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In this talk
I hope to convey how Hadronization is a complicated and worthwhile target 
for ML@HEP practitioners with a two part talk:

- Brief introduction to Hadronization.
- Efforts to apply ML to Hadronization, both published and preliminary.

This talk is based on arxiv:2203.04983 by Phil Ilten, Tony Menzo, Ahmed 
Youssef, and Jure Zupan and ongoing preliminary work.
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Hadronization

Image from Pythia 8.3 manual

The radial coordinate is time

or 1/energy scale.

Hard process dσ, perturbatively 
calculated.

Perturbative evolution from hard to 
hadronization scale, also 
perturbative.

Hadronization: combining partons 
into hadrons. Non perturbative.
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Modeling hadronization
Hadronization is a inherently non-perturbative process → Empirical models for predictions.

Two main models: the Lund String model (Pythia) and the Cluster model (Herwig). 

Lund String Model: Colored singlets + ~20 parameters → Hadrons
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Each hadron is characterized by its 
four-momenta and its flavour. Translated 
into three variables of interest:  z, pT, 
flavour.

Simplified example from arxiv:2203.04983.



However…
Tuned Pythia is very successful.  
However, we are pushing the 
models to their limits. 

Collective effects in general are 
tricky to recover e.g. heavy baryon 
production at high event 
multiplicities as in 
arxiv:1807.11321. 
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Machine Learning to the rescue?
Complex problem with no full model flexible enough and where training is 
expensive? → Machine Learning should be really useful here!

A lot of possible ways to attack this problem. The richness of the involved 
physics forbids the use of any plug-and-play algorithms.

Two recent papers on the subject: MLHAD (arxiv:2203.04983) and HADML 
(arxiv:2203.12660). Different generators (Pythia, Herwig) and different 
architectures (cSWAE, GAN) with different degrees of implementation.
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Learning the Lund Fragmentation model
MLHAD learns the Lund String first hadronization pdfs for
at various energies. Checks feasibility of the problem. 

Introduce inductive bias. Improve over the existing empirical model by first 
mapping it to a learnable model.

The first hadronization pdf can be iteratively applied to get a full chain.
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conditional Sliced Wasserstein AE

Traditional Auto-Encoder with a key 
difference: Gaussian latent space → a 
more flexible distribution. 

Achieved through the Sliced Wasserstein 
method for pdf distance computation. 

The energy of the string enters as a 
condition vector.
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Probabilistic generative models are known to obtain convincing physical 
observables from limited datasets while retaining flexibility and control of 
the output.



Learning Pythia

cSWAE learns the pz 
and pT spectrum for 
different string 
energies and different 
pdfs in the latent 
space.
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Obtaining a full chain
Fragmentation chain of N successive hadronizations. cSWAE recovers the probabilistic 
distribution of the chain length conditioned on the initial energy of the string.
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Limitations
cSWAE has only been trained in each variable separately and only for 
simple strings producing pions.

It assumes no correlation between hadronization steps.

Not a single hadronization generator: generate a batch and have to 
post-process them for a single chain generation.

Valid until a certain energy Ecut

However, keep in mind this is a first crack at a very complicated problem.
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Next directions: Improve upon first version
Sophistication of the full Machine Learning approach: different architectures 
(Normalizing Flows), more flavours, more colour topologies… Maybe 
dispense of the String altogether?
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*PRELIMINARY*

NFs can train on both variables at  
the same time + single 
hadronization pdf

It’s working very well conditioned 
on flavour and energy! 



Next directions: embed our model in Pythia
Pythia already handles different string topologies and their recursive splittings 
to produce hadrons→ Let’s take advantage of it.

Think in modules → Replace the fragmentation functions for z, pT and 
flavour.

Perform Rejection Sampling with UserHooks in Pythia and reduce the problem 
to learning a re-weighting function
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Preliminary results
We re-compiled Pythia to have uniform distributions and morph them to the 
Lund String distributions. 
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*PRELIMINARY*



An example of an observable for training:
How to train? We have a non-differentiable output + goodness-of-fit metric. Several 
options: Reinforcement Learning, Simulation Based Inference, Nested Sampling.Advantages 
and disadvantages to all of them…
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*PRELIMINARY*



Conclusions
Hadronization is the type of problem you dream of if you want to work in ML 
for HEP: physically meaningful and complicated enough that it is not simply 
a case of plug-and-play with any ML algorithm.

The variety of colour topologies and correlations between hadronizations 
pose a challenge to represent in an appropriate manner for any learnable 
algorithm.

Training itself is an issue! Development of Simulation Based Inference or 
Nested Sampling could be really useful.
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Backup slides



Momentum space for finding next hadronization
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Limitations of the Lund String model

O(20%) to O(50%) discrepancies between proton-proton and ion-ion collisions

Heavy particle composition as a function of event multiplicity is mismodelled at 
high event multiplicities

Mismodelling of the mass dependence of the average transverse momentum

Minimum bias description can be incompatible because of low transverse 
momentum mismodelling

Ridge in pp collisions missing in Pythia (and in general long range correlations are 
hard to model)

Charged particle multiplicity spectrum is very sensitive to color reconnections and 
MPI modelling
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Obtaining a full chain
Fragmentation chain of N successive hadronizations.
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Conditional Normalizing Flows *PRELIMINARY*
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Conditional Normalizing Flows *PRELIMINARY*



The pT distribution
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*PRELIMINARY*



Next directions: Observable choices
Definition of better observables for training. We need observables sensitive to 
differences in the hadronization models
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*PRELIMINARY*


