ON THE EVALUATION OF GENERATIVE MODELS IN HEP

Raghav Kansal, Javier Duarte (UCSD) Nadya Chernyavskaya, Maurizio Pierini (CERN) Breno Orzari, Thiago Tomei (SPRACE)

> ML4Jets 01/11/2022

• Lots of approaches in the last few years in ML for HEP simulations

• "It is time to harvest" - <u>CMS MLTownhall 2022</u>

• How do we choose and use these for HL-LHC?

How do we trust generated data?

• How do we compare generative models?

How do we trust generated data? Evaluation metrics

How do we compare generative models? Evaluation metrics

PROBLEM

- ⇒ Multivariate goodness-of-fit (g.o.f.) / two-sample test
 - But no "best" g.o.f. test (Cousins 2016)
 - Need to choose based on the relevant alternative hypotheses

TEST CRITERIA

- To trust generated data, tests should be:
 - Sensitive to quality
 - Sensitive to diversity
 - Multivariate (for correlations & conditional generation)
 - Interpretable
- To compare generative models, tests should be:
 - Standardised across collaboration
 - Reproducible
 - ~Efficient

METHODS

HISTOGRAMS

• Traditional method for evaluating physics simulations is to compare physical distributions

LAGAN (de Oliveira et al '17)

- Valuable insight into physics performance
- Should be quantified
- Cons:
 - Only ID (curse of dimensionality for multivariate histograms)
 - Binning dependent
 - No well-defined way to aggregate scores across multiple distributions

Sources <u>1</u>, <u>2</u>

IS

 $p_{\text{real}}(\mathbf{x}) \lor s p_{\text{gen}}(\mathbf{x})$

Integral Probability Metrics $D_{\mathcal{F}}(p_{real}, p_{gen})$

f-Divergences $D_f(p_{real}, p_{gen})$

 $p_{\text{real}}(x) f\left(\frac{p_{\text{real}}(x)}{p_{\text{real}}(x)}\right) dx$

Pearson χ^2

p-Wasserstein (W_p) distances

$$\sup_{f \in \mathcal{F}} |\mathbb{E}_{x \sim p_{\text{real}}} f(x) - \mathbb{E}_{y \sim p_{\text{gen}}} f(y)$$

maximum mean discrepancy (MMD)

- IPMs take into account metric space
- More useful for comparing generative models

00 200 300 400 500 Real Jet Mass (GeV)

KL

KL, JS, χ^2 is the same for both

Raghav Kansal

Evaluating Generative Models in HEP

- Wasserstein distance (W_1) (F is all K-Lipschitz functions)
 - Sensitive to quality, diversity; but biased and slow convergence
- Fréchet Gaussian distance (FGD)
 - Fréchet / W_2 distance between multivariate Gaussian fitted to observations
 - Standard in computer vision (FID), efficient, sensitive to quality and diversity; but Gaussian assumption
- Maximum Mean Discrepancy (MMD) (\mathscr{F} is unit ball in reproducing Kernel Hilbert space (RKHS) for a chosen kernel k(x, y))
 - Distance between embeddings of p_{real} and p_{gen} in RKHS
 - Fast, unbiased estimators, but depends on kernel

Gretton 2020

MORE METRICS

- Precision and recall (Kynkäänniemi et al 2019)
 - Estimate real and generated manifold
 - Can disentangle quality and diversity

- Classifier-based metrics: train a classifier between real and generated data <u>Friedman 2003, Paz and Oquab 2017</u> (C2ST), <u>Krause and Shih (2021)</u>
 - Can be powerful test of quality and diversity
 - Practical limitations: interpretability, generalising to conditional generation, standardising a specific architecture for all alternative hypotheses, reproducability of trainings, inefficiency

FEATURE SELECTION

- Typically raw data (particle / hit features) is very high dimensional
- Not necessarily what we care about
- ML solution: derive lower dimensional salient features from a pre-trained classifier

• Alternative? Use physicists' hand-engineered features: jet observables, shower-shape variables

TESTS

JET DISTRIBUTIONS

EFP SCORES VS SAMPLE SIZE

- W_1^M (looking at ID mass distribution only) works somewhat, but not as sensitive
- Wasserstein distance is biased and slow to converge
- MMD fails completely (for all kernels tested)
- Precision, recall work roughly useful for diagnosing failure modes but not for comparing

