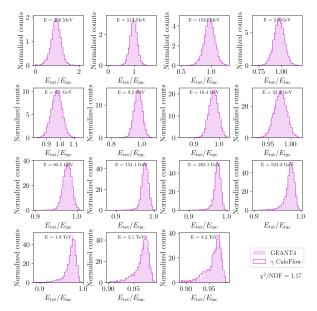
Voxel energy distribution



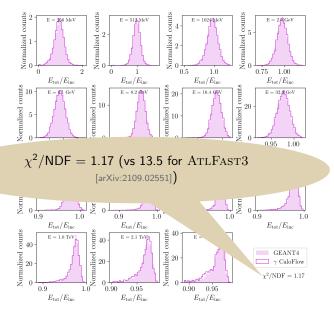
π^+ layer energies



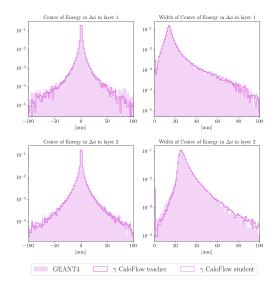
 $\gamma E_{\rm tot}/E_{\rm inc}$



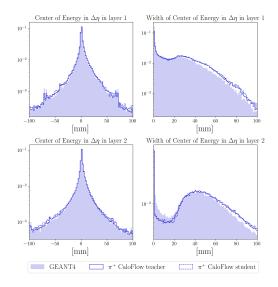
 $\gamma E_{\rm tot}/E_{\rm inc}$



γ shower shape



π^+ shower shape



π^+ shower shape

