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• Lots of approaches in the last few years in ML for HEP simulations

• “It is time to harvest” - CMS ML Townhall 2022

• How do we choose and use these for HL-LHC?

https://indico.cern.ch/event/1166570/timetable/?view=standard#6-overview-and-outlook-machine


Raghav Kansal Evaluating Generative Models in HEP

• How do we trust generated data?

• How do we compare generative models?
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• How do we trust generated data? Evaluation metrics

• How do we compare generative models? Evaluation metrics
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• Want to quantify difference between  and  distributions

 Multivariate goodness-of-fit (g.o.f.) / two-sample test

• But no “best” g.o.f. test (Cousins 2016)

• Need to choose based on the relevant alternative hypotheses

preal(x) pgen(x)

⇒
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https://www.physics.ucla.edu/~cousins/stats/ongoodness6march2016.pdf
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• To trust generated data, tests should be:

• Sensitive to quality

• Sensitive to diversity

• Multivariate (for correlations & conditional generation)

• Interpretable

• To compare generative models, tests should be:

• Standardised across collaboration

• Reproducible

• ~Efficient
6

TEST CRITERIA
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METHODS
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HISTOGRAMS
• Traditional method for evaluating physics simulations is to compare physical distributions 
MC generator evaluation (Ellis et al ’96) FastSim (Sekmen ’17) LAGAN (de Oliveira et al ’17)

• Valuable insight into physics performance

• Should be quantified

• Cons:

• Only 1D (curse of dimensionality for multivariate histograms) 

• Binning dependent

• No well-defined way to aggregate scores across multiple distributions
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  vs preal(x) pgen(x)
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Real Jet Mass (GeV)
100 200 300 400 500

KL, JS,  is the same for bothχ2

100 200 300 400 500

Generated Jet Mass 1 (GeV)
100 200 300 400 500

Generated Jet Mass 2 (GeV)

Integral Probability Metrics Dℱ(preal, pgen)

sup
f∈ℱ

|𝔼x∼preal
f(x) − 𝔼y∼pgen

f(y) |

-Divergences f Df(preal, pgen)

∫ preal(x) f( preal(x)
pgen(x) )dx

-Wasserstein ( ) distancesp Wp

maximum mean discrepancy 
(MMD)

KL JS

Pearson χ2

• IPMs take into account metric space

• More useful for comparing generative models

Sources 1, 2

https://www.gatsby.ucl.ac.uk/~gretton/papers/oxford20.pdf
https://stats.stackexchange.com/a/351153
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MORE ON IPMS
• Wasserstein distance ( ) 

(  is all K-Lipschitz functions)

• Sensitive to quality, diversity; but biased and slow convergence

• Fréchet Gaussian distance (FGD)

• Fréchet /  distance between multivariate Gaussian fitted to observations 

• Standard in computer vision (FID), efficient, sensitive to quality and diversity; but Gaussian assumption

• Maximum Mean Discrepancy (MMD) 
(  is unit ball in reproducing Kernel Hilbert space (RKHS) for a chosen kernel )

• Distance between embeddings of  and  in RKHS

• Fast, unbiased estimators, but depends on kernel

W1
ℱ

W2

ℱ k(x, y)

preal pgen

sup
f∈ℱ

|𝔼x∼preal
f(x) − 𝔼y∼pgen

f(y) |

FGD = Frechet(𝒩(μr, Σr), 𝒩(μg, Σg))

{xreal} {xgen}

Gretton 2020

https://www.gatsby.ucl.ac.uk/~gretton/papers/oxford20.pdf
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• Precision and recall (Kynkäänniemi et al 2019)

• Estimate real and generated manifold

• Can disentangle quality and diversity

• Classifier-based metrics: train a classifier between real and generated data  
Friedman 2003, Paz and Oquab 2017 (C2ST), Krause and Shih (2021)

• Can be powerful test of quality and diversity

• Practical limitations: interpretability, generalising to conditional generation, standardising a 
specific architecture for all alternative hypotheses, reproducability of trainings, inefficiency
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MORE METRICS

https://arxiv.org/pdf/1904.06991.pdf
https://www.slac.stanford.edu/econf/C030908/papers/THPD002.pdf
https://arxiv.org/pdf/1610.06545.pdf
https://arxiv.org/pdf/2106.05285.pdf
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FEATURE SELECTION
• Typically raw data (particle / hit features) is very high dimensional

• Not necessarily what we care about

• ML solution: derive lower dimensional salient features from a pre-trained classifier

• Alternative? Use physicists’ hand-engineered features: jet observables, shower-shape variables

Real Jets

Gen Jets

{30 particles
{ featuresη, φ, pT

Class

{Internal Repr.