Raghav Kansal

Evaluating Generative Models in HEP

FGD is the most sensitive

PARTICLENET ACTIVATION SCORES

- Same conclusions overall as for EFPs
- FGD the best, MMD is not very sensitive, P&R are OK for diagnosing failure modes

FINAL SCORES

Metric	Truth	Smeared	Shifted	Removing Tail	Particle Features Smeared	Particle η^{rel} Smeared	Particle p_T^{rel} Smeared	Particle p_T^{rel} Shifted
W^M_1	0.002 ± 0.000	0.010 ± 0.001	0.029 ± 0.002	0.003 ± 0.001	0.008 ± 0.001	0.004 ± 0.001	0.002 ± 0.000	0.029 ± 0.001
Wasserstein Distance EFP	0.016 ± 0.012	0.086 ± 0.054	0.102 ± 0.018	0.016 ± 0.007	0.186 ± 0.079	0.026 ± 0.011	0.027 ± 0.016	0.064 ± 0.020
FGD_∞ efp	0.000 ± 0.000	0.025 ± 0.001	0.026 ± 0.001	0.002 ± 0.000	0.022 ± 0.001	0.004 ± 0.000	0.003 ± 0.000	0.030 ± 0.001
MMD Poly Deg=4 Quadratic Unbiased Est. EFP	-0.000 ± 0.000	0.002 ± 0.001	0.003 ± 0.002	0.000 ± 0.000	0.002 ± 0.001	0.000 ± 0.000	0.000 ± 0.000	0.002 ± 0.000
Precision EFP	0.894 ± 0.111	0.941 ± 0.039	0.978 ± 0.005	0.882 ± 0.077	0.680 ± 0.104	0.936 ± 0.057	0.667 ± 0.114	0.789 ± 0.092
Recall EFP	0.900 ± 0.123	0.881 ± 0.072	0.967 ± 0.015	0.916 ± 0.062	0.828 ± 0.050	0.921 ± 0.072	0.802 ± 0.101	0.763 ± 0.125
Wasserstein Distance PNet Activations	1.646 ± 0.063	1.699 ± 0.096	2.372 ± 0.388	1.708 ± 0.082	4.492 ± 0.145	1.789 ± 0.050	3.986 ± 0.362	7.595 ± 0.219
FGD_∞ PNet Activations	0.002 ± 0.001	0.042 ± 0.003	0.208 ± 0.013	0.006 ± 0.001	1.256 ± 0.028	0.019 ± 0.002	1.222 ± 0.017	3.635 ± 0.019
MMD Poly Deg=4 Quadratic Unbiased Est. PNet Activations	-0.000 ± 0.000	0.000 ± 0.000	0.004 ± 0.001	0.000 ± 0.001	0.007 ± 0.002	0.001 ± 0.000	0.006 ± 0.002	0.102 ± 0.010
Precision PNet Activations	0.684 ± 0.074	0.642 ± 0.043	0.706 ± 0.056	0.734 ± 0.029	0.088 ± 0.044	0.751 ± 0.083	0.078 ± 0.043	0.390 ± 0.078
Recall PNet Activations	0.701 ± 0.049	0.611 ± 0.039	0.612 ± 0.075	0.731 ± 0.058	0.014 ± 0.009	0.703 ± 0.105	0.014 ± 0.011	0.572 ± 0.087
Classifier AUC	0.50	0.52	0.54	0.50	0.97	0.81	0.93	0.99

- W_1^M is sensitive to some, but not all distortions
- Wasserstein distance is sensitive to most, but very slow to converge
- Despite Gaussian assumption, FGD is sensitive to all distortions
- Performance for EFPs and PNet activations is similar
- Classifier identifies particle feature distortions but misses distribution-level discrepancies

- Re-iterating <u>Cousins 2016</u>: no best g.o.f. test for all alternative hypotheses
 - His suggestion: use multiple, covering the relevant alternatives
- FGD proves to be the most sensitive for typical distortions we expect
 - Hand-engineered features and ParticleNet activations are similarly sensitive
 - Hand engineered are more interpretable, standardisable, and efficient
 - → Recommend Fréchet Jet and Calo Distances, using EFPs and shower-shape variables, for overall model evaluation and comparison
- But FGD can miss shape discrepancies, so continue with ID histograms (W_1) as well
- Next steps:
 - Discuss with the ML4Sim community
 - Report on arXiv later this month
 - Implement in <u>JetNet</u> for easy, standard use
 - Pull request to Calo Challenge?

