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● Background Information on Tau Leptons
● Data Simulation & Feature Selection
● Graph Neural Network (GNN) Architectures
● Heterogeneous Representations
● Results & Discussion
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● Third generation fermion
● Mass of 1777 MeV → most 

massive lepton
● Decays with a mean lifetime of 

290 ps and a mean flight distance 
of 49 µm/GeV

● Motivation: Used for making 
standard model measurements (H 
→ ττ) & searching for new ditau 
resonances
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https://en.wikipedia.org/wiki/Standard_Model 

Background Information

https://en.wikipedia.org/wiki/Standard_Model


● Decays either leptonically or hadronically
● Our focus: the hadronic decay modes

○ Mostly include 1 or 3 charged pions
○ Visible signature appears as a jet 

with either 1 or 3 tracks
● Challenges

○ Neutrinos escape the detector, 
carrying away a fraction of energy

○ Dense environment at the HL-LHC
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https://www.lhc-ilc.physik.uni-bonn.de/ergebnisse/dateien/t0
0000078.pdf?c=t&id=78 

Decay Modes

https://www.lhc-ilc.physik.uni-bonn.de/ergebnisse/dateien/t00000078.pdf?c=t&id=78
https://www.lhc-ilc.physik.uni-bonn.de/ergebnisse/dateien/t00000078.pdf?c=t&id=78


Data Simulation

● Proton-proton collisions
○ Center-of-mass energy: 13 TeV
○ HL-LHC: With an average 200 additional pp collisions
○ Jet reconstructed using the anti-kt algorithm

● Signals
○ Hadronic Tau leptons from 𝛾* → ττ processes

● Backgrounds
○ Jets from the QCD processes

● Low-level particle-flow kinematics
○  

● Low-level tower kinematics
○

● Jet-level kinematics
○

● High-level variables
○ ATL-PHYS-PUB-2019-033 
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http://cdsweb.cern.ch/record/2688062/files/ATL-PHYS-PUB-2019-033.pdf


Feature Selections
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GNN Architecture
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Encoder
● Maps input graph into a hidden representation

Message Passing
● Update edges based on neighboring nodes and globals: 
● Update nodes by aggregating edge information:
● Update globals by aggregating nodes and edges:

Decoder
● Update nodes, edges, globals independently
● Apply sigmoid function on globals to produce a score

Score for 
Classification



Heterogeneous Representation
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Guiding Question: Should different objects in the 
same graph be treated in the same way?

Encoding Schemes:
● Homogeneous Encoding
● Heterogeneous Node Encoding

○ Two types of nodes → two distinct neural 
network functions

● Heterogeneous Edge & Node Encoding
○ Three types of edges → three distinct NN 

functions
● Recurrent Encoder (inspired from the RNN 

architecture)
○ Encode nodes as sequences, no edge 

encodings



Homogeneous Encodings
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Heterogeneous Node Encodings
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Heterogeneous Node & Edge Encodings

11



LSTM Encodings
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* LSTM requires a fixed-length inputs ⇒ only use first 10 tracks & 6 towers, 
sorted by decreasing PT and ET



Results
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Feature Selections
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Finding:

Jet-level information are essential for 
better performance



Heterogeneous Representations
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Findings:

● Heterogeneous encodings 
○ Better rejection for high efficiency 
○ Similar rejection for low efficiency 

● Sequentially biased encoding 
○ Outperforms permutationally 

invariant encodings



Discussion: More Message Passing Steps
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Guiding Question: Why is recurrent encoding more powerful?

● Potential Reason 1: The final node is receiving an 
aggregated information from ALL previous nodes

○ Improvement on GNN: Large message passing steps
● Potential Reason 2: Sequential Bias

Node Node Node NodeNode



Discussion: Effects of Pileup
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Low-pileup High-pileup

Inference Dataset: 𝜇 = 200

Model Training 
Dataset AUC Rejection at 

75% Efficiency

Heterogeneous
Node & Edge 

Encoder

𝜇 = 200 0.9886 448.5

𝜇 = 40 0.9614 32.8

Downgrade 0.0272 
(2.75%)

415.7 
(92.67%)

Recurrent 
Encoder

𝜇 = 200 0.9932 4616.7

𝜇 = 40 0.9722 117.3

Downgrade 0.0210 
(2.11%)

4499.4 
(97.46%)



Summary
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● GNN architecture with fully-connected graphs for tau identification
● Feature Selections

○ Jet-level information are essential for better performance
● Heterogeneous Representation 

○ Heterogeneous models yield better rejection for high efficiency and 
similar rejection for low efficiency than homogeneous model

○ Sequentially biased encoding outperforms permutationally invariant 
encodings

○ More message passing steps tends to improve performance
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Rejection Curve for Effects of Pileup