Pooling

FCN
knn+ 

EdgeConv

Pre-trained 
ParticleNet

FCN
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TESTS

13
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JET DISTRIBUTIONS
• Sample of gluon jets to test 

sensitivity of metrics

• We distort true distribution by:

1. Re-weighting in mass

2. Smearing/shifting particle features

• We look at sensitivity of metrics 
to distortions, using:

1.  Energy Flow Polynomials (EFPs)  
(d ≤ 4)

2.  ParticleNet activations

14
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EFP SCORES VS SAMPLE SIZE

•  (looking at1D mass distribution only) works somewhat, but not as sensitive

• Wasserstein distance is biased and slow to converge

• MMD fails completely (for all kernels tested)

• Precision, recall work roughly - useful for diagnosing failure modes but not for comparing

WM
1

FGD is the most sensitive
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PARTICLENET ACTIVATION SCORES

• Same conclusions overall as for EFPs

• FGD the best, MMD is not very sensitive, P&R are OK for diagnosing failure modes
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FINAL SCORES

•  is sensitive to some, but not all distortions

• Wasserstein distance is sensitive to most, but very slow to converge 

• Despite Gaussian assumption, FGD is sensitive to all distortions

• Performance for EFPs and PNet activations is similar

• Classifier identifies particle feature distortions but misses distribution-level discrepancies

WM
1
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TAKEAWAYS
• Re-iterating Cousins 2016: no best g.o.f. test for all alternative hypotheses

• His suggestion: use multiple, covering the relevant alternatives

• FGD proves to be the most sensitive for typical distortions we expect

• Hand-engineered features and ParticleNet activations are similarly sensitive

• Hand engineered are more interpretable, standardisable, and efficient

•  Recommend Fréchet Jet and Calo Distances, using EFPs and shower-shape variables, for overall model 
evaluation and comparison

• But FGD can miss shape discrepancies, so continue with1D histograms ( ) as well

• Next steps:

• Discuss with the ML4Sim community

• Report on arXiv later this month

• Implement in JetNet for easy, standard use

• Pull request to Calo Challenge?

⇒

W1

18

JetNet

https://www.physics.ucla.edu/~cousins/stats/ongoodness6march2016.pdf
https://github.com/jet-net/JetNet


BACKUP
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MORE ON IPMS
• Fréchet Gaussian Distance (FGD)

• Fréchet /  distance between multivariate Gaussian fitted to observations 

• Standard in computer vision (FID)

• Computationally efficient

• Gaussian assumption

• Biased (  - extrapolate to infinity)

W2

FGD∞

sup
f∈ℱ

|𝔼x∼preal
f(x) − 𝔼y∼pgen

f(y) |

FGD = Frechet(𝒩(μr, Σr), 𝒩(μg, Σg))

{xreal} {xgen}
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MORE ON IPMS
• Wasserstein distances ( ):

•  is all K-Lipschitz functions

• “Work” needed to transport probability mass

• Sensitive to quality and diversity

• Computationally challenging for large N, D

• Biased estimators

p− Wp

ℱ

sup
f∈ℱ

|𝔼x∼preal
f(x) − 𝔼y∼pgen

f(y) |
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MORE ON IPMS
• Maximum mean discrepancy (MMD)

•  is reproducing Kernel Hilbert space (RKHS) for a chosen kernel 

• Distance between embeddings of  and  in 

• Proposed in computer vision (KID), 3rd order polynomial kernel

• Unbiased estimators

• Kernel dependent

ℱ k(x, y)

preal pgen ℱ

sup
f∈ℱ

|𝔼x∼preal
f(x) − 𝔼y∼pgen

f(y) |

Gretton 2020

https://www.gatsby.ucl.ac.uk/~gretton/papers/oxford20.pdf
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FRÉCHET <CLASSIFIER> DISTANCES

23

• Machine learning version of this: use classifier hidden features instead!