 $\sup_{f \in \mathcal{F}} |\mathbb{E}_{x \sim p_{\text{real}}} f(x) - \mathbb{E}_{y \sim p_{\text{gen}}} f(y)|$

- Fréchet Gaussian Distance (FGD)
 - Fréchet / W_2 distance between multivariate Gaussian fitted to observations
 - Standard in computer vision (FID)
 - Computationally efficient
 - Gaussian assumption

- $FGD = Frechet(\mathcal{N}(\mu_{r}, \Sigma_{r}), \mathcal{N}(\mu_{g}, \Sigma_{g}))$ $(\mathbf{x}_{real}) \quad \{\mathbf{x}_{gen}\}$
- Biased (FGD_{∞} extrapolate to infinity)

- Wasserstein p-distances (W_p) :
 - F is all K-Lipschitz functions
 - "Work" needed to transport probability mass
 - Sensitive to quality and diversity
 - Computationally challenging for large N, D
 - Biased estimators

 $\sup |\mathbb{E}_{x \sim p_{real}} f(x) - \mathbb{E}_{y \sim p_{gen}} f(y)|$ $f \in \mathcal{F}$

- Maximum mean discrepancy (MMD)
 - \mathcal{F} is reproducing Kernel Hilbert space (RKHS) for a chosen kernel k(x, y)
 - Distance between embeddings of p_{real} and p_{gen} in ${\mathscr{F}}$
 - Proposed in computer vision (KID), 3rd order polynomial kernel
 - Unbiased estimators
 - Kernel dependent

FRÉCHET <CLASSIFIER> DISTANCES

• Machine learning version of this: use classifier hidden features instead!

Kansal et al., NeurIPS 2021

• Example: apply to jet generation using pre-trained ParticleNet graph classifier:

 $\text{FGD} = \text{Frechet}(\mathcal{N}(\boldsymbol{\mu}_{\text{r}}, \boldsymbol{\Sigma}_{\text{r}}), \mathcal{N}(\boldsymbol{\mu}_{\text{g}}, \boldsymbol{\Sigma}_{\text{g}})) = ||\boldsymbol{\mu}_{\text{r}} - \boldsymbol{\mu}_{\text{g}}||^{2} + \text{Tr}[\boldsymbol{\Sigma}_{\text{r}} + \boldsymbol{\Sigma}_{\text{g}} - 2(\boldsymbol{\Sigma}_{\text{r}} \boldsymbol{\Sigma}_{\text{g}})^{1/2}]$

- High-performing classifier learns salient hidden features from data
- Retain sensitivity to quality, diversity from W_1 , reproducible and efficient plus:
 - Single aggregate score, correlations (Σ) between features, easy to scale

MAXIMUM MEAN DISCREPANCY

 $\sup_{f \in \mathcal{F}} \|\mathbb{E}_{\mathbf{x} \sim p_{\text{real}}} f(\mathbf{x}) - \mathbb{E}_{\mathbf{y} \sim p_{\text{gen}}} f(\mathbf{y})\|$

- IPM where \mathscr{F} is unit ball in the reproducing kernel Hilbert space (RKHS) for kernel k(x,y)
 - RKHS $\Leftrightarrow f(x) = \langle f, \varphi(x) \rangle_{\mathcal{F}}$, where $k(x, y) = \langle \varphi(x), \varphi(y) \rangle_{\mathcal{F}}$

•
$$\mathbb{E}_{x \sim p} f(x) = \langle f, \mathbb{E}_{x \sim p} \varphi(x) \rangle_{\mathcal{F}} = \langle f, \mu_p \rangle_{\mathcal{F}}$$

- μ_p is the embedding of distribution p in ${\mathscr F}$
- if k is 'characteristic', e.g. Gaussian, $p \rightarrow \mu_p$ is injective (μ_p captures everything)

$$\Rightarrow \sup_{f \in \mathcal{F}} |\mathbb{E}_{x \sim p_{\text{real}}} f(x) - \mathbb{E}_{y \sim p_{\text{gen}}} f(y)| = \sup_{f \in \mathcal{F}} |\langle f, \mu_{p_{\text{real}}} - \mu_{p_{\text{gen}}} \rangle_{\mathcal{F}}| = ||\mu_{p_{\text{real}}} - \mu_{p_{\text{gen}}}||$$

