Heterogeneous Graph Representation for Identifying Hadronically Decayed Tau Leptons at the High Luminosity LHC

Andris Huang¹, Xiangyang Ju², Jacob Lyons¹, Daniel Murnane², Mariel Pettee², Landon Reed³

¹UC Berkeley, ²LBNL, ³University of Minnesota Duluth

ML4Jets2022 November 3rd, 2022

UMD

Outline

- Background Information on Tau Leptons
- Data Simulation & Feature Selection
- Graph Neural Network (GNN) Architectures
- Heterogeneous Representations
- Results & Discussion

Background Information

- Third generation fermion
- Mass of 1777 MeV → most massive lepton
- Decays with a mean lifetime of 290 ps and a mean flight distance of 49 µm/GeV
- Motivation: Used for making standard model measurements (H → ττ) & searching for new ditau resonances

three generations of matter interactions / force carriers (fermions) (bosons) ш ≃2.2 MeV/c² ≃1.28 GeV/c² ≃173.1 GeV/c² ≃124.97 GeV/c² mass charge 2/ 2/3 С t Н g u 1/2 1/2 spin charm top aluon higgs up ≃4.7 MeV/c² S ≈96 MeV/c² ≃4.18 GeV/c² BOSON DUARK b d S down bottom photon strange SCALAR ≈0.511 MeV/c² ≃105.66 MeV/c² ≃1.7768 GeV/c² ≈91.19 GeV/c² BOSONS BOSONS е μ τ 1/2 1/2 Z boson electron tau muon EPTONS <1.0 eV/c2 <0.17 MeV/c² <18.2 Mev/C² ≈80.39 GeV/c² **BAUGE** ±1 TOR Ve Vμ Vτ W 1/2 1/2 1/2 electron tau . СЩ muon W boson neutrino neutrino neutrino

Standard Model of Elementary Particles

https://en.wikipedia.org/wiki/Standard Model

Decay Modes

- Decays either leptonically or hadronically
- Our focus: the hadronic decay modes
 - Mostly include 1 or 3 charged pions
 - Visible signature appears as a jet with either 1 or 3 tracks
- Challenges
 - Neutrinos escape the detector, carrying away a fraction of energy
 - Dense environment at the HL-LHC

https://www.lhc-ilc.physik.uni-bonn.de/ergebnisse/dateien/t0 0000078.pdf?c=t&id=78 4

Data Simulation

- Proton-proton collisions
 - Center-of-mass energy: 13 TeV
 - HL-LHC: With an average 200 additional pp collisions
 - Jet reconstructed using the anti- k_t algorithm
- Signals
 - Hadronic Tau leptons from $\gamma^* \rightarrow \tau \tau$ processes
- Backgrounds
 - Jets from the QCD processes
- Low-level particle-flow kinematics
 - $\circ \quad p_T^{ ext{track}},\,\eta^{ ext{track}},\,\phi^{ ext{track}},\,d_0,z_0$
- Low-level tower kinematics $\circ E_T^{ ext{tower}}, \eta^{ ext{tower}}, \phi^{ ext{tower}}$
- Jet-level kinematics
 - $\circ \quad p_{\mathrm{T}}^{\mathrm{jet}}, \eta^{\mathrm{jet}}, \phi^{\mathrm{jet}}$
- High-level variables
 - o <u>ATL-PHYS-PUB-2019-033</u>