• Example: apply to jet generation using pre-trained ParticleNet graph classifier :

Real Jets

Gen Jets

μr, Σr

μg, Σg

{30 particles
{ featuresη, φ, pT

Class

{Internal Repr.

Pooling

FCN
knn+ 

EdgeConv

ParticleNet

FCN

• High-performing classifier learns salient hidden features from data

• Retain sensitivity to quality, diversity from , reproducible and efficient plus:

• Single aggregate score, correlations ( ) between features, easy to scale

W1

Σ

Kansal et al., NeurIPS 2021

FGD = Frechet(𝒩(μr, Σr), 𝒩(μg, Σg)) = | |μr − μg | |2 + Tr[Σr + Σg−2(ΣrΣg)1/2]

https://arxiv.org/abs/2106.11535
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MAXIMUM MEAN DISCREPANCY

• IPM where  is unit ball in the reproducing kernel Hilbert space (RKHS) for kernel 

• RKHS  , where 

•

•  is the embedding of distribution  in 

• if  is ‘characteristic’, e.g. Gaussian,  is injective (  captures everything)

• MMD: distance between means in embedding space

• Very powerful method for calculating distance between distributions

ℱ
k(x, y)

⇔ f(x) = ⟨ f, φ(x)⟩ℱ k(x, y) = ⟨φ(x), φ(y)⟩ℱ

𝔼x∼p f(x) = ⟨ f, 𝔼x∼pφ(x)⟩ℱ = ⟨ f, μp⟩ℱ

μp p ℱ

k p → μp μp

⇒ sup
f∈ℱ

|𝔼x∼preal
f(x) − 𝔼y∼pgen

f(y) | = sup
f∈ℱ

|⟨ f, μpreal
− μpgen

⟩ℱ | = | |μpreal
− μpgen

| |

24

sup
f∈ℱ

|𝔼x∼preal
f(x) − 𝔼y∼pgen

f(y) |
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TESTS FOR QUALITY / DIVERSITY
• Can be valuable to disentangle these

• Precision & Recall (Kynkäänniemi et al 2019)

• Estimate real and generated manifold using k-nearest-neighbours

• Precision: fraction of generated samples lying within real manifold (quality)

• Recall: fraction of real samples which lying within gen manifold (diversity)

• Density & Coverage (Naeem et al 2020)

• Like P&R, but takes into account density of real manifold

https://arxiv.org/pdf/1904.06991.pdf
https://arxiv.org/pdf/2002.09797.pdf
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CLASSIFIER-BASED TESTS
• Train a classifier between real and generated data

• Friedman 2003, Paz and Oquab 2017 (C2ST), Liu et al. 2020 (Deep Kernel 2ST), Krause and 
Shih (2021)

• Can be powerful test of quality and diversity

• Not interpretable

• Hard to generalise to conditional evaluation

• Hard to standardise (need to choose an “optimal” classifier for relevant alternatives)

• Not generally reproducible (for non-convex, stochastic optimisation)

• Inefficient (Need to re-train for each dataset and algorithm)

https://www.slac.stanford.edu/econf/C030908/papers/THPD002.pdf
https://arxiv.org/pdf/1610.06545.pdf
http://proceedings.mlr.press/v119/liu20m/liu20m.pdf
https://arxiv.org/pdf/2106.05285.pdf
https://arxiv.org/pdf/2106.05285.pdf
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TOY DISTRIBUTIONS
Tests if metrics are 

sensitive to correlations

Tests sensitivity to quality Tests sensitivity to diversity Mixture with same mean, 
variance and covariance as truth: 

Tests sensitivity to shape of 
distribution

Same statistics, but easier 
to distinguish (by eye)

• We first test on toy Gaussian distributions
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RESULTS

• Wasserstein and FGD are biased (value depends on N) but work well overall

• Can’t distinguish mixtures of Gaussians

• MMD estimator unbiased, converges ~quickly, can distinguish mixtures of Gaussians (after tuning kernel)

• Scores vs. sample size (N)

• Scores for largest N
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RESULTS

• P&R match our intuition better
• Biased, but converge quickly

• P&R vs D&C