- MMD: distance between means in embedding space
- Very powerful method for calculating distance between distributions
 Raghav Kansal
 Evaluating Generative Models in HEP

TESTS FOR QUALITY / DIVERSITY

- Can be valuable to disentangle these
- Precision & Recall (Kynkäänniemi et al 2019)

- Estimate real and generated manifold using k-nearest-neighbours
- Precision: fraction of generated samples lying within real manifold (quality)
- Recall: fraction of real samples which lying within gen manifold (diversity)
- Density & Coverage (<u>Naeem et al 2020</u>)
 - Like P&R, but takes into account density of real manifold

CLASSIFIER-BASED TESTS

- Train a classifier between real and generated data
- Friedman 2003, Paz and Oquab 2017 (C2ST), Liu et al. 2020 (Deep Kernel 2ST), Krause and Shih (2021)
- Can be powerful test of quality and diversity
- Not interpretable
- Hard to generalise to conditional evaluation
- Hard to standardise (need to choose an "optimal" classifier for relevant alternatives)
- Not generally reproducible (for non-convex, stochastic optimisation)
- Inefficient (Need to re-train for each dataset and algorithm)

TOY DISTRIBUTIONS

• We first test on toy Gaussian distributions

Tests if metrics are sensitive to correlations

Scores for largest N

Metric	Truth	Shift μ_x by 1\$\sigma\$	Shift μ_x by 0.1\$\sigma\$	Zero covariance	Multiply (co)variances by 10	Divide (co)variances by 10	Mixture of Two Gaussians 1	Mixture of Two Gaussians 2
Wasserstein Distance	0.016 ± 0.004	1.139 ± 0.024	0.043 ± 0.008	0.077 ± 0.006	9.792 ± 0.126	0.969 ± 0.013	0.023 ± 0.003	0.014 ± 0.002
Fréchet Gaussian Distance	0.001 ± 0.000	0.987 ± 0.016	0.010 ± 0.002	0.032 ± 0.003	9.320 ± 0.121	0.932 ± 0.010	0.001 ± 0.000	0.001 ± 0.000
MMD Poly Deg=4 Quadratic Unbiased Est.	-0.000 ± 0.005	16.576 ± 0.478	0.104 ± 0.031	0.550 ± 0.035	19395.900 ± 617.497	4.761 ± 0.048	0.073 ± 0.010	0.019 ± 0.011

Wasserstein and FGD are biased (value depends on N) but work well overall

- Can't distinguish mixtures of Gaussians
- MMD estimator unbiased, converges ~quickly, can distinguish mixtures of Gaussians (after tuning kernel)

Raghav Kansal

Evaluating Generative Models in HEP

Metric	Truth	Shift μ_x by 1\$\sigma\$	Shift μ_x by 0.1\$\sigma\$	Zero covariance	Multiply (co)variances by 10	Divide (co)variances by 10	Mixture of Two Gaussians 1	Mixture of Two Gaussians 2
Precision	0.972 ± 0.005	0.907 ± 0.010	0.976 ± 0.004	0.969 ± 0.006	0.345 ± 0.011	1.000 ± 0.000	0.975 ± 0.003	0.998 ± 0.001
Recall	0.997 ± 0.001	0.992 ± 0.003	0.997 ± 0.001	0.998 ± 0.001	0.998 ± 0.001	0.585 ± 0.018	0.996 ± 0.001	0.997 ± 0.001
Density	3.230 ± 0.063	2.480 ± 0.083	3.190 ± 0.071	3.107 ± 0.132	0.603 ± 0.015	5.731 ± 0.336	2.990 ± 0.087	0.989 ± 0.009
Coverage	0.876 ± 0.002	0.780 ± 0.006	0.872 ± 0.005	0.872 ± 0.004	0.602 ± 0.010	0.406 ± 0.008	0.871 ± 0.002	0.956 ± 0.006

- P&R match our intuition better
- Biased, but converge quickly

Raghav Kansal