5

Feature Selections

	G1	G2		
Track nodes	$p_{\mathrm{T}}^{\mathrm{track}},\eta^{\mathrm{track}},\phi^{\mathrm{track}},d_0,z_0$	$p_{\mathrm{T}}^{\mathrm{track}},\eta^{\mathrm{track}},\phi^{\mathrm{track}},d_0,z_0,p_{\mathrm{T}}^{\mathrm{jet}}$		
Tower nodes	$E_{\mathrm{T}}^{\mathrm{tower}},\eta^{\mathrm{tower}},\phi^{\mathrm{tower}},0,0$	$E_{\mathrm{T}}^{\mathrm{tower}},\eta^{\mathrm{tower}},\phi^{\mathrm{tower}},0,0,p_{\mathrm{T}}^{\mathrm{jet}}$		
Graph-level	None	None		
	G3	G4		
Track nodes	$p_{\mathrm{T}}^{\mathrm{track}},\eta^{\mathrm{track}},\phi^{\mathrm{track}},d_{0},z_{0},p_{\mathrm{T}}^{\mathrm{jet}}$	$p_{\mathrm{T}}^{\mathrm{track}},\eta^{\mathrm{track}}-\eta^{\mathrm{jet}},\phi^{\mathrm{track}}-\phi^{\mathrm{jet}},d_{0},z_{0},p_{\mathrm{T}}^{\mathrm{jet}}$		
Tower nodes	$E_{\mathrm{T}}^{\mathrm{tower}},\eta^{\mathrm{tower}},\phi^{\mathrm{tower}},0,0,p_{\mathrm{T}}^{\mathrm{jet}}$	$E_{\mathrm{T}}^{\mathrm{tower}},\eta^{\mathrm{tower}}-\eta^{\mathrm{jet}},\phi^{\mathrm{tower}}-\phi^{\mathrm{jet}},0,0,p_{\mathrm{T}}^{\mathrm{jet}}$		
Graph-level	$p_{ m T}^{ m jet},\eta^{ m jet},\phi^{ m jet}$	None		
	G5	G6		
Track nodes	$p_{\mathrm{T}}^{\mathrm{track}},\eta^{\mathrm{track}}-\eta^{\mathrm{jet}},\phi^{\mathrm{track}}-\phi^{\mathrm{jet}},d_0,z_0,p_{\mathrm{T}}^{\mathrm{jet}}$	$p_{\mathrm{T}}^{\mathrm{track}},\eta^{\mathrm{track}}-\eta^{\mathrm{jet}},\phi^{\mathrm{track}}-\phi^{\mathrm{jet}},d_{0},z_{0},p_{\mathrm{T}}^{\mathrm{jet}}$		
Tower nodes	$E_{\mathrm{T}}^{\mathrm{tower}},\eta^{\mathrm{tower}}-\eta^{\mathrm{jet}},\phi^{\mathrm{tower}}-\phi^{\mathrm{jet}},0,0,p_{\mathrm{T}}^{\mathrm{jet}}$	$E_{\mathrm{T}}^{\mathrm{tower}},\eta^{\mathrm{tower}}-\eta^{\mathrm{jet}},\phi^{\mathrm{tower}}-\phi^{\mathrm{jet}},0,0,p_{\mathrm{T}}^{\mathrm{jet}}$		
Graph-level	$p_{\mathrm{T}}^{\mathrm{jet}},\eta^{\mathrm{jet}},\phi^{\mathrm{jet}}$	$p_{\mathrm{T}}^{\mathrm{jet}},\eta^{\mathrm{jet}},\phi^{\mathrm{jet}},\mathrm{High} ext{-level Variables}$		

GNN Architecture

Encoder

• Maps input graph into a hidden representation

Message Passing

- Update edges based on neighboring nodes and globals: $e'_{ij} \leftarrow \phi^{ ext{e}}(e_{ij}, \, v_i, \, v_j, \, u)$
- Update nodes by aggregating edge information: $v_j' \leftarrow \phi^{\mathrm{v}}(E_j',\,v_j,\,u)$
- Update globals by aggregating nodes and edges: $u' \leftarrow \phi^{\mathrm{u}}(E',V',u)$

Decoder

- Update nodes, edges, globals independently
- Apply sigmoid function on globals to produce a score

7

Heterogeneous Representation

Guiding Question: Should different objects in the same graph be treated in the same way?

Encoding Schemes:

- Homogeneous Encoding
- Heterogeneous Node Encoding
 - $\circ \quad \text{Two types of nodes} \rightarrow \text{two distinct neural} \\ \text{network functions}$
- Heterogeneous Edge & Node Encoding
 - Three types of edges \rightarrow three distinct NN functions
- Recurrent Encoder (inspired from the RNN architecture)
 - Encode nodes as sequences, no edge encodings

Homogeneous Encodings

Heterogeneous Node Encodings

Heterogeneous Node & Edge Encodings

LSTM Encodings

Results

Heterogeneous Representations

Findings:

- Heterogeneous encodings
 - Better rejection for high efficiency
 - Similar rejection for low efficiency
- Sequentially biased encoding

• Outperforms permutationally invariant encodings

Discussion: More Message Passing Steps

Guiding Question: Why is recurrent encoding more powerful?

- Potential Reason 1: The final node is receiving an aggregated information from ALL previous nodes
 - Improvement on GNN: Large message passing steps
- Potential Reason 2: Sequential Bias

Discussion: Effects of Pileup

Inference Dataset: μ = 200					
Model	Training Dataset	AUC	Rejection at 75% Efficiency	Low-pileup	High-pileup
Heterogeneous Node & Edge Encoder	μ = 200	0.9886	448.5	0.30 - 0.	2-
	μ = 40	0.9614	32.8		
	Downgrade	0.0272 (2.75%)	415.7 (92.67%)		
Recurrent Encoder	μ = 200	0.9932	4616.7		2 0 50 100 150 250 300 Number of Tacks per let
	μ = 40	0.9722	117.3		
	Downgrade	0.0210 (2.11%)	4499.4 (97.46%)		17

Summary

- GNN architecture with fully-connected graphs for tau identification
- Feature Selections
 - Jet-level information are essential for better performance
- Heterogeneous Representation
 - Heterogeneous models yield better rejection for high efficiency and similar rejection for low efficiency than homogeneous model
 - Sequentially biased encoding outperforms permutationally invariant encodings
 - More message passing steps tends to improve performance

Rejection Curve for Effects of Pileup

19